test_checkpointing.py 51.3 KB
Newer Older
1
import torch
2

3
4
import torch.distributed as dist

5
import deepspeed
aiss's avatar
aiss committed
6
7
from deepspeed.runtime.zero.stage_1_and_2 import DeepSpeedZeroOptimizer
from deepspeed.utils import groups
8
9
from deepspeed.runtime.fp16.fused_optimizer import FP16_Optimizer
from deepspeed.runtime.fp16.unfused_optimizer import FP16_UnfusedOptimizer
aiss's avatar
aiss committed
10
from deepspeed.moe.utils import split_params_into_different_moe_groups_for_optimizer
11

12
from deepspeed.runtime.pipe.topology import *
aiss's avatar
aiss committed
13

14
15
PipeTopo = PipeDataParallelTopology

16
17
from deepspeed.ops.op_builder import FusedLambBuilder, CPUAdamBuilder

aiss's avatar
aiss committed
18
19
from deepspeed.runtime.zero.stage3 import DeepSpeedZeroOptimizer_Stage3
from .util import required_torch_version
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
20

aiss's avatar
aiss committed
21
import itertools
22
23
24
25
import argparse
import pytest
import json
import os
Jeff Rasley's avatar
Jeff Rasley committed
26
import numbers
aiss's avatar
aiss committed
27
28
from .common import distributed_test
from .simple_model import *
29
30


31
32
33
34
def compare_deepspeed_states(saved_model, loaded_model):
    # These are compared in more depth in other places
    assert hasattr(loaded_model, 'module')

aiss's avatar
aiss committed
35
    assert saved_model.sparse_tensor_module_names == loaded_model.sparse_tensor_module_names
36
37
38
39
    assert saved_model.skipped_steps == loaded_model.skipped_steps
    assert saved_model.global_steps == loaded_model.global_steps


aiss's avatar
aiss committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def compare_model_states(saved_model,
                         loaded_model,
                         compare_optimizer=True,
                         load_module_only=False):
    if not load_module_only:
        compare_deepspeed_states(saved_model, loaded_model)

    for p0, p1 in zip(saved_model.module.named_parameters(), loaded_model.module.named_parameters()):
        np0, p0 = p0
        np1, p1 = p1
        if 'deepspeed_moe.gate.wg' in np0:
            # these params are converted to float at runtime, cast to half for comparison
            p1 = p1.half()
            p0 = p0.half()
54
        assert id(p0) != id(p1), f'Comparing fp16 model state tensor against itself : {id(p0)} <====> {id(p1)}'
aiss's avatar
aiss committed
55
56
57
58
59
        try:
            assert torch.allclose(p0, p1, atol=1e-07), f"FP16 model state {p0} is not equal to {p1}, names:{np0}, {np1}"
        except RuntimeError as err:
            print(f"FP16 model state {p0} is not equal to {p1}, names:{np0}, {np1}")
            raise err
60

61
62
63
    if not compare_optimizer:
        return

aiss's avatar
aiss committed
64
    if DeepSpeedZeroOptimizer_Stage3 is not None and isinstance(
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
65
            saved_model.optimizer,
aiss's avatar
aiss committed
66
            DeepSpeedZeroOptimizer_Stage3):
67
        for p0, p1 in zip(saved_model.optimizer.fp32_partitioned_groups_flat, loaded_model.optimizer.fp32_partitioned_groups_flat):
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
68
69
            assert torch.allclose(p0, p1, atol=1e-07), f"Fp32 model states {p0} is not equal to {p1}"

aiss's avatar
aiss committed
70
    elif isinstance(saved_model.optimizer, DeepSpeedZeroOptimizer):
71
        for p0, p1 in zip(saved_model.optimizer.single_partition_of_fp32_groups, loaded_model.optimizer.single_partition_of_fp32_groups):
72
            assert id(p0) != id(p1), f'Comparing fp32 model state tensor against itself: {id(p0)} <====> {id(p1)}'
Jeff Rasley's avatar
Jeff Rasley committed
73
            assert torch.allclose(p0, p1, atol=1e-07), f"Fp32 model states {p0} is not equal to {p1}"
74
75
76

    elif isinstance(saved_model.optimizer, FP16_Optimizer):
        for p0, p1 in zip(saved_model.optimizer.fp32_groups_flat, loaded_model.optimizer.fp32_groups_flat):
77
            assert id(p0) != id(p1), f'Comparing fp32 model state tensor against itself: {id(p0)} <====> {id(p1)}'
Jeff Rasley's avatar
Jeff Rasley committed
78
            assert torch.allclose(p0, p1, atol=1e-07), f"FP32 model states {p0} is not equal to {p1}"
79
80
81
82

    elif isinstance(saved_model.optimizer, FP16_UnfusedOptimizer):
        for params0, params1 in zip(saved_model.optimizer.fp32_groups, loaded_model.optimizer.fp32_groups):
            for p0, p1 in zip(params0, params1):
83
                assert id(p0) != id(p1), f'Comparing fp32 model state tensor against itself: {id(p0)} <====> {id(p1)}'
Jeff Rasley's avatar
Jeff Rasley committed
84
                assert torch.allclose(p0, p1, atol=1e-07), f"FP32 model states {p0} is not equal to {p1}"
85
86
    elif isinstance(saved_model.optimizer, torch.optim.Optimizer):
        pass
87
    else:
88
89
        assert False, f'Unexpected Optimizer Type: {saved_model.optimizer}'

90

91
92
93
def compare_optimizer_states(saved_model, loaded_model, hidden_dim, fp16=True):
    saved_optimizer = saved_model.optimizer.optimizer if fp16 else saved_model.optimizer
    loaded_optimizer = loaded_model.optimizer.optimizer if fp16 else loaded_model.optimizer
94

