lightning_train_net.py 7.55 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import logging
import os
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Type

import pytorch_lightning as pl  # type: ignore
from d2go.config import CfgNode, temp_defrost
12
from d2go.runner import create_runner
13
from d2go.runner.callbacks.quantization import QuantizationAwareTraining
facebook-github-bot's avatar
facebook-github-bot committed
14
15
16
17
from d2go.runner.lightning_task import GeneralizedRCNNTask
from d2go.setup import basic_argument_parser
from d2go.utils.misc import dump_trained_model_configs
from detectron2.utils.events import EventStorage
18
from detectron2.utils.file_io import PathManager
facebook-github-bot's avatar
facebook-github-bot committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
from torch.distributed import get_rank


logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("detectron2go.lightning.train_net")

FINAL_MODEL_CKPT = f"model_final{ModelCheckpoint.FILE_EXTENSION}"


@dataclass
class TrainOutput:
    output_dir: str
    accuracy: Optional[Dict[str, Any]] = None
    tensorboard_log_dir: Optional[str] = None
    model_configs: Optional[Dict[str, str]] = None


def maybe_override_output_dir(cfg: CfgNode, output_dir: Optional[str]) -> None:
41
    """Overrides the output directory if `output_dir` is not None. """
facebook-github-bot's avatar
facebook-github-bot committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    if output_dir is not None and output_dir != cfg.OUTPUT_DIR:
        cfg.OUTPUT_DIR = output_dir
        logger.warning(
            f"Override cfg.OUTPUT_DIR ({cfg.OUTPUT_DIR}) to be the same as "
            f"output_dir {output_dir}"
        )


def _get_trainer_callbacks(cfg: CfgNode) -> List[Callback]:
    """Gets the trainer callbacks based on the given D2Go Config.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.

    Returns:
        A list of configured Callbacks to be used by the Lightning Traininer.
    """
    callbacks: List[Callback] = [
        LearningRateMonitor(logging_interval="step"),
        ModelCheckpoint(
62
            dirpath=cfg.OUTPUT_DIR,
facebook-github-bot's avatar
facebook-github-bot committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
            save_last=True,
        ),
    ]
    if cfg.QUANTIZATION.QAT.ENABLED:
        qat = cfg.QUANTIZATION.QAT
        callbacks.append(
            QuantizationAwareTraining(
                qconfig_dicts={
                    submodule: None for submodule in cfg.QUANTIZATION.MODULES
                }
                if cfg.QUANTIZATION.MODULES
                else None,
                start_step=qat.START_ITER,
                enable_observer=(qat.ENABLE_OBSERVER_ITER, qat.DISABLE_OBSERVER_ITER),
                freeze_bn_step=qat.FREEZE_BN_ITER,
            )
        )
    return callbacks


Kai Zhang's avatar
Kai Zhang committed
83
84
85
def get_accelerator(device: str) -> str:
    return "ddp_cpu" if device.lower() == "cpu" else "ddp"

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

def do_train(cfg: CfgNode, trainer: pl.Trainer, task: GeneralizedRCNNTask) -> Dict[str, str]:
    """Runs the training loop with given trainer and task.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.
        trainer: PyTorch Lightning trainer.
        task: Lightning module instance.

    Returns:
        A map of model name to trained model config path.
    """
    with EventStorage() as storage:
        task.storage = storage
        trainer.fit(task)
        final_ckpt = os.path.join(cfg.OUTPUT_DIR, FINAL_MODEL_CKPT)
        trainer.save_checkpoint(final_ckpt)  # for validation monitor

        trained_cfg = cfg.clone()
        with temp_defrost(trained_cfg):
            trained_cfg.MODEL.WEIGHTS = final_ckpt
        model_configs = dump_trained_model_configs(
            cfg.OUTPUT_DIR, {"model_final": trained_cfg}
        )
    return model_configs


def do_test(trainer: pl.Trainer, task: GeneralizedRCNNTask):
    """Runs the evaluation with a pre-trained model.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.
        trainer: PyTorch Lightning trainer.
        task: Lightning module instance.

