lightning_train_net.py 6.88 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import logging
import os
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Type

import pytorch_lightning as pl  # type: ignore
11
from d2go.config import auto_scale_world_size, CfgNode, temp_defrost
12
from d2go.runner import create_runner
13
from d2go.runner.callbacks.quantization import QuantizationAwareTraining
facebook-github-bot's avatar
facebook-github-bot committed
14
from d2go.runner.lightning_task import GeneralizedRCNNTask
15
from d2go.setup import basic_argument_parser, setup_after_launch
facebook-github-bot's avatar
facebook-github-bot committed
16
17
from d2go.utils.misc import dump_trained_model_configs
from detectron2.utils.events import EventStorage
18
from detectron2.utils.file_io import PathManager
19
from pytorch_lightning.callbacks import Callback, LearningRateMonitor, TQDMProgressBar
facebook-github-bot's avatar
facebook-github-bot committed
20
21
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
22
from pytorch_lightning.strategies.ddp import DDPStrategy
facebook-github-bot's avatar
facebook-github-bot committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from torch.distributed import get_rank


logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("detectron2go.lightning.train_net")

FINAL_MODEL_CKPT = f"model_final{ModelCheckpoint.FILE_EXTENSION}"


@dataclass
class TrainOutput:
    output_dir: str
    accuracy: Optional[Dict[str, Any]] = None
    tensorboard_log_dir: Optional[str] = None
    model_configs: Optional[Dict[str, str]] = None


def _get_trainer_callbacks(cfg: CfgNode) -> List[Callback]:
    """Gets the trainer callbacks based on the given D2Go Config.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.

    Returns:
47
        A list of configured Callbacks to be used by the Lightning Trainer.
facebook-github-bot's avatar
facebook-github-bot committed
48
49
    """
    callbacks: List[Callback] = [
50
        TQDMProgressBar(refresh_rate=10),  # Arbitrary refresh_rate.
facebook-github-bot's avatar
facebook-github-bot committed
51
52
        LearningRateMonitor(logging_interval="step"),
        ModelCheckpoint(
53
            dirpath=cfg.OUTPUT_DIR,
facebook-github-bot's avatar
facebook-github-bot committed
54
55
56
            save_last=True,
        ),
    ]
Kai Zhang's avatar
Kai Zhang committed
57
58
    if cfg.QUANTIZATION.QAT.ENABLED:
        callbacks.append(QuantizationAwareTraining.from_config(cfg))
facebook-github-bot's avatar
facebook-github-bot committed
59
60
    return callbacks

Yanghan Wang's avatar
Yanghan Wang committed
61

62
63
64
65
def _get_strategy(cfg: CfgNode) -> DDPStrategy:
    return DDPStrategy(find_unused_parameters=cfg.MODEL.DDP_FIND_UNUSED_PARAMETERS)


Kai Zhang's avatar
Kai Zhang committed
66
def _get_accelerator(use_cpu: bool) -> str:
67
    return "cpu" if use_cpu else "gpu"
facebook-github-bot's avatar
facebook-github-bot committed
68

Kai Zhang's avatar
Kai Zhang committed
69

Yanghan Wang's avatar
Yanghan Wang committed
70
71
72
def get_trainer_params(
    cfg: CfgNode, num_machines: int, num_processes: int
) -> Dict[str, Any]:
Kai Zhang's avatar
Kai Zhang committed
73
    use_cpu = cfg.MODEL.DEVICE.lower() == "cpu"
74
    strategy = _get_strategy(cfg)
75
76
    accelerator = _get_accelerator(use_cpu)

77
    return {
78
        "max_epochs": -1,
79
80
81
82
83
        "max_steps": cfg.SOLVER.MAX_ITER,
        "val_check_interval": cfg.TEST.EVAL_PERIOD
        if cfg.TEST.EVAL_PERIOD > 0
        else cfg.SOLVER.MAX_ITER,
        "num_nodes": num_machines,
84
85
        "devices": num_processes,
        "strategy": strategy,
86
        "accelerator": accelerator,
87
88
89
        "callbacks": _get_trainer_callbacks(cfg),
        "logger": TensorBoardLogger(save_dir=cfg.OUTPUT_DIR),
        "num_sanity_val_steps": 0,
Kai Zhang's avatar
Kai Zhang committed
90
        "replace_sampler_ddp": False,
91
    }
92

Yanghan Wang's avatar
Yanghan Wang committed
93

94
95
96
def do_train(
    cfg: CfgNode, trainer: pl.Trainer, task: GeneralizedRCNNTask
) -> Dict[str, str]:
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    """Runs the training loop with given trainer and task.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.
        trainer: PyTorch Lightning trainer.
        task: Lightning module instance.