95
96
    for state0, state1 in zip(saved_optimizer.state.values(),
                              loaded_optimizer.state.values()):
97
98
        for s0, s1 in zip(state0.values(), state1.values()):
            if isinstance(s0, torch.Tensor) and isinstance(s1, torch.Tensor):
99
                assert id(s0) != id(s1), f'Comparing optimizer state tensor against itself: {id(s0)} <====> {id(s1)}'
100
101
102
103
104
                assert torch.equal(s0, s1)
            else:
                assert s0 == s1


Jeff Rasley's avatar
Jeff Rasley committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
def compare_lr_scheduler_states(saved_model, loaded_model):
    assert hasattr(saved_model, 'lr_scheduler')
    assert hasattr(loaded_model, 'lr_scheduler')

    saved_scheduler = saved_model.lr_scheduler
    loaded_scheduler = loaded_model.lr_scheduler

    assert hasattr(saved_scheduler, 'state_dict')
    assert hasattr(loaded_scheduler, 'state_dict')

    saved_sd = saved_scheduler.state_dict()
    loaded_sd = loaded_scheduler.state_dict()

    print(f"saved_sd = {saved_sd}")
    print(f"loaded_sd = {loaded_sd}")

    assert saved_sd.keys() == loaded_sd.keys()

    for state0, state1 in zip(saved_sd.values(), loaded_sd.values()):
        if isinstance(state0, numbers.Number) and isinstance(state1, numbers.Number):
            assert state0 == state1


128
129
130
131
132
133
134
135
136
137
138
139
140
def create_deepspeed_model(args, model, base_optimizer):
    if base_optimizer is None:
        ds_model, _, _, _ = deepspeed.initialize(args=args,
                                                 model=model,
                                                 model_parameters=model.parameters())
    else:
        ds_model, _, _, _ = deepspeed.initialize(args=args,
                                                model=model,
                                                optimizer=base_optimizer)

    return ds_model


Jeff Rasley's avatar
Jeff Rasley committed
141
def checkpoint_correctness_verification(args,
142
                                        models,
143
                                        hidden_dim,
Jeff Rasley's avatar
Jeff Rasley committed
144
145
                                        tmpdir,
                                        load_optimizer_states=False,
146
                                        load_lr_scheduler_states=False,
147
                                        fp16=True,
148
149
                                        train_batch=False,
                                        base_optimizers=[None,
150
                                                         None],
aiss's avatar
aiss committed
151
152
153
                                        empty_tag=False,
                                        seq_dataloader=False,
                                        load_module_only=False):
154
    dtype = torch.half if fp16 else torch.float32
155
156
157
158
    ds_model = create_deepspeed_model(args=args,
                                      model=models[0],
                                      base_optimizer=base_optimizers[0])

aiss's avatar
aiss committed
159
160
161
162
163
164
165
166
167
168
169
170
    if seq_dataloader:
        data_loader = sequence_dataloader(model=ds_model,
                                          total_samples=50,
                                          hidden_dim=hidden_dim,
                                          device=ds_model.device,
                                          dtype=dtype)
    else:
        data_loader = random_dataloader(model=ds_model,
                                        total_samples=50,
                                        hidden_dim=hidden_dim,
                                        device=ds_model.device,
                                        dtype=dtype)
171
172
173
174
175
176
177
178
179
180

    if train_batch:
        ds_model.set_dataloader(data_loader)
        for n, batch in enumerate(data_loader):
            loss = ds_model.train_batch()
    else:
        for n, batch in enumerate(data_loader):
            loss = ds_model(batch[0], batch[1])
            ds_model.backward(loss)
            ds_model.step()
181
182
183

    trained_model = ds_model

Jeff Rasley's avatar
Jeff Rasley committed
184
    save_folder = os.path.join(tmpdir, 'saved_checkpoint')
185
    save_tag = None if empty_tag else '1'
186

187
    trained_model.save_checkpoint(save_folder, tag=save_tag)
188

aiss's avatar
aiss committed
189
190
    dist.barrier()

191
192
193
    loaded_model = create_deepspeed_model(args=args,
                                          model=models[1],
                                          base_optimizer=base_optimizers[1])
aiss's avatar
aiss committed
194
195
    assert list(trained_model.parameters())[0].dtype == list(
        loaded_model.parameters())[0].dtype
196
197

    loaded_model.load_checkpoint(save_folder,
198
                                 tag=save_tag,
Jeff Rasley's avatar
Jeff Rasley committed
199
                                 load_optimizer_states=load_optimizer_states,
aiss's avatar
aiss committed
200
201
                                 load_lr_scheduler_states=load_lr_scheduler_states,
                                 load_module_only=load_module_only)
202

aiss's avatar
aiss committed
203
204
205
206
    compare_model_states(trained_model,
                         loaded_model,
                         compare_optimizer=load_optimizer_states,
                         load_module_only=load_module_only)
207

208
    if load_optimizer_states:
209
        compare_optimizer_states(trained_model, loaded_model, hidden_dim, fp16)
Jeff Rasley's avatar
Jeff Rasley committed
210
211
212

    if load_lr_scheduler_states:
        compare_lr_scheduler_states(trained_model, loaded_model)
213
214


215
216
@pytest.mark.skipif(not deepspeed.ops.__compatible_ops__[FusedLambBuilder.NAME],
                    reason="lamb is not compatible")
217
218
219
220
221
222
223
def test_checkpoint_unfused_optimizer(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
224
                "lr": 0.00015
225
226
            }
        },
227
        "gradient_clipping": 1.0,
228
229
        "fp16": {
            "enabled": True
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        },
        "scheduler": {
            "type": "OneCycle",
            "params": {
                "cycle_first_step_size": 1000,
                "cycle_first_stair_count": 500,
                "cycle_second_step_size": 1000,
                "cycle_second_stair_count": 500,
                "decay_step_size": 1000,
                "cycle_min_lr": 0.0001,
                "cycle_max_lr": 0.0010,
                "decay_lr_rate": 0.001,
                "cycle_min_mom": 0.85,
                "cycle_max_mom": 0.99,
                "decay_mom_rate": 0.0
            }
246
247
248
249
250
251
        }
    }

