kernels.cu 123 KB
Newer Older
1
2
3
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
Tim Dettmers's avatar
Tim Dettmers committed
4
5
// LICENSE file in the root directory of this source tree.

6
7
8
#include "kernels.cuh"
#include "common.cuh"
#include <cuda_fp16.h>
Tim Dettmers's avatar
Tim Dettmers committed
9
10
11
12
13
14
15
16
#include <cub/block/block_radix_sort.cuh>
#include <cub/warp/warp_reduce.cuh>
#include <cub/block/block_load.cuh>
#include <cub/block/block_discontinuity.cuh>
#include <cub/block/block_store.cuh>
#include <cub/block/block_reduce.cuh>
#include <cub/cub.cuh>
#include <math_constants.h>
Tim Dettmers's avatar
Tim Dettmers committed
17
#include <mma.h>
Tim Dettmers's avatar
Tim Dettmers committed
18

Tim Dettmers's avatar
Tim Dettmers committed
19

Tim Dettmers's avatar
Tim Dettmers committed
20
21
22
23
24
#define HLF_MAX 65504
#define TH 1024
#define NUM 4
#define NUM_BLOCK 4096

25
__device__ static float nf4_data[16] = {-1.0, -0.6961928009986877, -0.5250730514526367, -0.39491748809814453, -0.28444138169288635, -0.18477343022823334, -0.09105003625154495, 0.0, 0.07958029955625534, 0.16093020141124725, 0.24611230194568634, 0.33791524171829224, 0.44070982933044434, 0.5626170039176941, 0.7229568362236023, 1.0};
Tim Dettmers's avatar
Tim Dettmers committed
26

Tim Dettmers's avatar
Tim Dettmers committed
27
28
29
30
31
32
33
34
35
36
37
38
39
// source: https://stackoverflow.com/questions/17399119/how-do-i-use-atomicmax-on-floating-point-values-in-cuda
__device__ float atomicMax(float* address, float val) {
  int* address_as_i = reinterpret_cast<int*>(address);
  int old = *address_as_i, assumed;
  do {
    assumed = old;
    old = atomicCAS(
        reinterpret_cast<int*>(address), assumed,
        __float_as_int(fmaxf(val, __int_as_float(assumed))));
  } while (assumed != old);
  return __int_as_float(old);
}

Tim Dettmers's avatar
Tim Dettmers committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
__device__ float dDequantizeFP4Tree(unsigned char val, float absmax)
{
  float sign = (val & 0b1000) == 8 ? -1.0f : 1.0f;
  if((val & 0b0100) == 4) // 0
    if((val & 0b0010) == 2) //01
      if((val & 0b0001) == 1) // 111
        return 0.25000000f*absmax*sign; // 1111
      else
        return 0.16666667f*absmax*sign; // 1110
    else
      if((val & 0b0001) == 1) // 110
        return 0.50000000f*absmax*sign; // 1101
      else
        return 0.33333333f*absmax*sign; // 1100
  else
    if((val & 0b0010) == 2) //10
      if((val & 0b0001) == 1) // 101
        return 1.00000000f*absmax*sign; // 1011
      else
        return 0.66666667f*absmax*sign; // 1010
60
    else
Tim Dettmers's avatar
Tim Dettmers committed
61
62
63
64
65
66
      if((val & 0b0001) == 1) // 100
        return 5.208333333e-03f*absmax*sign; // 1001
      else
        return 0.00000000f*absmax*sign; // 1000
}

67
68
69
70
71
72
73
74
75
76
77
78
79
80
__device__ unsigned char dQuantizeFP4(float x)
{
  // FP4 with bias of 3
  // first bit is a sign
  // subnormals
  // 0b000 = 0
  // 0b001 = 0.0625
  // 0b110 = 2
  // 0b111 = 3
  // 0b100 = 4
  // 0b101 = 6
  // 0b010 = 8
  // 0b011 = 12