    """
    with EventStorage() as storage:
        task.storage = storage
        trainer.test(task)


facebook-github-bot's avatar
facebook-github-bot committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
def main(
    cfg: CfgNode,
    output_dir: Optional[str] = None,
    task_cls: Type[GeneralizedRCNNTask] = GeneralizedRCNNTask,
    eval_only: bool = False,
    num_machines: int = 1,
    num_gpus: int = 0,
    num_processes: int = 1,
) -> TrainOutput:
    """Main function for launching a training with lightning trainer
    Args:
        cfg: D2go config node
        num_machines: Number of nodes used for distributed training
        num_gpus: Number of GPUs to train on each node
        num_processes: Number of processes on each node.
            NOTE: Automatically set to the number of GPUs when using DDP.
            Set a value greater than 1 to mimic distributed training on CPUs.
        eval_only: True if run evaluation only.
    """
    assert (
        num_processes == 1 or num_gpus == 0
    ), "Only set num_processes > 1 when training on CPUs"

    maybe_override_output_dir(cfg, output_dir)

152
    task = task_cls.from_config(cfg, eval_only)
153
    tb_logger = TensorBoardLogger(save_dir=cfg.OUTPUT_DIR)
Kai Zhang's avatar
Kai Zhang committed
154

facebook-github-bot's avatar
facebook-github-bot committed
155
156
157
158
159
160
161
162
163
164
165
    trainer_params = {
        # training loop is bounded by max steps, use a large max_epochs to make
        # sure max_steps is met first
        "max_epochs": 10 ** 8,
        "max_steps": cfg.SOLVER.MAX_ITER,
        "val_check_interval": cfg.TEST.EVAL_PERIOD
        if cfg.TEST.EVAL_PERIOD > 0
        else cfg.SOLVER.MAX_ITER,
        "num_nodes": num_machines,
        "gpus": num_gpus,
        "num_processes": num_processes,
Kai Zhang's avatar
Kai Zhang committed
166
        "accelerator": get_accelerator(cfg.MODEL.DEVICE),
facebook-github-bot's avatar
facebook-github-bot committed
167
168
169
170
171
172
173
        "callbacks": _get_trainer_callbacks(cfg),
        "logger": tb_logger,
        "num_sanity_val_steps": 0,
        "progress_bar_refresh_rate": 10,
    }

    last_checkpoint = os.path.join(cfg.OUTPUT_DIR, "last.ckpt")
174
    if PathManager.exists(last_checkpoint):
facebook-github-bot's avatar
facebook-github-bot committed
175
176
177
178
179
        # resume training from checkpoint
        trainer_params["resume_from_checkpoint"] = last_checkpoint
        logger.info(f"Resuming training from checkpoint: {last_checkpoint}.")

    trainer = pl.Trainer(**trainer_params)
180
181
182
183
184
185
    model_configs = None
    if eval_only:
        do_test(trainer, task)
    else:
        model_configs = do_train(cfg, trainer, task)

facebook-github-bot's avatar
facebook-github-bot committed
186
187
    return TrainOutput(
        output_dir=cfg.OUTPUT_DIR,
188
        tensorboard_log_dir=tb_logger.log_dir,
facebook-github-bot's avatar
facebook-github-bot committed
189
        accuracy=task.eval_res,
190
        model_configs=model_configs,
facebook-github-bot's avatar
facebook-github-bot committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    )


def build_config(
    config_file: str,
    task_cls: Type[GeneralizedRCNNTask],
    opts: Optional[List[str]] = None,
) -> CfgNode:
    """Build config node from config file
    Args:
        config_file: Path to a D2go config file
        output_dir: When given, this will override the OUTPUT_DIR in the config
        opts: A list of config overrides. e.g. ["SOLVER.IMS_PER_BATCH", "2"]
    """
    cfg = task_cls.get_default_cfg()
    cfg.merge_from_file(config_file)

    if opts:
        cfg.merge_from_list(opts)
    return cfg


def argument_parser():
    parser = basic_argument_parser(distributed=True, requires_output_dir=False)
    parser.add_argument(
        "--num-gpus", type=int, default=0, help="number of GPUs per machine"
    )
    return parser


if __name__ == "__main__":
    args = argument_parser().parse_args()
223
    task_cls = create_runner(args.runner) if args.runner else GeneralizedRCNNTask
facebook-github-bot's avatar
facebook-github-bot committed
224
225
226
227
228
229
230
231
232
233
234
235
    cfg = build_config(args.config_file, task_cls, args.opts)
    ret = main(
        cfg,
        args.output_dir,
        task_cls,
        eval_only=False,  # eval_only
        num_machines=args.num_machines,
        num_gpus=args.num_gpus,
        num_processes=args.num_processes,
    )
    if get_rank() == 0:
        print(ret)