    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

252
    models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
253
254
255

    @distributed_test(world_size=[2])
    def _test_checkpoint_unfused_optimizer(args,
256
                                           models,
257
258
                                           hidden_dim,
                                           load_optimizer_states):
Jeff Rasley's avatar
Jeff Rasley committed
259
        checkpoint_correctness_verification(args,
260
261
262
                                            models=models,
                                            hidden_dim=hidden_dim,
                                            tmpdir=tmpdir,
263
264
265
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_unfused_optimizer(args=args,
266
                                       models=models,
267
268
                                       hidden_dim=hidden_dim,
                                       load_optimizer_states=True)
269

270
    _test_checkpoint_unfused_optimizer(args=args,
271
                                       models=models,
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
                                       hidden_dim=hidden_dim,
                                       load_optimizer_states=False)


def test_checkpoint_fused_optimizer(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True
        }
    }

    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

298
    models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
299
300

    @distributed_test(world_size=[2])
301
302
303
304
    def _test_checkpoint_fused_optimizer(args,
                                         models,
                                         hidden_dim,
                                         load_optimizer_states):
Jeff Rasley's avatar
Jeff Rasley committed
305
        checkpoint_correctness_verification(args,
306
307
308
                                            models=models,
                                            hidden_dim=hidden_dim,
                                            tmpdir=tmpdir,
309
310
311
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_fused_optimizer(args=args,
312
                                     models=models,
313
314
                                     hidden_dim=hidden_dim,
                                     load_optimizer_states=True)
315

316
    _test_checkpoint_fused_optimizer(args=args,
317
                                     models=models,
318
319
320
321
                                     hidden_dim=hidden_dim,
                                     load_optimizer_states=False)


Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
322
323
324
325
326
327
328
329
330
331
332
333
@pytest.mark.parametrize('zero_stage, use_cpu_offload, adam_optimizer',
                         [(1,
                           False,
                           'Adam'),
                          (2,
                           False,
                           'Adam'),
                          (2,
                           True,
                           'deepspeed_adam'),
                          (3,
                           False,
334
335
336
337
                           'Adam'),
                          (3,
                           True,
                           'deepspeed_adam')])
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
338
def test_checkpoint_zero_optimizer(tmpdir, zero_stage, use_cpu_offload, adam_optimizer):
339
340
    if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
        pytest.skip("cpu-adam is not compatible")
341

342
343
344
345
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
346
            "type": 'Adam',
347
348
349
350
351
352
353
354
355
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
356
357
            "enabled": True,
            "initial_scale_power": 8
358
        },
359
        "wall_clock_breakdown": True,
Jeff Rasley's avatar
Jeff Rasley committed
360
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
361
362
363
            "stage": zero_stage,
            "cpu_offload": use_cpu_offload
        }
364
365
366
367
368
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    @distributed_test(world_size=[2])
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
369
370
371
372
373
    def _test_checkpoint_zero_optimizer(args,
                                        zero_stage,
                                        hidden_dim,
                                        load_optimizer_states):
        if zero_stage == 3:
374
            with deepspeed.zero.Init():
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
375
376
377
378
                models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
        else:
            models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]

Jeff Rasley's avatar
Jeff Rasley committed
379
        checkpoint_correctness_verification(args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
380
381
382
                                            models,
                                            hidden_dim,
                                            tmpdir,
383
384
385
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_zero_optimizer(args=args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
386
                                    zero_stage=zero_stage,
387
388
                                    hidden_dim=hidden_dim,
                                    load_optimizer_states=True)
Jeff Rasley's avatar
Jeff Rasley committed
389
390


Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
391
392
393
394
395
396
397
398
399
400
401
402
@pytest.mark.parametrize('zero_stage, use_cpu_offload, adam_optimizer',
                         [(1,
                           False,
                           "Adam"),
                          (2,
                           False,
                           "Adam"),
                          (2,
                           True,
                           'deepspeed_adam'),
                          (3,
                           False,
403
404
405
406
                           'Adam'),
                          (3,
                           True,
                           'deepspeed_adam')])
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
407
408
409
410
def test_checkpoint_zero_no_optimizer(tmpdir,
                                      zero_stage,
                                      use_cpu_offload,
                                      adam_optimizer):
411
412
    if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
        pytest.skip("cpu-adam is not compatible")
413

Jeff Rasley's avatar
Jeff Rasley committed
414
415
416
417
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
418
            "type": 'Adam',
Jeff Rasley's avatar
Jeff Rasley committed
419
420
421
422
423
424
425
426
427
428
429
430
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True
        },
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
431
432
433
            "stage": zero_stage,
            "cpu_offload": use_cpu_offload
        }
Jeff Rasley's avatar
Jeff Rasley committed
434
435
436
437
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
438
    @distributed_test(world_size=[1])
Jeff Rasley's avatar
Jeff Rasley committed
439
    def _test_checkpoint_zero_no_optimizer(args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
440
                                           zero_stage,
Jeff Rasley's avatar
Jeff Rasley committed
441
442
                                           hidden_dim,
                                           load_optimizer_states):
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
443
        if zero_stage == 3:
aiss's avatar
aiss committed
444
445
            global DeepSpeedZeroOptimizer_Stage3
            from deepspeed.runtime.zero.stage3 import DeepSpeedZeroOptimizer_Stage3
446
            with deepspeed.zero.Init():
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
447
448
449
450
                models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
        else:
            models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]