Tim Dettmers's avatar
Tim Dettmers committed
81
82
83

  // we do a binary search
  // the pivots are divided by 12 (the FP4 absmax)
84
  // since we assume input data is in [-1.0, 1.0]
Tim Dettmers's avatar
Tim Dettmers committed
85
86

  // !be careful here, its easy to make a mistake
87
  // that is difficult to notice if you add an extra
Tim Dettmers's avatar
Tim Dettmers committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
  // zero somewhere!

  int sign = x < 0 ? 0b1000 : 0b0000;
  x = fabsf(x);
  if(x > 0.29166667f)
    if( x > 0.583333f)
      if( x > 0.8333333f)
        return 0b0011+sign;
      else
        return 0b0010+sign;
    else
      if(x > 0.4166667f)
        return 0b101+sign;
      else
        return 0b100+sign;
  else
    if(x > 0.0859375f)
      if(x > 0.20833333f)
        return 0b0111+sign;
      else
        return 0b0110+sign;
    else
      if(x > 0.00260417f)
        return 0b0001+sign;
      else
        return 0b0000+sign;
}

116
__device__ __forceinline__ float dDequantizeNF4(unsigned char val)
Tim Dettmers's avatar
Tim Dettmers committed
117
{
118

Tim Dettmers's avatar
Tim Dettmers committed
119
120
121
122
123
124
  // the values for this tree was generated by test_normal_map_tree
  // in the file tests/test_functional.py
  if((val & 0b1000) == 8)
    if((val & 0b0100) == 4) // 1
      if((val & 0b0010) == 2) // 11
        if((val & 0b0001) == 1) // 111
125
          return 1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
126
        else
Tim Dettmers's avatar
Tim Dettmers committed
127
          return 0.7229568362236023f;
Tim Dettmers's avatar
Tim Dettmers committed
128
129
      else
        if((val & 0b0001) == 1) // 110
130
          return 0.5626170039176941f;
Tim Dettmers's avatar
Tim Dettmers committed
131
        else
132
          return 0.44070982933044434f;
Tim Dettmers's avatar
Tim Dettmers committed
133
134
135
    else
      if((val & 0b0010) == 2) //10
        if((val & 0b0001) == 1) // 101
136
          return 0.33791524171829224f;
Tim Dettmers's avatar
Tim Dettmers committed
137
        else
138
139
          return 0.24611230194568634f;
      else
Tim Dettmers's avatar
Tim Dettmers committed
140
        if((val & 0b0001) == 1) // 100
141
          return 0.16093020141124725f;
Tim Dettmers's avatar
Tim Dettmers committed
142
        else
143
          return 0.07958029955625534f;
Tim Dettmers's avatar
Tim Dettmers committed
144
145
146
147
148

  else
    if((val & 0b0100) == 4) // 0
      if((val & 0b0010) == 2) //01
        if((val & 0b0001) == 1) // 011
149
          return 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
150
        else
151
          return -0.09105003625154495f;
Tim Dettmers's avatar
Tim Dettmers committed
152
153
      else
        if((val & 0b0001) == 1) // 010
154
          return -0.18477343022823334f;
Tim Dettmers's avatar
Tim Dettmers committed
155
        else
Tim Dettmers's avatar
Tim Dettmers committed
156
          return -0.28444138169288635f;
Tim Dettmers's avatar
Tim Dettmers committed
157
158
159
    else
      if((val & 0b0010) == 2) //00
        if((val & 0b0001) == 1) // 001
Tim Dettmers's avatar
Tim Dettmers committed
160
          return -0.39491748809814453f;
Tim Dettmers's avatar
Tim Dettmers committed
161
        else
162
163
          return -0.5250730514526367f;
      else
Tim Dettmers's avatar
Tim Dettmers committed
164
        if((val & 0b0001) == 1) // 000
165
          return -0.6961928009986877f;
Tim Dettmers's avatar
Tim Dettmers committed
166
        else
167
          return -1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
168
169
170

