test_checkpointing.py 23.5 KB
Newer Older
1
import torch
2

3
4
import torch.distributed as dist

5
import deepspeed
6
7
from deepspeed.runtime.zero.stage2 import FP16_DeepSpeedZeroOptimizer
from deepspeed.runtime.zero.stage1 import FP16_DeepSpeedZeroOptimizer_Stage1
8

9
10
from deepspeed.runtime.fp16.fused_optimizer import FP16_Optimizer
from deepspeed.runtime.fp16.unfused_optimizer import FP16_UnfusedOptimizer
11

12
13
14
from deepspeed.runtime.pipe.topology import *
PipeTopo = PipeDataParallelTopology

15
16
from deepspeed.ops.op_builder import FusedLambBuilder, CPUAdamBuilder

17
18
19
20
import argparse
import pytest
import json
import os
Jeff Rasley's avatar
Jeff Rasley committed
21
import numbers
22
from common import distributed_test
23
from simple_model import *
24
25


26
27
28
29
30
31
32
33
34
def compare_deepspeed_states(saved_model, loaded_model):
    # These are compared in more depth in other places
    assert hasattr(loaded_model, 'module')

    assert saved_model.csr_tensor_module_names == loaded_model.csr_tensor_module_names
    assert saved_model.skipped_steps == loaded_model.skipped_steps
    assert saved_model.global_steps == loaded_model.global_steps


35
def compare_model_states(saved_model, loaded_model, compare_optimizer=True):
36
37
    compare_deepspeed_states(saved_model, loaded_model)

38
    for p0, p1 in zip(saved_model.module.parameters(), loaded_model.module.parameters()):
Jeff Rasley's avatar
Jeff Rasley committed
39
        assert torch.allclose(p0, p1, atol=1e-07), f"FP16 model state {p0} is not equal to {p1}"
40

41
42
43
    if not compare_optimizer:
        return

44
45
    if isinstance(saved_model.optimizer, FP16_DeepSpeedZeroOptimizer):
        for p0, p1 in zip(saved_model.optimizer.single_partition_of_fp32_groups, loaded_model.optimizer.single_partition_of_fp32_groups):
Jeff Rasley's avatar
Jeff Rasley committed
46
            assert torch.allclose(p0, p1, atol=1e-07), f"Fp32 model states {p0} is not equal to {p1}"
47

Jeff Rasley's avatar
Jeff Rasley committed
48
49
50
    elif isinstance(saved_model.optimizer, FP16_DeepSpeedZeroOptimizer_Stage1):
        for partition0, partition1 in zip(saved_model.optimizer.local_sub_partitions_of_fp32_groups, loaded_model.optimizer.local_sub_partitions_of_fp32_groups):
            for p0, p1 in zip(partition0, partition1):
Jeff Rasley's avatar
Jeff Rasley committed
51
                assert torch.allclose(p0, p1, atol=1e-07), f"Fp32 model states {p0} is not equal to {p1}"
Jeff Rasley's avatar
Jeff Rasley committed
52

53
54
    elif isinstance(saved_model.optimizer, FP16_Optimizer):
        for p0, p1 in zip(saved_model.optimizer.fp32_groups_flat, loaded_model.optimizer.fp32_groups_flat):
Jeff Rasley's avatar
Jeff Rasley committed
55
            assert torch.allclose(p0, p1, atol=1e-07), f"FP32 model states {p0} is not equal to {p1}"
56
57
58
59

    elif isinstance(saved_model.optimizer, FP16_UnfusedOptimizer):
        for params0, params1 in zip(saved_model.optimizer.fp32_groups, loaded_model.optimizer.fp32_groups):
            for p0, p1 in zip(params0, params1):
Jeff Rasley's avatar
Jeff Rasley committed
60
                assert torch.allclose(p0, p1, atol=1e-07), f"FP32 model states {p0} is not equal to {p1}"
61
62
    elif isinstance(saved_model.optimizer, torch.optim.Optimizer):
        pass
63
    else:
64
65
        assert False, f'Unexpected Optimizer Type: {saved_model.optimizer}'

66

67
68
69
def compare_optimizer_states(saved_model, loaded_model, hidden_dim, fp16=True):
    saved_optimizer = saved_model.optimizer.optimizer if fp16 else saved_model.optimizer
    loaded_optimizer = loaded_model.optimizer.optimizer if fp16 else loaded_model.optimizer
70

