lightning_train_net.py 6.89 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import logging
import os
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Type

import pytorch_lightning as pl  # type: ignore
11
from d2go.config import CfgNode, temp_defrost, auto_scale_world_size
12
from d2go.runner import create_runner
Kai Zhang's avatar
Kai Zhang committed
13
14
15
from d2go.runner.callbacks.quantization import (
    QuantizationAwareTraining,
)
facebook-github-bot's avatar
facebook-github-bot committed
16
from d2go.runner.lightning_task import GeneralizedRCNNTask
17
from d2go.setup import basic_argument_parser, setup_after_launch
facebook-github-bot's avatar
facebook-github-bot committed
18
19
from d2go.utils.misc import dump_trained_model_configs
from detectron2.utils.events import EventStorage
20
from detectron2.utils.file_io import PathManager
21
from pytorch_lightning.callbacks import Callback, TQDMProgressBar, LearningRateMonitor
facebook-github-bot's avatar
facebook-github-bot committed
22
23
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
24
from pytorch_lightning.strategies.ddp import DDPStrategy
facebook-github-bot's avatar
facebook-github-bot committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from torch.distributed import get_rank


logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("detectron2go.lightning.train_net")

FINAL_MODEL_CKPT = f"model_final{ModelCheckpoint.FILE_EXTENSION}"


@dataclass
class TrainOutput:
    output_dir: str
    accuracy: Optional[Dict[str, Any]] = None
    tensorboard_log_dir: Optional[str] = None
    model_configs: Optional[Dict[str, str]] = None


def _get_trainer_callbacks(cfg: CfgNode) -> List[Callback]:
    """Gets the trainer callbacks based on the given D2Go Config.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.

    Returns:
49
        A list of configured Callbacks to be used by the Lightning Trainer.
facebook-github-bot's avatar
facebook-github-bot committed
50
51
    """
    callbacks: List[Callback] = [
52
        TQDMProgressBar(refresh_rate=10),  # Arbitrary refresh_rate.
facebook-github-bot's avatar
facebook-github-bot committed
53
54
        LearningRateMonitor(logging_interval="step"),
        ModelCheckpoint(
55
            dirpath=cfg.OUTPUT_DIR,
facebook-github-bot's avatar
facebook-github-bot committed
56
57
58
            save_last=True,
        ),
    ]
Kai Zhang's avatar
Kai Zhang committed
59
60
    if cfg.QUANTIZATION.QAT.ENABLED:
        callbacks.append(QuantizationAwareTraining.from_config(cfg))
facebook-github-bot's avatar
facebook-github-bot committed
61
62
    return callbacks

Yanghan Wang's avatar
Yanghan Wang committed
63

64
65
66
67
def _get_strategy(cfg: CfgNode) -> DDPStrategy:
    return DDPStrategy(find_unused_parameters=cfg.MODEL.DDP_FIND_UNUSED_PARAMETERS)


Kai Zhang's avatar
Kai Zhang committed
68
def _get_accelerator(use_cpu: bool) -> str:
69
    return "cpu" if use_cpu else "gpu"
facebook-github-bot's avatar
facebook-github-bot committed
70

Kai Zhang's avatar
Kai Zhang committed
71

Yanghan Wang's avatar
Yanghan Wang committed
72
73
74
def get_trainer_params(
    cfg: CfgNode, num_machines: int, num_processes: int
) -> Dict[str, Any]:
Kai Zhang's avatar
Kai Zhang committed
75
    use_cpu = cfg.MODEL.DEVICE.lower() == "cpu"
76
    strategy = _get_strategy(cfg)
77
78
    accelerator = _get_accelerator(use_cpu)

79
    return {
80
        "max_epochs": -1,
81
82
83
84
85
        "max_steps": cfg.SOLVER.MAX_ITER,
        "val_check_interval": cfg.TEST.EVAL_PERIOD
        if cfg.TEST.EVAL_PERIOD > 0
        else cfg.SOLVER.MAX_ITER,
        "num_nodes": num_machines,
86
87
        "devices": num_processes,
        "strategy": strategy,
88
        "accelerator": accelerator,
89
90
91
        "callbacks": _get_trainer_callbacks(cfg),
        "logger": TensorBoardLogger(save_dir=cfg.OUTPUT_DIR),
        "num_sanity_val_steps": 0,
Kai Zhang's avatar
Kai Zhang committed
92
        "replace_sampler_ddp": False,
93
    }
94

Yanghan Wang's avatar
Yanghan Wang committed
95

96
97
98
def do_train(
    cfg: CfgNode, trainer: pl.Trainer, task: GeneralizedRCNNTask
) -> Dict[str, str]:
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    """Runs the training loop with given trainer and task.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.
        trainer: PyTorch Lightning trainer.
        task: Lightning module instance.