}

171
__device__ unsigned char dQuantizeNF4(float x)
Tim Dettmers's avatar
Tim Dettmers committed
172
173
{

Tim Dettmers's avatar
Tim Dettmers committed
174
175
176
177
178
179
180
181
182
  // the values for this tree was generated by test_normal_map_tree
  // in the file tests/test_functional.py
  if(x > 0.03979014977812767f)
    if(x > 0.3893125355243683f) // 1
      if(x > 0.6427869200706482f) // 11
        if(x > 0.8614784181118011f) // 111
          return 0b1111;
        else
          return 0b1110;
183
      else
Tim Dettmers's avatar
Tim Dettmers committed
184
185
186
187
        if(x > 0.5016634166240692f) // 110
          return 0b1101;
        else
          return 0b1100;
188
    else
Tim Dettmers's avatar
Tim Dettmers committed
189
190
191
192
193
      if(x > 0.2035212516784668f) // 10
        if(x > 0.2920137718319893f) // 101
          return 0b1011;
        else
          return 0b1010;
194
      else
Tim Dettmers's avatar
Tim Dettmers committed
195
196
197
        if(x > 0.1202552504837513f) // 100
          return 0b1001;
        else
198
          return 0b1000;
199
  else
Tim Dettmers's avatar
Tim Dettmers committed
200
201
202
203
204
205
    if(x > -0.33967943489551544f) // 0
      if(x > -0.13791173323988914f) // 01
        if(x > -0.045525018125772476f) // 011
          return 0b0111;
        else
          return 0b0110;
206
      else
Tim Dettmers's avatar
Tim Dettmers committed
207
208
209
210
        if(x > -0.23460740596055984f) // 010
          return 0b0101;
        else
          return 0b0100;
211
    else
Tim Dettmers's avatar
Tim Dettmers committed
212
213
214
215
216
      if(x > -0.6106329262256622f) // 00
        if(x > -0.4599952697753906f) // 001
          return 0b0011;
        else
          return 0b0010;
217
      else
Tim Dettmers's avatar
Tim Dettmers committed
218
219
220
221
        if(x > -0.8480964004993439f) // 000
          return 0b0001;
        else
          return 0b0000;
222
}
223
224
225
// sign function for lion
// taken from https://stackoverflow.com/a/4609795, but not sure if there's a proper way to do this in CUDA

226
227
template <typename T> __device__ int sgn(T val)
{
228
229
  return (T(0) < val) - (val < T(0));
}
230

Tim Dettmers's avatar
Tim Dettmers committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
template <int STOCHASTIC>
__device__ unsigned char dQuantize(float* smem_code, const float rand, float x)
{
    int pivot = 127;
    int upper_pivot = 255;
    int lower_pivot = 0;

    float lower = -1.0f;
    float upper = 1.0f;

    float val = smem_code[pivot];
    // i>>=1 = {32, 16, 8, 4, 2, 1}
    for(int i = 64; i > 0; i>>=1)
    {
        if(x > val)
        {
            lower_pivot = pivot;
            lower = val;
            pivot+=i;
        }
        else
        {
            upper_pivot = pivot;
            upper = val;
            pivot-=i;
        }
        val = smem_code[pivot];
    }

    if(upper_pivot == 255)
        upper = smem_code[upper_pivot];
    if(lower_pivot == 0)
        lower = smem_code[lower_pivot];

    if(!STOCHASTIC)
    {
      if(x > val)
      {
        float midpoint = (upper+val)*0.5f;
        if(x > midpoint)
        {
          return upper_pivot;
        }
        else
          return pivot;
      }
      else
      {
        float midpoint = (lower+val)*0.5f;
        if(x < midpoint)
          return lower_pivot;
        else
          return pivot;
      }
    }
    else
    {
      if(x > val)
      {
        float dist_to_upper = fabsf(upper-x);
        float dist_full = upper-val;
        if(rand >= dist_to_upper/dist_full) return upper_pivot;
        else return pivot;
      }
      else
      {
        float dist_to_lower = fabsf(lower-x);
        float dist_full = val-lower;
        if(rand >= dist_to_lower/dist_full) return lower_pivot;
        else return pivot;
      }
    }
}