71
72
    for state0, state1 in zip(saved_optimizer.state.values(),
                              loaded_optimizer.state.values()):
73
74
75
76
77
78
79
        for s0, s1 in zip(state0.values(), state1.values()):
            if isinstance(s0, torch.Tensor) and isinstance(s1, torch.Tensor):
                assert torch.equal(s0, s1)
            else:
                assert s0 == s1


Jeff Rasley's avatar
Jeff Rasley committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
def compare_lr_scheduler_states(saved_model, loaded_model):
    assert hasattr(saved_model, 'lr_scheduler')
    assert hasattr(loaded_model, 'lr_scheduler')

    saved_scheduler = saved_model.lr_scheduler
    loaded_scheduler = loaded_model.lr_scheduler

    assert hasattr(saved_scheduler, 'state_dict')
    assert hasattr(loaded_scheduler, 'state_dict')

    saved_sd = saved_scheduler.state_dict()
    loaded_sd = loaded_scheduler.state_dict()

    print(f"saved_sd = {saved_sd}")
    print(f"loaded_sd = {loaded_sd}")

    assert saved_sd.keys() == loaded_sd.keys()

    for state0, state1 in zip(saved_sd.values(), loaded_sd.values()):
        if isinstance(state0, numbers.Number) and isinstance(state1, numbers.Number):
            assert state0 == state1


def checkpoint_correctness_verification(args,
104
105
                                        model,
                                        hidden_dim,
Jeff Rasley's avatar
Jeff Rasley committed
106
107
                                        tmpdir,
                                        load_optimizer_states=False,
108
                                        load_lr_scheduler_states=False,
109
110
                                        fp16=True,
                                        train_batch=False):
111
    dtype = torch.half if fp16 else torch.float32
Jeff Rasley's avatar
Jeff Rasley committed
112
113
114
    ds_model, _, _, _ = deepspeed.initialize(args=args,
                                             model=model,
                                             model_parameters=model.parameters())
115
116
117
    data_loader = random_dataloader(model=ds_model,
                                    total_samples=50,
                                    hidden_dim=hidden_dim,
118
119
                                    device=ds_model.device,
                                    dtype=dtype)
120
121
122
123
124
125
126
127
128
129
130

    if train_batch:
        ds_model.set_dataloader(data_loader)
        for n, batch in enumerate(data_loader):
            loss = ds_model.train_batch()
    else:
        for n, batch in enumerate(data_loader):
            loss = ds_model(batch[0], batch[1])
            print(loss)
            ds_model.backward(loss)
            ds_model.step()
131
132
133

    trained_model = ds_model

Jeff Rasley's avatar
Jeff Rasley committed
134
    save_folder = os.path.join(tmpdir, 'saved_checkpoint')
135
136
137
138
    save_tag = '1'

    trained_model.save_checkpoint(save_folder, save_tag)

Jeff Rasley's avatar
Jeff Rasley committed
139
140
141
    loaded_model, _, _, _ = deepspeed.initialize(args=args,
                                                 model=model,
                                                 model_parameters=model.parameters())
142
143
144

    loaded_model.load_checkpoint(save_folder,
                                 save_tag,
Jeff Rasley's avatar
Jeff Rasley committed
145
146
                                 load_optimizer_states=load_optimizer_states,
                                 load_lr_scheduler_states=load_lr_scheduler_states)
147

Jeff Rasley's avatar
Jeff Rasley committed
148
    compare_model_states(trained_model, loaded_model)
149

150
    if load_optimizer_states:
151
        compare_optimizer_states(trained_model, loaded_model, hidden_dim, fp16)
Jeff Rasley's avatar
Jeff Rasley committed
152
153
154

    if load_lr_scheduler_states:
        compare_lr_scheduler_states(trained_model, loaded_model)
155
156


157
158
@pytest.mark.skipif(not deepspeed.ops.__compatible_ops__[FusedLambBuilder.NAME],
                    reason="lamb is not compatible")
159
160
161
162
163
164
165
def test_checkpoint_unfused_optimizer(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Lamb",
            "params": {
166
                "lr": 0.00015
167
168
            }
        },
169
        "gradient_clipping": 1.0,
170
171
        "fp16": {
            "enabled": True
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        },
        "scheduler": {
            "type": "OneCycle",
            "params": {
                "cycle_first_step_size": 1000,
                "cycle_first_stair_count": 500,
                "cycle_second_step_size": 1000,
                "cycle_second_stair_count": 500,
                "decay_step_size": 1000,
                "cycle_min_lr": 0.0001,
                "cycle_max_lr": 0.0010,
                "decay_lr_rate": 0.001,
                "cycle_min_mom": 0.85,
                "cycle_max_mom": 0.99,
                "decay_mom_rate": 0.0
            }
188
189
190
191
192
193
194
195
196
197
198
199
200
        }
    }