Jeff Rasley's avatar
Jeff Rasley committed
451
        checkpoint_correctness_verification(args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
452
453
454
                                            models,
                                            hidden_dim,
                                            tmpdir,
Jeff Rasley's avatar
Jeff Rasley committed
455
456
457
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_zero_no_optimizer(args=args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
458
                                       zero_stage=zero_stage,
Jeff Rasley's avatar
Jeff Rasley committed
459
460
461
462
                                       hidden_dim=hidden_dim,
                                       load_optimizer_states=False)


Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
@pytest.mark.parametrize('zero_stage, use_cpu_offload, adam_optimizer',
                         [(0,
                           False,
                           'Adam'),
                          (1,
                           False,
                           'Adam'),
                          (2,
                           False,
                           'Adam'),
                          (2,
                           True,
                           'deepspeed_adam'),
                          (3,
                           False,
478
479
480
481
                           'Adam'),
                          (3,
                           True,
                           'deepspeed_adam')])
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
482
def test_checkpoint_lr_scheduler(tmpdir, zero_stage, use_cpu_offload, adam_optimizer):
483
484
    if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
        pytest.skip("cpu-adam is not compatible")
485

Jeff Rasley's avatar
Jeff Rasley committed
486
487
488
489
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
490
            "type": 'Adam',
Jeff Rasley's avatar
Jeff Rasley committed
491
492
493
494
495
496
497
498
499
500
501
502
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True
        },
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
503
504
            "stage": zero_stage,
            "cpu_offload": use_cpu_offload
Jeff Rasley's avatar
Jeff Rasley committed
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
        },
        "scheduler": {
            "type": "WarmupLR",
            "params": {
                "warmup_min_lr": 0,
                "warmup_max_lr": 0.001,
                "warmup_num_steps": 1000
            }
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    @distributed_test(world_size=[2])
    def _test_checkpoint_lr_scheduler(args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
520
                                      zero_stage,
Jeff Rasley's avatar
Jeff Rasley committed
521
522
523
                                      hidden_dim,
                                      load_optimizer_states,
                                      load_lr_scheduler_states):
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
524
        if zero_stage == 3:
aiss's avatar
aiss committed
525
526
            global DeepSpeedZeroOptimizer_Stage3
            from deepspeed.runtime.zero.stage3 import DeepSpeedZeroOptimizer_Stage3
527
            with deepspeed.zero.Init():
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
528
529
530
531
                models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
        else:
            models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]

Jeff Rasley's avatar
Jeff Rasley committed
532
533
        checkpoint_correctness_verification(
            args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
534
535
536
            models,
            hidden_dim,
            tmpdir,
Jeff Rasley's avatar
Jeff Rasley committed
537
538
539
540
            load_optimizer_states=load_optimizer_states,
            load_lr_scheduler_states=load_lr_scheduler_states)

    _test_checkpoint_lr_scheduler(args=args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
541
                                  zero_stage=zero_stage,
Jeff Rasley's avatar
Jeff Rasley committed
542
543
544
545
546
                                  hidden_dim=hidden_dim,
                                  load_optimizer_states=False,
                                  load_lr_scheduler_states=True)


Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
547
548
549
550
551
552
553
554
555
556
557
558
559
@pytest.mark.parametrize('zero_stage, use_cpu_offload, adam_optimizer',
                         [(0,
                           False,
                           'Adam'),
                          (1,
                           False,
                           'Adam'),
                          (2,
                           False,
                           'Adam'),
                          (2,
                           True,
                           'deepspeed_adam'),
560
561
562
                          (3,
                           False,
                           'Adam'),
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
563
564
                          (3,
                           True,
565
                           'deepspeed_adam')])
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
566
def test_checkpoint_no_lr_scheduler(tmpdir, zero_stage, use_cpu_offload, adam_optimizer):
567
568
    if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
        pytest.skip("cpu-adam is not compatible")
569

Jeff Rasley's avatar
Jeff Rasley committed
570
571
572
573
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
574
            "type": 'Adam',
Jeff Rasley's avatar
Jeff Rasley committed
575
576
577
578
579
580
581
582
            "params": {
                "lr": 1e-5
            }
        },
        "fp16": {
            "enabled": True
        },
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
583
584
            "stage": zero_stage,
            "cpu_offload": use_cpu_offload
Jeff Rasley's avatar
Jeff Rasley committed
585
586
587
588
589
590
591
592
        },
        "scheduler": {
            "type": "WarmupLR",
            "params": {
                "warmup_min_lr": 0,
                "warmup_max_lr": 0.001,
                "warmup_num_steps": 1000
            }
Jeff Rasley's avatar
Jeff Rasley committed
593
        },
Jeff Rasley's avatar
Jeff Rasley committed
594
595
596
597
598
599
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    @distributed_test(world_size=[2])
    def _test_checkpoint_no_lr_scheduler(args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
600
                                         zero_stage,
Jeff Rasley's avatar
Jeff Rasley committed
601
602
603
                                         hidden_dim,
                                         load_optimizer_states,
                                         load_lr_scheduler_states):
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
604
        if zero_stage == 3:
605
            with deepspeed.zero.Init():
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
606
607
608
609
                models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
        else:
            models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]

Jeff Rasley's avatar
Jeff Rasley committed
610
611
        checkpoint_correctness_verification(
            args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
612
613
614
            models,
            hidden_dim,
            tmpdir,
Jeff Rasley's avatar
Jeff Rasley committed
615
616
617
618
            load_optimizer_states=load_optimizer_states,
            load_lr_scheduler_states=load_lr_scheduler_states)