template <int SIGNED>
__device__ __forceinline__ unsigned char quantize_2D(float *__restrict__ quadrants, float *__restrict__ const smem_code, float x)
{
    int pivot = 127;
    int upper_pivot = 255;
    int lower_pivot = 0;

    float lower = SIGNED ? -1.0f : 0.0f;
    float upper = 1.0f;
    float midpoint;
    float val = quadrants[1];
    int local_pivot = 1;
    int offset = 1;

    // i>>=1 = {32, 16, 8, 4, 2, 1}
    for(int i = 64; i > 0; i>>=1)
    {
        if(x > val)
        {
            lower_pivot = pivot;
            lower = val;
            pivot+=i;
            //val = i == 64 ? quadrants[2] : smem_code[pivot];
            local_pivot += offset;
        }
        else
        {
            upper_pivot = pivot;
            upper = val;
            pivot-=i;
            //val = i == 64 ? quadrants[0] : smem_code[pivot];
            local_pivot -= offset;
        }
        val = i >= 64 ? quadrants[local_pivot] : smem_code[pivot];
        offset -= 1;
    }

    if(x > val)
    {
      midpoint = (upper+val)*0.5f;
      if(x > midpoint)
        return upper_pivot;
      else
        return pivot;
    }
    else
    {
      midpoint = (lower+val)*0.5f;
      if(x < midpoint)
        return lower_pivot;
      else
        return pivot;
    }
}


__global__ void kHistogramScatterAdd2D(float* histogram, int *index1, int *index2, float *src, const int maxidx1, const int n)
{
  const int tid = threadIdx.x + (blockDim.x*blockIdx.x);
  const int numThreads = blockDim.x*gridDim.x;

  for(int i = tid; i < n; i+=numThreads)
  {
      int idx = (index1[i]*maxidx1) + index2[i];
      atomicAdd(&histogram[idx], src[i]);
  }
}

#define THREADS_ESTIMATE 512
#define NUM_ESTIMATE 8
#define BLOCK_ESTIMATE 4096

template<typename T>
__launch_bounds__(THREADS_ESTIMATE, 1)
__global__ void kEstimateQuantiles(T *__restrict__ const A, float *code, const float offset, const T max_val, const int n)
{
  const int n_full = (BLOCK_ESTIMATE*(n/BLOCK_ESTIMATE)) + (n % BLOCK_ESTIMATE == 0 ? 0 : BLOCK_ESTIMATE);
  int valid_items = (blockIdx.x+1 == gridDim.x) ? n - (blockIdx.x*BLOCK_ESTIMATE) : BLOCK_ESTIMATE;
  const int base_idx = (blockIdx.x * BLOCK_ESTIMATE);
  const float reciprocal_num_blocks = 1.0f/(n < 4096 ? 1.0f : (n/BLOCK_ESTIMATE));

  T vals[NUM_ESTIMATE];

  typedef cub::BlockRadixSort<T, THREADS_ESTIMATE, NUM_ESTIMATE, cub::NullType, 4, true, cub::BLOCK_SCAN_RAKING> BlockRadixSort;
  typedef cub::BlockLoad<T, THREADS_ESTIMATE, NUM_ESTIMATE, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;

  __shared__ union {
      typename LoadFloat::TempStorage loadf;
      typename BlockRadixSort::TempStorage sort;
      int smem_qidx[BLOCK_ESTIMATE];
  } temp_storage;

  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_ESTIMATE)
  {
      valid_items = n - i > BLOCK_ESTIMATE ? BLOCK_ESTIMATE : n - i;