    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_unfused_optimizer(args,
                                           model,
                                           hidden_dim,
                                           load_optimizer_states):
Jeff Rasley's avatar
Jeff Rasley committed
201
        checkpoint_correctness_verification(args,
202
203
                                            model,
                                            hidden_dim,
Jeff Rasley's avatar
Jeff Rasley committed
204
                                            tmpdir,
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_unfused_optimizer(args=args,
                                       model=model,
                                       hidden_dim=hidden_dim,
                                       load_optimizer_states=True)
    _test_checkpoint_unfused_optimizer(args=args,
                                       model=model,
                                       hidden_dim=hidden_dim,
                                       load_optimizer_states=False)


def test_checkpoint_fused_optimizer(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True
        }
    }

    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_fused_optimizer(args, model, hidden_dim, load_optimizer_states):
Jeff Rasley's avatar
Jeff Rasley committed
243
        checkpoint_correctness_verification(args,
244
245
                                            model,
                                            hidden_dim,
Jeff Rasley's avatar
Jeff Rasley committed
246
                                            tmpdir,
247
248
249
250
251
252
253
254
255
256
257
258
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_fused_optimizer(args=args,
                                     model=model,
                                     hidden_dim=hidden_dim,
                                     load_optimizer_states=True)
    _test_checkpoint_fused_optimizer(args=args,
                                     model=model,
                                     hidden_dim=hidden_dim,
                                     load_optimizer_states=False)


Jeff Rasley's avatar
Jeff Rasley committed
259
260
261
262
263
264
265
266
267
268
@pytest.mark.parametrize('zero_stage, use_cpu_offload, adam_optimizer',
                         [
                             (1,
                              False,
                              'Adam'),
                             (2,
                              False,
                              'Adam'),
                             (2,
                              True,
269
                              'Adam'),
Jeff Rasley's avatar
Jeff Rasley committed
270
271
                         ])
def test_checkpoint_zero_optimizer(tmpdir, zero_stage, use_cpu_offload, adam_optimizer):
272
273
    if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
        pytest.skip("cpu-adam is not compatible")
274

275
276
277
278
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
Jeff Rasley's avatar
Jeff Rasley committed
279
            "type": adam_optimizer,
280
281
282
283
284
285
286
287
288
289
290
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True
        },
Jeff Rasley's avatar
Jeff Rasley committed
291
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
292
293
294
            "stage": zero_stage,
            "cpu_offload": use_cpu_offload
        }
295
296
297
298
299
300
301
302
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_zero_optimizer(args, model, hidden_dim, load_optimizer_states):
Jeff Rasley's avatar
Jeff Rasley committed
303
        checkpoint_correctness_verification(args,
304
305
                                            model,
                                            hidden_dim,
Jeff Rasley's avatar
Jeff Rasley committed
306
                                            tmpdir,
307
308
309
310
311
312
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_zero_optimizer(args=args,
                                    model=model,
                                    hidden_dim=hidden_dim,
                                    load_optimizer_states=True)
Jeff Rasley's avatar
Jeff Rasley committed
313
314


Jeff Rasley's avatar
Jeff Rasley committed
315
316
317
318
319
320
321
322
323
324
@pytest.mark.parametrize('zero_stage, use_cpu_offload, adam_optimizer',
                         [
                             (1,
                              False,
                              "Adam"),
                             (2,
                              False,
                              "Adam"),
                             (2,
                              True,
325
                              'Adam'),
Jeff Rasley's avatar
Jeff Rasley committed
326
327
328
329
330
                         ])
def test_checkpoint_zero_no_optimizer(tmpdir,
                                      zero_stage,
                                      use_cpu_offload,
                                      adam_optimizer):
331
332
    if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
        pytest.skip("cpu-adam is not compatible")
333

Jeff Rasley's avatar
Jeff Rasley committed
334
335
336
337
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
Jeff Rasley's avatar
Jeff Rasley committed
338
            "type": adam_optimizer,
Jeff Rasley's avatar
Jeff Rasley committed
339
340
341
342
343
344
345
346
347
348
349
350
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True
        },
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
351
352
353
            "stage": zero_stage,
            "cpu_offload": use_cpu_offload
        }
Jeff Rasley's avatar
Jeff Rasley committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_zero_no_optimizer(args,
                                           model,
                                           hidden_dim,
                                           load_optimizer_states):
        checkpoint_correctness_verification(args,
                                            model,
                                            hidden_dim,
                                            tmpdir,
                                            load_optimizer_states=load_optimizer_states)