    _test_checkpoint_no_lr_scheduler(args=args,
Samyam Rajbhandari's avatar
Samyam Rajbhandari committed
619
                                     zero_stage=zero_stage,
Jeff Rasley's avatar
Jeff Rasley committed
620
621
622
                                     hidden_dim=hidden_dim,
                                     load_optimizer_states=False,
                                     load_lr_scheduler_states=False)
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646


def test_checkpoint_fp32_optimizer(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": False
        }
    }

    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

647
    models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
648
649

    @distributed_test(world_size=[2])
650
651
652
653
654
655
    def _test_checkpoint_fp32_optimizer(args, models, hidden_dim):
        checkpoint_correctness_verification(args,
                                            models=models,
                                            hidden_dim=hidden_dim,
                                            tmpdir=tmpdir,
                                            fp16=False)
656

657
    _test_checkpoint_fp32_optimizer(args=args, models=models, hidden_dim=hidden_dim)
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698


@pytest.mark.parametrize("zero_stage", [0, 1])
def test_checkpoint_pipe_engine(zero_stage, tmpdir, stages=2):
    config_dict = {
        "train_batch_size": 2,
        "train_micro_batch_size_per_gpu": 1,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 1e-5
            }
        },
        "zero_optimization": {
            "stage": zero_stage
        },
        "fp16": {
            "enabled": zero_stage > 0
        },
        "scheduler": {
            "type": "OneCycle",
            "params": {
                "cycle_first_step_size": 1000,
                "cycle_first_stair_count": 500,
                "cycle_second_step_size": 1000,
                "cycle_second_stair_count": 500,
                "decay_step_size": 1000,
                "cycle_min_lr": 0.0001,
                "cycle_max_lr": 0.0010,
                "decay_lr_rate": 0.001,
                "cycle_min_mom": 0.85,
                "cycle_max_mom": 0.99,
                "decay_mom_rate": 0.0
            }
        }
    }

    @distributed_test(world_size=4)
    def _test(save_folder, num_stages):
        args = args_from_dict(tmpdir, config_dict)
699
        models = [LinearStackPipe(num_stages=num_stages) for _ in range(2)]
700
        checkpoint_correctness_verification(args=args,
701
702
                                            models=models,
                                            hidden_dim=models[0].hidden_dim,
703
704
705
706
707
708
709
710
711
                                            tmpdir=save_folder,
                                            fp16=config_dict['fp16']['enabled'],
                                            load_optimizer_states=True,
                                            load_lr_scheduler_states=True,
                                            train_batch=True)

    _test(tmpdir, num_stages=stages)


aiss's avatar
aiss committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
@pytest.mark.parametrize(
    "base_topo,test_topo",
    [
        #(PipeTopo(num_pp=1,
        #          num_dp=4),
        # PipeTopo(num_pp=4,
        #          num_dp=1)),
        #(PipeTopo(num_pp=2,
        #          num_dp=2),
        # PipeTopo(num_pp=2,
        #          num_dp=2)),
        #(PipeTopo(num_pp=4,
        #          num_dp=1),
        # PipeTopo(num_pp=2,
        #          num_dp=2)),
    ])
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
def test_checkpoint_pipe_module(base_topo, test_topo, tmpdir):
    @distributed_test(world_size=4)
    def _test(base_topo, test_topo, save_folder):
        base_model = LinearStackPipe(topology=base_topo)
        base_model.save_state_dict(save_folder)

        dist.barrier()

        test_model = LinearStackPipe(topology=test_topo)
        test_model.load_state_dir(save_folder)

        # Base and test can have different lengths, so make sure we map from the
        # smaller to larger model
        if len(base_model.forward_funcs) < len(test_model.forward_funcs):
            A = base_model
            B = test_model
        else:
            A = test_model
            B = base_model

        # Compare layers individually since partitions are different
        for idx, A_layer in enumerate(A.forward_funcs):
            if not hasattr(A_layer, 'parameters'):
                # Skip functionals, etc.
                continue

            # Find the corresponding layer in B
            global_idx = idx + A._local_start
            B_local_idx = global_idx - B._local_start
            B_layer = B.forward_funcs[B_local_idx]

            # Compare layer parameters
            for p0, p1 in zip(A_layer.parameters(), B_layer.parameters()):
                assert torch.allclose(p0, p1, atol=1e-07), f"Model state {p0} is not equal to {p1}"

    _test(base_topo, test_topo, save_folder=tmpdir)
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802


@pytest.mark.parametrize('zero_stage', [1, 2])
def test_checkpoint_zero_hybrid_optimizer_state(tmpdir, zero_stage):
    config_dict = {
        "train_micro_batch_size_per_gpu": 2,
        "gradient_accumulation_steps": 2,
        "steps_per_print": 1,
        "zero_optimization": {
            "stage": zero_stage
        },
        "zero_allow_untested_optimizer": True,
        "fp16": {
            "enabled": True,
            "initial_scale_power": 8
        }
    }

    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10
    models = [SimpleModel(hidden_dim=hidden_dim) for _ in range(2)]
    optimizers = [HybridStateOptimizer(model.parameters()) for model in models]

    @distributed_test(world_size=[2])
    def _test_checkpoint_zero_hybrid_optimizer_state(args,
                                                     models,
                                                     optimizers,
                                                     hidden_dim):
        checkpoint_correctness_verification(args,
                                            models=models,
                                            base_optimizers=optimizers,
                                            hidden_dim=hidden_dim,
                                            tmpdir=tmpdir,
                                            load_optimizer_states=True)