      // do not process half-blocks
      if(valid_items < BLOCK_ESTIMATE && n > BLOCK_ESTIMATE){ continue; }

      #pragma unroll 4
      for(int j = 0; j < NUM_ESTIMATE; j++)
          vals[j] = max_val;

      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(A[i]), vals, valid_items);

      #pragma unroll 4
      for(int j = 0; j < NUM_ESTIMATE; j++)
          vals[j] = ((float)vals[j]) * reciprocal_num_blocks;


      __syncthreads();
      // sort into striped pattern to mitigate bank conflicts
      // striped pattern index for thread 0 [0, 1024, 2048, 3096]
      // striped pattern index for thread 1 [1, 1025, 2049, 3097]
      BlockRadixSort(temp_storage.sort).SortBlockedToStriped(vals);

      __syncthreads();
      for(int j = threadIdx.x; j < BLOCK_ESTIMATE; j+=blockDim.x)
          temp_storage.smem_qidx[j] = -1;

426
427
      __syncthreads();

Tim Dettmers's avatar
Tim Dettmers committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
      if(threadIdx.x < 256)
      {
          float q_interval = (1.0f-(2.0f*offset))/255.0f;
          int local_idx = round(((offset+(threadIdx.x*q_interval))*(valid_items-1)));
          temp_storage.smem_qidx[local_idx] = threadIdx.x;
      }

      __syncthreads();

      for(int i = threadIdx.x; i < BLOCK_ESTIMATE; i+=blockDim.x)
      {
          if(temp_storage.smem_qidx[i] != -1)
              atomicAdd(&code[temp_storage.smem_qidx[i]], vals[i/THREADS_ESTIMATE]);
      }
  }
}


__launch_bounds__(TH, 4)
__global__ void kQuantize(float * code, float * __restrict__ const A, unsigned char *out, const int n)
{
  const int n_full = (NUM_BLOCK*(n/NUM_BLOCK)) + (n % NUM_BLOCK == 0 ? 0 : NUM_BLOCK);
  int valid_items = (blockIdx.x+1 == gridDim.x) ? n - (blockIdx.x*NUM_BLOCK) : NUM_BLOCK;
  const int base_idx = (blockIdx.x * NUM_BLOCK);

  float vals[NUM];
  unsigned char qvals[NUM];
  //const int lane_id = threadIdx.x % 2;

  typedef cub::BlockLoad<float, TH, NUM, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
  typedef cub::BlockStore<unsigned char, TH, NUM, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;

  __shared__ typename LoadFloat::TempStorage loadf;
  __shared__ typename StoreChar::TempStorage storec;
  __shared__ float smem_code[256];
  //__shared__ float smem_code[2][257];

  if(threadIdx.x < 256)
  {
    smem_code[threadIdx.x] = code[threadIdx.x];
    //smem_code[0][threadIdx.x] = code[threadIdx.x];
    //smem_code[1][threadIdx.x] = smem_code[0][threadIdx.x];
  }


  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*NUM_BLOCK)
  {
      // number of values already processed in blocks +
      // number of values already processed in this block +
      // rand_offset % mod value
      valid_items = n - i > NUM_BLOCK ? NUM_BLOCK : n - i;

      __syncthreads();
      LoadFloat(loadf).Load(&(A[i]), vals, valid_items);


      #pragma unroll 4
      for(int j = 0; j < NUM; j++)
          qvals[j] = dQuantize<0>(smem_code, 0.0f, vals[j]);