    _test_checkpoint_zero_no_optimizer(args=args,
                                       model=model,
                                       hidden_dim=hidden_dim,
                                       load_optimizer_states=False)


Jeff Rasley's avatar
Jeff Rasley committed
377
378
379
380
381
382
383
384
385
386
387
388
389
@pytest.mark.parametrize('zero_stage, use_cpu_offload, adam_optimizer',
                         [
                             (0,
                              False,
                              'Adam'),
                             (1,
                              False,
                              'Adam'),
                             (2,
                              False,
                              'Adam'),
                             (2,
                              True,
390
                              'Adam'),
Jeff Rasley's avatar
Jeff Rasley committed
391
392
                         ])
def test_checkpoint_lr_scheduler(tmpdir, zero_stage, use_cpu_offload, adam_optimizer):
393
394
    if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
        pytest.skip("cpu-adam is not compatible")
395

Jeff Rasley's avatar
Jeff Rasley committed
396
397
398
399
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
Jeff Rasley's avatar
Jeff Rasley committed
400
            "type": adam_optimizer,
Jeff Rasley's avatar
Jeff Rasley committed
401
402
403
404
405
406
407
408
409
410
411
412
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": True
        },
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
413
414
            "stage": zero_stage,
            "cpu_offload": use_cpu_offload
Jeff Rasley's avatar
Jeff Rasley committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
        },
        "scheduler": {
            "type": "WarmupLR",
            "params": {
                "warmup_min_lr": 0,
                "warmup_max_lr": 0.001,
                "warmup_num_steps": 1000
            }
        }
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_lr_scheduler(args,
                                      model,
                                      hidden_dim,
                                      load_optimizer_states,
                                      load_lr_scheduler_states):
        checkpoint_correctness_verification(
            args,
            model,
            hidden_dim,
            tmpdir,
            load_optimizer_states=load_optimizer_states,
            load_lr_scheduler_states=load_lr_scheduler_states)

    _test_checkpoint_lr_scheduler(args=args,
                                  model=model,
                                  hidden_dim=hidden_dim,
                                  load_optimizer_states=False,
                                  load_lr_scheduler_states=True)


Jeff Rasley's avatar
Jeff Rasley committed
451
452
453
454
455
456
457
458
459
460
461
462
463
@pytest.mark.parametrize('zero_stage, use_cpu_offload, adam_optimizer',
                         [
                             (0,
                              False,
                              'Adam'),
                             (1,
                              False,
                              'Adam'),
                             (2,
                              False,
                              'Adam'),
                             (2,
                              True,
464
                              'Adam'),
Jeff Rasley's avatar
Jeff Rasley committed
465
466
                         ])
def test_checkpoint_no_lr_scheduler(tmpdir, zero_stage, use_cpu_offload, adam_optimizer):
467
468
    if use_cpu_offload and not deepspeed.ops.__compatible_ops__[CPUAdamBuilder.NAME]:
        pytest.skip("cpu-adam is not compatible")
469

Jeff Rasley's avatar
Jeff Rasley committed
470
471
472
473
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
Jeff Rasley's avatar
Jeff Rasley committed
474
            "type": adam_optimizer,
Jeff Rasley's avatar
Jeff Rasley committed
475
476
477
478
479
480
481
482
            "params": {
                "lr": 1e-5
            }
        },
        "fp16": {
            "enabled": True
        },
        "zero_optimization": {
Jeff Rasley's avatar
Jeff Rasley committed
483
484
            "stage": zero_stage,
            "cpu_offload": use_cpu_offload
Jeff Rasley's avatar
Jeff Rasley committed
485
486
487
488
489
490
491
492
        },
        "scheduler": {
            "type": "WarmupLR",
            "params": {
                "warmup_min_lr": 0,
                "warmup_max_lr": 0.001,
                "warmup_num_steps": 1000
            }
Jeff Rasley's avatar
Jeff Rasley committed
493
        },
Jeff Rasley's avatar
Jeff Rasley committed
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
    }
    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_no_lr_scheduler(args,
                                         model,
                                         hidden_dim,
                                         load_optimizer_states,
                                         load_lr_scheduler_states):
        checkpoint_correctness_verification(
            args,
            model,
            hidden_dim,
            tmpdir,
            load_optimizer_states=load_optimizer_states,
            load_lr_scheduler_states=load_lr_scheduler_states)