    Returns:
        A map of model name to trained model config path.
    """
    with EventStorage() as storage:
        task.storage = storage
        trainer.fit(task)
        final_ckpt = os.path.join(cfg.OUTPUT_DIR, FINAL_MODEL_CKPT)
        trainer.save_checkpoint(final_ckpt)  # for validation monitor

        trained_cfg = cfg.clone()
        with temp_defrost(trained_cfg):
            trained_cfg.MODEL.WEIGHTS = final_ckpt
        model_configs = dump_trained_model_configs(
            cfg.OUTPUT_DIR, {"model_final": trained_cfg}
        )
    return model_configs


def do_test(trainer: pl.Trainer, task: GeneralizedRCNNTask):
    """Runs the evaluation with a pre-trained model.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.
        trainer: PyTorch Lightning trainer.
        task: Lightning module instance.

    """
    with EventStorage() as storage:
        task.storage = storage
        trainer.test(task)


facebook-github-bot's avatar
facebook-github-bot committed
136
137
def main(
    cfg: CfgNode,
138
    output_dir: str,
facebook-github-bot's avatar
facebook-github-bot committed
139
140
141
142
143
144
145
146
147
148
149
150
    task_cls: Type[GeneralizedRCNNTask] = GeneralizedRCNNTask,
    eval_only: bool = False,
    num_machines: int = 1,
    num_processes: int = 1,
) -> TrainOutput:
    """Main function for launching a training with lightning trainer
    Args:
        cfg: D2go config node
        num_machines: Number of nodes used for distributed training
        num_processes: Number of processes on each node.
        eval_only: True if run evaluation only.
    """
151
152
153
    # FIXME: make comm.get_world_size() work properly.
    setup_after_launch(cfg, output_dir, _scale_world_size=False)
    auto_scale_world_size(cfg, new_world_size=num_machines * num_processes)
facebook-github-bot's avatar
facebook-github-bot committed
154

155
    task = task_cls.from_config(cfg, eval_only)
156
    trainer_params = get_trainer_params(cfg, num_machines, num_processes)
facebook-github-bot's avatar
facebook-github-bot committed
157
158

    last_checkpoint = os.path.join(cfg.OUTPUT_DIR, "last.ckpt")
159
    if PathManager.exists(last_checkpoint):
facebook-github-bot's avatar
facebook-github-bot committed
160
161
162
163
164
        # resume training from checkpoint
        trainer_params["resume_from_checkpoint"] = last_checkpoint
        logger.info(f"Resuming training from checkpoint: {last_checkpoint}.")

    trainer = pl.Trainer(**trainer_params)
165
166
167
168
169
170
    model_configs = None
    if eval_only:
        do_test(trainer, task)
    else:
        model_configs = do_train(cfg, trainer, task)

facebook-github-bot's avatar
facebook-github-bot committed
171
172
    return TrainOutput(
        output_dir=cfg.OUTPUT_DIR,
173
        tensorboard_log_dir=trainer_params["logger"].log_dir,
facebook-github-bot's avatar
facebook-github-bot committed
174
        accuracy=task.eval_res,
175
        model_configs=model_configs,
facebook-github-bot's avatar
facebook-github-bot committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    )


def build_config(
    config_file: str,
    task_cls: Type[GeneralizedRCNNTask],
    opts: Optional[List[str]] = None,
) -> CfgNode:
    """Build config node from config file
    Args:
        config_file: Path to a D2go config file
        output_dir: When given, this will override the OUTPUT_DIR in the config
        opts: A list of config overrides. e.g. ["SOLVER.IMS_PER_BATCH", "2"]
    """
    cfg = task_cls.get_default_cfg()
    cfg.merge_from_file(config_file)

    if opts:
        cfg.merge_from_list(opts)
    return cfg


def argument_parser():
    parser = basic_argument_parser(distributed=True, requires_output_dir=False)
    parser.add_argument(
        "--num-gpus", type=int, default=0, help="number of GPUs per machine"
    )
    return parser


if __name__ == "__main__":
    args = argument_parser().parse_args()
208
    task_cls = create_runner(args.runner) if args.runner else GeneralizedRCNNTask
facebook-github-bot's avatar
facebook-github-bot committed
209
210
211
212
213
214
215
216
217
218
219
    cfg = build_config(args.config_file, task_cls, args.opts)
    ret = main(
        cfg,
        args.output_dir,
        task_cls,
        eval_only=False,  # eval_only
        num_machines=args.num_machines,
        num_processes=args.num_processes,
    )
    if get_rank() == 0:
        print(ret)