      __syncthreads();
      StoreChar(storec).Store(&(out[i]), qvals, valid_items);
  }
}

Tim Dettmers's avatar
Tim Dettmers committed
493
template<typename T, int BLOCK_SIZE, int NUM_PER_TH, int STOCHASTIC, int DATA_TYPE>
494
//__launch_bounds__(TH, 4)
Tim Dettmers's avatar
Tim Dettmers committed
495
496
497
498
499
500
__global__ void kQuantizeBlockwise(float * code, T * __restrict__ const A, float *absmax, unsigned char *out, float * __restrict__ const rand, const int rand_offset, const int n)
{
  const int n_full = gridDim.x * BLOCK_SIZE;
  int valid_items = 0;
  const int base_idx = (blockIdx.x * BLOCK_SIZE);

501
502
  T vals[NUM_PER_TH];
  float rand_vals[NUM_PER_TH];
Tim Dettmers's avatar
Tim Dettmers committed
503
  unsigned char qvals[(DATA_TYPE > 0) ? NUM_PER_TH/2 : NUM_PER_TH];
Tim Dettmers's avatar
Tim Dettmers committed
504
505
506
507
508
  //float local_abs_max = -FLT_MAX;
  float local_abs_max = 0.0f;
  int local_rand_idx = 0;

  typedef cub::BlockLoad<T, BLOCK_SIZE/NUM_PER_TH, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
Tim Dettmers's avatar
Tim Dettmers committed
509
  typedef cub::BlockStore<unsigned char, BLOCK_SIZE/NUM_PER_TH, (DATA_TYPE > 0) ? NUM_PER_TH/2 : NUM_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
Tim Dettmers's avatar
Tim Dettmers committed
510
511
512
513
514
515
516
517
518
519
  typedef cub::BlockReduce<float, BLOCK_SIZE/NUM_PER_TH> BlockReduce;
  typedef cub::BlockLoad<float, BLOCK_SIZE/NUM_PER_TH, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;

  __shared__ typename LoadT::TempStorage loadt;
  __shared__ typename LoadFloat::TempStorage loadf;
  __shared__ typename StoreChar::TempStorage storec;
  __shared__ typename BlockReduce::TempStorage reduce;
  __shared__ float smem_code[256];
  __shared__ float smem_absmax_value[1];

Tim Dettmers's avatar
Tim Dettmers committed
520
  if(DATA_TYPE == General8bit)
521
522
    for(int i = threadIdx.x; i < 256; i+=blockDim.x)
      smem_code[i] = code[i];
Tim Dettmers's avatar
Tim Dettmers committed
523

524
  for (int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
Tim Dettmers's avatar
Tim Dettmers committed
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
  {
    valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
    local_abs_max = -FLT_MAX;

    __syncthreads();
    LoadT(loadt).Load(&(A[i]), vals, valid_items, (T)0.0f);

    // 1. compute local max
    // 2. broadcast local max
    // 3. normalize inputs and quantize

    #pragma unroll NUM_PER_TH
    for(int j = 0; j < NUM_PER_TH; j++)
       local_abs_max = fmaxf(local_abs_max, fabsf((float)vals[j]));

    local_abs_max = BlockReduce(reduce).Reduce(local_abs_max, cub::Max(), valid_items);

542
543
544
545
    if (threadIdx.x == 0) {
      smem_absmax_value[0] = 1.0f / local_abs_max;
      absmax[i / BLOCK_SIZE] = local_abs_max;
    }
Tim Dettmers's avatar
Tim Dettmers committed
546
547
    __syncthreads();

548
    local_abs_max = smem_absmax_value[0];
Tim Dettmers's avatar
Tim Dettmers committed
549
550
551
552
553
554
555

    if(STOCHASTIC)
    {
      local_rand_idx = ((blockIdx.x*NUM_BLOCK) + (threadIdx.x*NUM) + rand_offset) % (1024-4);
      LoadFloat(loadf).Load(&rand[local_rand_idx], rand_vals, BLOCK_SIZE, 0);
    }

