lightning_train_net.py 6.57 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import logging
import os
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Type

10
import mobile_cv.torch.utils_pytorch.comm as comm
facebook-github-bot's avatar
facebook-github-bot committed
11
import pytorch_lightning as pl  # type: ignore
12
from d2go.config import CfgNode, temp_defrost
13
from d2go.runner import create_runner
14
from d2go.runner.callbacks.quantization import QuantizationAwareTraining
facebook-github-bot's avatar
facebook-github-bot committed
15
from d2go.runner.lightning_task import GeneralizedRCNNTask
16
from d2go.setup import basic_argument_parser, setup_after_launch
facebook-github-bot's avatar
facebook-github-bot committed
17
18
from d2go.utils.misc import dump_trained_model_configs
from detectron2.utils.events import EventStorage
19
from detectron2.utils.file_io import PathManager
20
from pytorch_lightning.callbacks import Callback, LearningRateMonitor, TQDMProgressBar
facebook-github-bot's avatar
facebook-github-bot committed
21
22
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
23
from pytorch_lightning.strategies.ddp import DDPStrategy
facebook-github-bot's avatar
facebook-github-bot committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from torch.distributed import get_rank


logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("detectron2go.lightning.train_net")

FINAL_MODEL_CKPT = f"model_final{ModelCheckpoint.FILE_EXTENSION}"


@dataclass
class TrainOutput:
    output_dir: str
    accuracy: Optional[Dict[str, Any]] = None
    tensorboard_log_dir: Optional[str] = None
    model_configs: Optional[Dict[str, str]] = None


def _get_trainer_callbacks(cfg: CfgNode) -> List[Callback]:
    """Gets the trainer callbacks based on the given D2Go Config.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.

    Returns:
48
        A list of configured Callbacks to be used by the Lightning Trainer.
facebook-github-bot's avatar
facebook-github-bot committed
49
50
    """
    callbacks: List[Callback] = [
51
        TQDMProgressBar(refresh_rate=10),  # Arbitrary refresh_rate.
facebook-github-bot's avatar
facebook-github-bot committed
52
53
        LearningRateMonitor(logging_interval="step"),
        ModelCheckpoint(
54
            dirpath=cfg.OUTPUT_DIR,
facebook-github-bot's avatar
facebook-github-bot committed
55
56
57
            save_last=True,
        ),
    ]
Kai Zhang's avatar
Kai Zhang committed
58
59
    if cfg.QUANTIZATION.QAT.ENABLED:
        callbacks.append(QuantizationAwareTraining.from_config(cfg))
facebook-github-bot's avatar
facebook-github-bot committed
60
61
    return callbacks

Yanghan Wang's avatar
Yanghan Wang committed
62

63
64
65
66
def _get_strategy(cfg: CfgNode) -> DDPStrategy:
    return DDPStrategy(find_unused_parameters=cfg.MODEL.DDP_FIND_UNUSED_PARAMETERS)


Kai Zhang's avatar
Kai Zhang committed
67
def _get_accelerator(use_cpu: bool) -> str:
68
    return "cpu" if use_cpu else "gpu"
facebook-github-bot's avatar
facebook-github-bot committed
69

Kai Zhang's avatar
Kai Zhang committed
70

71
def get_trainer_params(cfg: CfgNode) -> Dict[str, Any]:
Kai Zhang's avatar
Kai Zhang committed
72
    use_cpu = cfg.MODEL.DEVICE.lower() == "cpu"
73
    strategy = _get_strategy(cfg)
74
75
    accelerator = _get_accelerator(use_cpu)

76
    return {
77
        "max_epochs": -1,
78
79
80
81
        "max_steps": cfg.SOLVER.MAX_ITER,
        "val_check_interval": cfg.TEST.EVAL_PERIOD
        if cfg.TEST.EVAL_PERIOD > 0
        else cfg.SOLVER.MAX_ITER,
82
83
        "num_nodes": comm.get_num_nodes(),
        "devices": comm.get_local_size(),
84
        "strategy": strategy,
85
        "accelerator": accelerator,
86
87
88
        "callbacks": _get_trainer_callbacks(cfg),
        "logger": TensorBoardLogger(save_dir=cfg.OUTPUT_DIR),
        "num_sanity_val_steps": 0,
Kai Zhang's avatar
Kai Zhang committed
89
        "replace_sampler_ddp": False,
90
    }
91

Yanghan Wang's avatar
Yanghan Wang committed
92

93
94
95
def do_train(
    cfg: CfgNode, trainer: pl.Trainer, task: GeneralizedRCNNTask
) -> Dict[str, str]:
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    """Runs the training loop with given trainer and task.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.
        trainer: PyTorch Lightning trainer.
        task: Lightning module instance.