    Returns:
        A map of model name to trained model config path.
    """
    with EventStorage() as storage:
        task.storage = storage
        trainer.fit(task)
        final_ckpt = os.path.join(cfg.OUTPUT_DIR, FINAL_MODEL_CKPT)
        trainer.save_checkpoint(final_ckpt)  # for validation monitor

        trained_cfg = cfg.clone()
        with temp_defrost(trained_cfg):
            trained_cfg.MODEL.WEIGHTS = final_ckpt
        model_configs = dump_trained_model_configs(
            cfg.OUTPUT_DIR, {"model_final": trained_cfg}
        )
    return model_configs


def do_test(trainer: pl.Trainer, task: GeneralizedRCNNTask):
    """Runs the evaluation with a pre-trained model.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.
        trainer: PyTorch Lightning trainer.
        task: Lightning module instance.

    """
    with EventStorage() as storage:
        task.storage = storage
        trainer.test(task)


facebook-github-bot's avatar
facebook-github-bot committed
138
139
def main(
    cfg: CfgNode,
140
    output_dir: str,
facebook-github-bot's avatar
facebook-github-bot committed
141
142
143
144
145
146
147
148
149
150
151
152
    task_cls: Type[GeneralizedRCNNTask] = GeneralizedRCNNTask,
    eval_only: bool = False,
    num_machines: int = 1,
    num_processes: int = 1,
) -> TrainOutput:
    """Main function for launching a training with lightning trainer
    Args:
        cfg: D2go config node
        num_machines: Number of nodes used for distributed training
        num_processes: Number of processes on each node.
        eval_only: True if run evaluation only.
    """
153
154
155
    # FIXME: make comm.get_world_size() work properly.
    setup_after_launch(cfg, output_dir, _scale_world_size=False)
    auto_scale_world_size(cfg, new_world_size=num_machines * num_processes)
facebook-github-bot's avatar
facebook-github-bot committed
156

157
    task = task_cls.from_config(cfg, eval_only)
158
    trainer_params = get_trainer_params(cfg, num_machines, num_processes)
facebook-github-bot's avatar
facebook-github-bot committed
159
160

    last_checkpoint = os.path.join(cfg.OUTPUT_DIR, "last.ckpt")
161
    if PathManager.exists(last_checkpoint):
facebook-github-bot's avatar
facebook-github-bot committed
162
163
164
165
166
        # resume training from checkpoint
        trainer_params["resume_from_checkpoint"] = last_checkpoint
        logger.info(f"Resuming training from checkpoint: {last_checkpoint}.")

    trainer = pl.Trainer(**trainer_params)
167
168
169
170
171
172
    model_configs = None
    if eval_only:
        do_test(trainer, task)
    else:
        model_configs = do_train(cfg, trainer, task)

facebook-github-bot's avatar
facebook-github-bot committed
173
174
    return TrainOutput(
        output_dir=cfg.OUTPUT_DIR,
175
        tensorboard_log_dir=trainer_params["logger"].log_dir,
facebook-github-bot's avatar
facebook-github-bot committed
176
        accuracy=task.eval_res,
177
        model_configs=model_configs,
facebook-github-bot's avatar
facebook-github-bot committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    )


def build_config(
    config_file: str,
    task_cls: Type[GeneralizedRCNNTask],
    opts: Optional[List[str]] = None,
) -> CfgNode:
    """Build config node from config file
    Args:
        config_file: Path to a D2go config file
        output_dir: When given, this will override the OUTPUT_DIR in the config
        opts: A list of config overrides. e.g. ["SOLVER.IMS_PER_BATCH", "2"]
    """
    cfg = task_cls.get_default_cfg()
    cfg.merge_from_file(config_file)

    if opts:
        cfg.merge_from_list(opts)
    return cfg


def argument_parser():
    parser = basic_argument_parser(distributed=True, requires_output_dir=False)
    parser.add_argument(
        "--num-gpus", type=int, default=0, help="number of GPUs per machine"
    )
    return parser


if __name__ == "__main__":
    args = argument_parser().parse_args()
210
    task_cls = create_runner(args.runner) if args.runner else GeneralizedRCNNTask
facebook-github-bot's avatar
facebook-github-bot committed
211
212
213
214
215
216
217
218
219
220
221
    cfg = build_config(args.config_file, task_cls, args.opts)
    ret = main(
        cfg,
        args.output_dir,
        task_cls,
        eval_only=False,  # eval_only
        num_machines=args.num_machines,
        num_processes=args.num_processes,
    )
    if get_rank() == 0:
        print(ret)