Tim Dettmers's avatar
Tim Dettmers committed
556
557
    unsigned char packed_4bit = 0;
    switch(DATA_TYPE)
Tim Dettmers's avatar
Tim Dettmers committed
558
    {
Tim Dettmers's avatar
Tim Dettmers committed
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
        case General8bit:
            #pragma unroll NUM_PER_TH
            for(int j = 0; j < NUM_PER_TH; j++)
            {
                if(!STOCHASTIC)
                 qvals[j] = dQuantize<0>(smem_code, 0.0f, ((float)vals[j])*local_abs_max);
                else
                 qvals[j] = dQuantize<1>(smem_code, rand_vals[j], ((float)vals[j])*local_abs_max);
            }
            break;
        case FP4:
            #pragma unroll NUM_PER_TH
            for(int j = 0; j < NUM_PER_TH/2; j++)
            {
              packed_4bit |= dQuantizeFP4(((float)vals[2*j])*local_abs_max) << 4;
              packed_4bit |= dQuantizeFP4(((float)vals[2*j+1])*local_abs_max);
              qvals[j] = packed_4bit;
            }
            break;
        case NF4:
            #pragma unroll NUM_PER_TH
            for(int j = 0; j < NUM_PER_TH/2; j++)
            {
582
583
              packed_4bit |= dQuantizeNF4(((float)vals[2*j])*local_abs_max) << 4;
              packed_4bit |= dQuantizeNF4(((float)vals[2*j+1])*local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
584
585
586
              qvals[j] = packed_4bit;
            }
            break;
Tim Dettmers's avatar
Tim Dettmers committed
587
588
589
    }

    __syncthreads();
Tim Dettmers's avatar
Tim Dettmers committed
590
    StoreChar(storec).Store(&(out[(DATA_TYPE > 0) ? i/2 : i]), qvals, (DATA_TYPE > 0) ? (valid_items+1)/2 : valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
591
592
593
  }
}

594
template<typename T, int TILE_SIZE, int THREADS, int NUM_PER_TH, int DATA_TYPE>
595
__global__ void kDequantizeBlockwise(float *code, unsigned char * A, float * absmax, T *out, const int blocksize, const int n)
Tim Dettmers's avatar
Tim Dettmers committed
596
597
{

598
599
600
601
  const int n_load = (gridDim.x * TILE_SIZE);
  int valid_items_load = 0;
  int valid_items_store = 0;
  const int base_idx = (blockIdx.x * TILE_SIZE);
Tim Dettmers's avatar
Tim Dettmers committed
602

603
  T vals[NUM_PER_TH*((DATA_TYPE > 0) ? 2 : 1)];
604
  unsigned char qvals[NUM_PER_TH];
Tim Dettmers's avatar
Tim Dettmers committed
605
606
607
  float local_abs_max = -FLT_MAX;

  typedef cub::BlockLoad<unsigned char, THREADS, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
608
  typedef cub::BlockStore<T, THREADS, NUM_PER_TH*((DATA_TYPE > 0) ? 2 : 1), cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;
Tim Dettmers's avatar
Tim Dettmers committed
609
610
611
612

  __shared__ typename LoadChar::TempStorage loadchar;
  __shared__ typename StoreT::TempStorage storet;

613
  for (int i = base_idx; i < n_load; i += gridDim.x*TILE_SIZE)
Tim Dettmers's avatar
Tim Dettmers committed
614
  {
615
    if (DATA_TYPE > 0)
616
    {
617
618
      valid_items_load = min(TILE_SIZE, (n + 1) / 2 - i);
      valid_items_store = min(TILE_SIZE * 2, n - i * 2);
619
620
621
    }
    else
    {
622
623
      valid_items_load = min(TILE_SIZE, n - i);
      valid_items_store = valid_items_load;
624
    }
625
626
627
628
629

    // Since blocksize will always be a power-of-2, we avoid more expensive
    // division by the blocksize and instead use a shift operation.
    // This is equivalent to (i+threadId.x*NUM_PER_TH)/blocksize.
    local_abs_max = __ldg(&absmax[(i+threadIdx.x*NUM_PER_TH) >> (31 - __clz(blocksize))]);
Tim Dettmers's avatar
Tim Dettmers committed
630