    Returns:
        A map of model name to trained model config path.
    """
    with EventStorage() as storage:
        task.storage = storage
        trainer.fit(task)
        final_ckpt = os.path.join(cfg.OUTPUT_DIR, FINAL_MODEL_CKPT)
        trainer.save_checkpoint(final_ckpt)  # for validation monitor

        trained_cfg = cfg.clone()
        with temp_defrost(trained_cfg):
            trained_cfg.MODEL.WEIGHTS = final_ckpt
        model_configs = dump_trained_model_configs(
            cfg.OUTPUT_DIR, {"model_final": trained_cfg}
        )
    return model_configs


def do_test(trainer: pl.Trainer, task: GeneralizedRCNNTask):
    """Runs the evaluation with a pre-trained model.

    Args:
        cfg: The normalized ConfigNode for this D2Go Task.
        trainer: PyTorch Lightning trainer.
        task: Lightning module instance.

    """
    with EventStorage() as storage:
        task.storage = storage
        trainer.test(task)


facebook-github-bot's avatar
facebook-github-bot committed
135
136
def main(
    cfg: CfgNode,
137
    output_dir: str,
facebook-github-bot's avatar
facebook-github-bot committed
138
139
140
141
142
143
144
145
146
147
    task_cls: Type[GeneralizedRCNNTask] = GeneralizedRCNNTask,
    eval_only: bool = False,
) -> TrainOutput:
    """Main function for launching a training with lightning trainer
    Args:
        cfg: D2go config node
        num_machines: Number of nodes used for distributed training
        num_processes: Number of processes on each node.
        eval_only: True if run evaluation only.
    """
148
    setup_after_launch(cfg, output_dir)
facebook-github-bot's avatar
facebook-github-bot committed
149

150
    task = task_cls.from_config(cfg, eval_only)
151
    trainer_params = get_trainer_params(cfg)
facebook-github-bot's avatar
facebook-github-bot committed
152
153

    last_checkpoint = os.path.join(cfg.OUTPUT_DIR, "last.ckpt")
154
    if PathManager.exists(last_checkpoint):
facebook-github-bot's avatar
facebook-github-bot committed
155
156
157
158
159
        # resume training from checkpoint
        trainer_params["resume_from_checkpoint"] = last_checkpoint
        logger.info(f"Resuming training from checkpoint: {last_checkpoint}.")

    trainer = pl.Trainer(**trainer_params)
160
161
162
163
164
165
    model_configs = None
    if eval_only:
        do_test(trainer, task)
    else:
        model_configs = do_train(cfg, trainer, task)

facebook-github-bot's avatar
facebook-github-bot committed
166
167
    return TrainOutput(
        output_dir=cfg.OUTPUT_DIR,
168
        tensorboard_log_dir=trainer_params["logger"].log_dir,
facebook-github-bot's avatar
facebook-github-bot committed
169
        accuracy=task.eval_res,
170
        model_configs=model_configs,
facebook-github-bot's avatar
facebook-github-bot committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    )


def build_config(
    config_file: str,
    task_cls: Type[GeneralizedRCNNTask],
    opts: Optional[List[str]] = None,
) -> CfgNode:
    """Build config node from config file
    Args:
        config_file: Path to a D2go config file
        output_dir: When given, this will override the OUTPUT_DIR in the config
        opts: A list of config overrides. e.g. ["SOLVER.IMS_PER_BATCH", "2"]
    """
    cfg = task_cls.get_default_cfg()
    cfg.merge_from_file(config_file)

    if opts:
        cfg.merge_from_list(opts)
    return cfg


def argument_parser():
    parser = basic_argument_parser(distributed=True, requires_output_dir=False)
    parser.add_argument(
        "--num-gpus", type=int, default=0, help="number of GPUs per machine"
    )
    return parser


if __name__ == "__main__":
    args = argument_parser().parse_args()
203
    task_cls = create_runner(args.runner) if args.runner else GeneralizedRCNNTask
facebook-github-bot's avatar
facebook-github-bot committed
204
205
206
207
208
209
210
211
212
    cfg = build_config(args.config_file, task_cls, args.opts)
    ret = main(
        cfg,
        args.output_dir,
        task_cls,
        eval_only=False,  # eval_only
    )
    if get_rank() == 0:
        print(ret)