    _test_checkpoint_zero_hybrid_optimizer_state(args=args,
                                                 models=models,
                                                 optimizers=optimizers,
                                                 hidden_dim=hidden_dim)
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847


def test_checkpoint_latest(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        }
    }
    hidden_dim = 10
    args = args_from_dict(tmpdir, config_dict)
    models = [SimpleModel(hidden_dim=hidden_dim) for _ in range(2)]

    @distributed_test(world_size=[1])
    def _helper(args, models):
        checkpoint_correctness_verification(args,
                                            models=models,
                                            hidden_dim=hidden_dim,
                                            tmpdir=tmpdir,
                                            load_optimizer_states=True,
                                            load_lr_scheduler_states=False,
                                            fp16=False,
                                            empty_tag=True)

    _helper(args, models)


def test_checkpoint_missing_latest(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        }
    }
    hidden_dim = 10
    args = args_from_dict(tmpdir, config_dict)

848
    model = SimpleModel(hidden_dim)
849
850
851
852
853
854

    @distributed_test(world_size=[1])
    def _helper(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             model_parameters=model.parameters())
Jeff Rasley's avatar
Jeff Rasley committed
855
856
        # should be no-op, since latest doesn't exist
        model.load_checkpoint(tmpdir)
857
858

    _helper(args=args, model=model, hidden_dim=hidden_dim)
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878


@pytest.mark.parametrize('valid_mode', ["FAIL", "WARN", "IGNORE"])
def test_checkpoint_unique_tag(tmpdir, valid_mode):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "checkpoint": {
            "tag_validation": valid_mode
        }
    }
    hidden_dim = 10
    args = args_from_dict(tmpdir, config_dict)

879
    model = SimpleModel(hidden_dim)
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913

    @distributed_test(world_size=[2])
    def _helper(args, model, hidden_dim):
        model, _, _,_ = deepspeed.initialize(args=args,
                                             model=model,
                                             model_parameters=model.parameters())
        if valid_mode == "FAIL":
            with pytest.raises(AssertionError):
                model.save_checkpoint(save_dir=tmpdir,
                                      tag=f"tag-{torch.distributed.get_rank()}")
        else:
            model.save_checkpoint(save_dir=tmpdir,
                                  tag=f"tag-{torch.distributed.get_rank()}")

    _helper(args=args, model=model, hidden_dim=hidden_dim)


def test_checkpoint_unknown_tag_validation(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015
            }
        },
        "checkpoint": {
            "tag_validation": "foo"
        }
    }
    hidden_dim = 10
    args = args_from_dict(tmpdir, config_dict)

914
    model = SimpleModel(hidden_dim)
915
916
917
918
919
920
921
922
923

    @distributed_test(world_size=[1])
    def _helper(args, model, hidden_dim):
        with pytest.raises(deepspeed.DeepSpeedConfigError):
            model, _, _,_ = deepspeed.initialize(args=args,
                                                 model=model,
                                                 model_parameters=model.parameters())

    _helper(args=args, model=model, hidden_dim=hidden_dim)
aiss's avatar
aiss committed
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403


@pytest.mark.parametrize("ep_size", [4])
def test_checkpoint_moe(tmpdir, ep_size):
    if not required_torch_version():
        pytest.skip("DeepSpeed MoE tests need torch 1.8 or higher to run correctly")

    config_dict = {
        "train_batch_size": 8,
        "steps_per_print": 1,
        "fp16": {
            "enabled": True
        }
    }
    hidden_dim = 16
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=[4])
    def _helper(args):
        models = [
            SimpleMoEModel(hidden_dim=hidden_dim,
                           num_experts=ep_size,
                           ep_size=ep_size) for _ in range(2)
        ]
        optimizers = [torch.optim.AdamW(params=model.parameters()) for model in models]
        checkpoint_correctness_verification(args,
                                            models=models,
                                            hidden_dim=hidden_dim,
                                            tmpdir=tmpdir,
                                            load_optimizer_states=True,
                                            load_lr_scheduler_states=False,
                                            fp16=config_dict["fp16"]["enabled"],
                                            empty_tag=True,
                                            base_optimizers=optimizers,
                                            seq_dataloader=True)

    _helper(args)


@pytest.mark.parametrize("ep_size, load_optim_states",
                         [(4,
                           True),
                          (4,
                           False),
                          (2,
                           True),
                          (2,
                           False)])
def test_checkpoint_moe_and_zero(tmpdir, ep_size, load_optim_states):
    if not required_torch_version():
        pytest.skip("DeepSpeed MoE tests need torch 1.8 or higher to run correctly")

    config_dict = {
        "train_batch_size": 8,
        "steps_per_print": 1,
        "optimizer": {
            "type": 'Adam',
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True,
            "initial_scale_power": 8
        },
        "zero_optimization": {
            "stage": 2,
        }
    }
    hidden_dim = 16
    args = args_from_dict(tmpdir, config_dict)

    def create_param_groups(model):
        # param group must have a random unique name (for now)
        # TODO: clean-up this requirement, the unique name should not be required here
        return {'params': [p for p in model.parameters()], 'name': 'random-unique-name'}

    @distributed_test(world_size=[4])
    def _helper(args):
        models = [
            SimpleMoEModel(hidden_dim=hidden_dim,
                           num_experts=ep_size,
                           ep_size=ep_size) for _ in range(2)
        ]
        params = [
            split_params_into_different_moe_groups_for_optimizer(
                create_param_groups(model)) for model in models
        ]
        optimizers = [torch.optim.AdamW(params=param) for param in params]
        checkpoint_correctness_verification(args,
                                            models=models,
                                            hidden_dim=hidden_dim,
                                            tmpdir=tmpdir,
                                            load_optimizer_states=load_optim_states,
                                            load_lr_scheduler_states=False,
                                            fp16=config_dict["fp16"]["enabled"],
                                            empty_tag=True,
                                            base_optimizers=optimizers,
                                            seq_dataloader=True)