    _test_checkpoint_no_lr_scheduler(args=args,
                                     model=model,
                                     hidden_dim=hidden_dim,
                                     load_optimizer_states=False,
                                     load_lr_scheduler_states=False)
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549


def test_checkpoint_fp32_optimizer(tmpdir):
    config_dict = {
        "train_batch_size": 2,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 0.00015,
                "betas": [0.8,
                          0.999],
                "eps": 1e-8,
                "weight_decay": 3e-7
            }
        },
        "fp16": {
            "enabled": False
        }
    }

    args = args_from_dict(tmpdir, config_dict)
    hidden_dim = 10

    model = SimpleModel(hidden_dim, empty_grad=False)

    @distributed_test(world_size=[2])
    def _test_checkpoint_fp32_optimizer(args, model, hidden_dim):
        checkpoint_correctness_verification(args, model, hidden_dim, tmpdir, fp16=False)

    _test_checkpoint_fp32_optimizer(args=args, model=model, hidden_dim=hidden_dim)
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654


@pytest.mark.parametrize("zero_stage", [0, 1])
def test_checkpoint_pipe_engine(zero_stage, tmpdir, stages=2):
    config_dict = {
        "train_batch_size": 2,
        "train_micro_batch_size_per_gpu": 1,
        "steps_per_print": 1,
        "optimizer": {
            "type": "Adam",
            "params": {
                "lr": 1e-5
            }
        },
        "zero_optimization": {
            "stage": zero_stage
        },
        "fp16": {
            "enabled": zero_stage > 0
        },
        "scheduler": {
            "type": "OneCycle",
            "params": {
                "cycle_first_step_size": 1000,
                "cycle_first_stair_count": 500,
                "cycle_second_step_size": 1000,
                "cycle_second_stair_count": 500,
                "decay_step_size": 1000,
                "cycle_min_lr": 0.0001,
                "cycle_max_lr": 0.0010,
                "decay_lr_rate": 0.001,
                "cycle_min_mom": 0.85,
                "cycle_max_mom": 0.99,
                "decay_mom_rate": 0.0
            }
        }
    }

    @distributed_test(world_size=4)
    def _test(save_folder, num_stages):
        args = args_from_dict(tmpdir, config_dict)
        model = LinearStackPipe(num_stages=num_stages)
        checkpoint_correctness_verification(args=args,
                                            model=model,
                                            hidden_dim=model.hidden_dim,
                                            tmpdir=save_folder,
                                            fp16=config_dict['fp16']['enabled'],
                                            load_optimizer_states=True,
                                            load_lr_scheduler_states=True,
                                            train_batch=True)

    _test(tmpdir, num_stages=stages)


@pytest.mark.parametrize("base_topo,test_topo",
                         [
                             (PipeTopo(num_pp=1,
                                       num_dp=4),
                              PipeTopo(num_pp=4,
                                       num_dp=1)),
                             (PipeTopo(num_pp=2,
                                       num_dp=2),
                              PipeTopo(num_pp=2,
                                       num_dp=2)),
                             (PipeTopo(num_pp=4,
                                       num_dp=1),
                              PipeTopo(num_pp=2,
                                       num_dp=2)),
                         ])
def test_checkpoint_pipe_module(base_topo, test_topo, tmpdir):
    @distributed_test(world_size=4)
    def _test(base_topo, test_topo, save_folder):
        base_model = LinearStackPipe(topology=base_topo)
        base_model.save_state_dict(save_folder)

        dist.barrier()

        test_model = LinearStackPipe(topology=test_topo)
        test_model.load_state_dir(save_folder)

        # Base and test can have different lengths, so make sure we map from the
        # smaller to larger model
        if len(base_model.forward_funcs) < len(test_model.forward_funcs):
            A = base_model
            B = test_model
        else:
            A = test_model
            B = base_model

        # Compare layers individually since partitions are different
        for idx, A_layer in enumerate(A.forward_funcs):
            if not hasattr(A_layer, 'parameters'):
                # Skip functionals, etc.
                continue

            # Find the corresponding layer in B
            global_idx = idx + A._local_start
            B_local_idx = global_idx - B._local_start
            B_layer = B.forward_funcs[B_local_idx]

            # Compare layer parameters
            for p0, p1 in zip(A_layer.parameters(), B_layer.parameters()):
                assert torch.allclose(p0, p1, atol=1e-07), f"Model state {p0} is not equal to {p1}"

    _test(base_topo, test_topo, save_folder=tmpdir)