    _helper(args)


@pytest.mark.parametrize('zero_stage', [0, 1, 2, 3])
def test_checkpoint_load_module_only(tmpdir, zero_stage):
    config_dict = {
        "train_batch_size": 2,
        "optimizer": {
            "type": 'Adam'
        },
        "fp16": {
            "enabled": True,
            "initial_scale_power": 8
        },
        "zero_optimization": {
            "stage": zero_stage,
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    @distributed_test(world_size=[2])
    def _go(args, zero_stage, hidden_dim):
        if zero_stage == 3:
            with deepspeed.zero.Init():
                models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]
        else:
            models = [SimpleModel(hidden_dim, empty_grad=False) for _ in range(2)]

        checkpoint_correctness_verification(args,
                                            models,
                                            hidden_dim,
                                            tmpdir,
                                            load_module_only=True)

    _go(args, zero_stage, hidden_dim)


@pytest.mark.parametrize(["to_save_model_has_embedding",
                          "to_save_model_sparse"],
                         [
                             [False,
                              False],
                             [True,
                              False],
                             [True,
                              True],
                         ])
@pytest.mark.parametrize(["destination_has_embedding",
                          "destination_sparse"],
                         [
                             [False,
                              False],
                             [True,
                              False],
                             [True,
                              True],
                         ])
def test_non_strict_load_sparse(tmpdir,
                                to_save_model_has_embedding,
                                to_save_model_sparse,
                                destination_has_embedding,
                                destination_sparse):
    config_dict = {"train_batch_size": 2}

    class ModelNoEmbedding(torch.nn.Module):
        def __init__(self):
            super().__init__()
            self.linear = torch.nn.Linear(3, 1)

        def forward(self, x):
            return self.linear(x)

    class ModelEmbedding(torch.nn.Module):
        def __init__(self):
            super().__init__()
            self.emb = torch.nn.Embedding(10, 3)
            self.linear = torch.nn.Linear(3, 1)

        def forward(self, x, offsets):
            return self.linear(self.emb(x, offsets))

    @distributed_test(world_size=[2])
    def _test(model_to_save, model_destination):
        engine_to_save, _, _, _ = deepspeed.initialize(
            model=model_to_save, config={"train_batch_size": 2, "sparse_gradients": to_save_model_sparse}
        )
        engine_destination, _, _, _ = deepspeed.initialize(
            model=model_destination, config={"train_batch_size": 2, "sparse_gradients": destination_sparse}
        )

        save_folder = os.path.join(tmpdir, 'saved_checkpoint')
        save_tag = '1'

        engine_to_save.save_checkpoint(save_folder, tag=save_tag)

        is_sparse_destination = isinstance(model_destination,
                                           ModelEmbedding) and destination_sparse
        if isinstance(model_destination,
                      ModelEmbedding) and model_destination.emb.sparse:
            assert "emb.weight" in engine_destination.sparse_tensor_module_names
        engine_destination.load_checkpoint(save_folder,
                                           tag=save_tag,
                                           load_module_strict=False,
                                           load_optimizer_states=False,
                                           load_lr_scheduler_states=False,
                                           load_module_only=False)
        if isinstance(model_destination,
                      ModelEmbedding) and isinstance(model_to_save,
                                                     ModelEmbedding):
            assert engine_destination.sparse_tensor_module_names == engine_to_save.sparse_tensor_module_names
        elif isinstance(model_destination, ModelEmbedding):
            assert not is_sparse_destination or "emb.weight" in engine_destination.sparse_tensor_module_names
        else:
            assert len(engine_destination.sparse_tensor_module_names) == 0

    if to_save_model_has_embedding:
        model_to_save = ModelEmbedding()
    else:
        model_to_save = ModelNoEmbedding()
    if destination_has_embedding:
        model_destination = ModelEmbedding()
    else:
        model_destination = ModelNoEmbedding()
    _test(model_to_save, model_destination)


@pytest.mark.parametrize(["elastic_save",
                          "elastic_load",
                          "load_optim"],
                         itertools.product(*[[True,
                                              False],
                                             [True,
                                              False],
                                             [True,
                                              False]]))
def test_checkpoint_zero_elastic(tmpdir, elastic_save, elastic_load, load_optim):
    ds_config = {
        "train_batch_size": 2,
        "optimizer": {
            "type": 'Adam'
        },
        "fp16": {
            "enabled": True,
            "initial_scale_power": 8
        },
        "zero_optimization": {
            "stage": 2,
            "elastic_checkpoint": elastic_save
        }
    }
    hidden_dim = 10

    @distributed_test(world_size=[2])
    def _go():
        models = [SimpleModel(hidden_dim) for _ in range(2)]
        model, _, _, _ = deepspeed.initialize(config=ds_config,
                                              model=models[0],
                                              model_parameters=models[0].parameters())
        data_loader = random_dataloader(model=model,
                                        total_samples=8,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()
        model.save_checkpoint(tmpdir)

        ds_config["zero_optimization"]["elastic_checkpoint"] = elastic_load
        model, _, _, _ = deepspeed.initialize(config=ds_config,
                                              model=models[1],
                                              model_parameters=models[1].parameters())
        model.load_checkpoint(tmpdir, load_optimizer_states=load_optim)
        data_loader = random_dataloader(model=model,
                                        total_samples=8,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()

    _go()


@pytest.mark.parametrize(["elastic_save",
                          "elastic_load",
                          "load_optim"],
                         itertools.product(*[[True,
                                              False],
                                             [True,
                                              False],
                                             [True,
                                              False]]))
def test_checkpoint_zero_elastic_dp_change(tmpdir,
                                           elastic_save,
                                           elastic_load,
                                           load_optim):
    ds_config = {
        "train_batch_size": 4,
        "optimizer": {
            "type": 'Adam'
        },
        "fp16": {
            "enabled": True,
            "initial_scale_power": 8
        },
        "zero_optimization": {
            "stage": 2,
            "elastic_checkpoint": elastic_save
        }
    }
    hidden_dim = 10
    models = [SimpleModel(hidden_dim) for _ in range(2)]

    @distributed_test(world_size=[4])
    def _go2(models):
        model, _, _, _ = deepspeed.initialize(config=ds_config,
                                              model=models[0],
                                              model_parameters=models[0].parameters())
        data_loader = random_dataloader(model=model,
                                        total_samples=8,
                                        hidden_dim=hidden_dim,
                                        device=model.device)
        for n, batch in enumerate(data_loader):
            loss = model(batch[0], batch[1])
            model.backward(loss)
            model.step()
        model.save_checkpoint(tmpdir)

    _go2(models)

    @distributed_test(world_size=[2])
    def _go1(models):
        ds_config["zero_optimization"]["elastic_checkpoint"] = elastic_load
        model, _, _, _ = deepspeed.initialize(config=ds_config,
                                              model=models[1],
                                              model_parameters=models[1].parameters())
        if load_optim:
            with pytest.raises(deepspeed.runtime.zero.utils.ZeRORuntimeException):
                model.load_checkpoint(tmpdir, load_optimizer_states=load_optim)
        else:
            model.load_checkpoint(tmpdir, load_optimizer_states=load_optim)

    _go1(models)


@pytest.mark.parametrize('zero_stage', [0, 1, 2, 3])
def test_immediate_save_load(tmpdir, zero_stage):
    config_dict = {
        "train_batch_size": 4,
        "optimizer": {
            "type": 'Adam'
        },
        "fp16": {
            "enabled": True,
            "initial_scale_power": 8
        },
        "zero_optimization": {
            "stage": zero_stage,
        }
    }
    hidden_dim = 10
    model = SimpleModel(hidden_dim)
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=[1])
    def _test_immediate_save_load(args, model, tmpdir):

        ds_model = create_deepspeed_model(args=args, model=model, base_optimizer=None)
        ds_model.save_checkpoint(tmpdir)
        ds_model.load_checkpoint(tmpdir,
                                 load_optimizer_states=False,
                                 load_lr_scheduler_states=False,
                                 load_module_only=False)

    _test_immediate_save_load(args, model, tmpdir)


@pytest.mark.parametrize('zero_stage', [0, 1, 2, 3])
def test_load_immediate_save(tmpdir, zero_stage):
    config_dict = {
        "train_batch_size": 4,
        "optimizer": {
            "type": 'Adam'
        },
        "fp16": {
            "enabled": True,
            "initial_scale_power": 8
        },
        "zero_optimization": {
            "stage": zero_stage,
        }
    }
    hidden_dim = 10
    model = SimpleModel(hidden_dim)
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=[1])
    def _test_load_immediate_save(args, model, tmpdir):

        # 1. pretrain a model and save it
        dtype = torch.half
        ds_model = create_deepspeed_model(args=args, model=model, base_optimizer=None)
        data_loader = random_dataloader(model=ds_model,
                                        total_samples=1,
                                        hidden_dim=hidden_dim,
                                        device=ds_model.device,
                                        dtype=dtype)
        for n, batch in enumerate(data_loader):
            loss = ds_model(batch[0], batch[1])
            ds_model.backward(loss)
            ds_model.step()
        ds_model.save_checkpoint(tmpdir)

        # 2. load and immediately save a model with a fresh ds engine
        ds_model = create_deepspeed_model(args=args, model=model, base_optimizer=None)
        ds_model.load_checkpoint(tmpdir,
                                 load_optimizer_states=False,
                                 load_lr_scheduler_states=False,
                                 load_module_only=False)
        ds_model.save_checkpoint(tmpdir)

    _test_load_immediate_save(args, model, tmpdir)


@pytest.mark.parametrize('zero_stage', [0, 1, 2, 3])
def test_save_before_accum_grad_is_done(tmpdir, zero_stage):
    config_dict = {
        "train_batch_size": 4,
        "optimizer": {
            "type": 'Adam'
        },
        "fp16": {
            "enabled": True,
            "initial_scale_power": 8
        },
        "zero_optimization": {
            "stage": zero_stage,
            "stage3_gather_fp16_weights_on_model_save": True,
        },
        "gradient_accumulation_steps": 2,
        "train_micro_batch_size_per_gpu": 1,
        "train_batch_size": 2,
    }
    hidden_dim = 10
    model = SimpleModel(hidden_dim)
    args = args_from_dict(tmpdir, config_dict)

    @distributed_test(world_size=[1])
    def _test_save_before_accum_grad_is_done(args, model, tmpdir):

        # This test reproduces a bug where one tries to retrieve a 16bit model before grad_accum
        # cycle was completed.
        # So we config grad_accum=2 and step only once and save_16bit_model
        ds_model = create_deepspeed_model(args=args, model=model, base_optimizer=None)

        data_loader = random_dataloader(model=ds_model,
                                        total_samples=2,
                                        hidden_dim=hidden_dim,
                                        device=ds_model.device,
                                        dtype=torch.half)

        batch = next(iter(data_loader))
        loss = ds_model(batch[0], batch[1])
        ds_model.backward(loss)
        ds_model.step()

        # we stepped only once, and now save 16bit model before gradient_accumulation_steps=2 is complete
        ds_model.save_16bit_model(tmpdir, "model.pt")

        # let's test just as well that we can save the checkpoint too
        ds_model.save_checkpoint(tmpdir)

    _test_save_before_accum_grad_is_done(args, model, tmpdir)