631
632
    __syncthreads();
    LoadChar(loadchar).Load(&(A[i]), qvals, valid_items_load, 128);
Tim Dettmers's avatar
Tim Dettmers committed
633

634
    switch (DATA_TYPE)
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
    {
        case General8bit:
          // load code through read-only cache via __ldg
          #pragma unroll NUM_PER_TH
          for(int j = 0; j < NUM_PER_TH; j++)
            vals[j] = __ldg(&code[qvals[j]])*local_abs_max;
          break;
        case FP4:
          #pragma unroll NUM_PER_TH
          for(int j = 0; j < NUM_PER_TH; j++)
          {
            vals[j*2] = dDequantizeFP4Tree(qvals[j] >> 4, local_abs_max);
            vals[j*2 + 1] = dDequantizeFP4Tree(qvals[j] & 0x0F, local_abs_max);
          }
          break;
        case NF4:
          #pragma unroll NUM_PER_TH
          for(int j = 0; j < NUM_PER_TH; j++)
          {
Tim Dettmers's avatar
Tim Dettmers committed
654
655
            vals[j*2] = dDequantizeNF4(qvals[j] >> 4)* local_abs_max;
            vals[j*2 + 1] = dDequantizeNF4(qvals[j] & 0x0F)* local_abs_max;
656
657
658
          }
          break;
    }
Tim Dettmers's avatar
Tim Dettmers committed
659

660
661
    __syncthreads();
    StoreT(storet).Store(&(out[(DATA_TYPE > 0) ? i*2 : i]), vals, valid_items_store);
Tim Dettmers's avatar
Tim Dettmers committed
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
  }
}

__global__ void kDequantize(float *code, unsigned char *A, float *out, const int n)
{
	const unsigned int numThreads = blockDim.x * gridDim.x;
	const int idx = (blockIdx.x * blockDim.x) + threadIdx.x;

	__shared__ float smem_code[256];
	if(threadIdx.x < 256)
	{
		smem_code[threadIdx.x] = code[threadIdx.x];
	}

	__syncthreads();

	for (int i = idx;i < n; i += numThreads)
	{
		out[i] = smem_code[A[i]];
	}
}



template<typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__launch_bounds__(BLOCK_SIZE/NUM_VALS, 1)
688
__global__ void kPreconditionOptimizer32bit2State(T* g, T* p,
Tim Dettmers's avatar
Tim Dettmers committed
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
                float* state1, float* state2, float *unorm,
                const float beta1, const float beta2, const float eps, const float weight_decay,
                const int step, const float lr, const float gnorm_scale, const int n)
{

  const int n_full = (BLOCK_SIZE*(n/BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
  const int base_idx = (blockIdx.x * blockDim.x * NUM_VALS);
  int valid_items = 0;

  T g_vals[NUM_VALS];

  float s1_vals[NUM_VALS];
  float s2_vals[NUM_VALS];

  const float correction1 = 1.0f/(1.0f - powf(beta1, step));
  const float correction2 = 1.0f/(1.0f - powf(beta2, step));

  typedef cub::BlockLoad<T, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
  typedef cub::BlockLoad<float, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
  typedef cub::BlockReduce<float, BLOCK_SIZE/NUM_VALS> BlockReduce;

  __shared__ union {
      typename Load::TempStorage load;
      typename LoadFloat::TempStorage loadf;
      typename BlockReduce::TempStorage reduce;
  } temp_storage;

  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
  {
      valid_items = n - i >= (BLOCK_SIZE) ? (BLOCK_SIZE) : n - i;

      __syncthreads();
      Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items, 0.0f);
      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items, 0.0f);
      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(state2[i]), s2_vals, valid_items, 0.0f);

      # pragma unroll NUM_VALS
      for(unsigned int j = 0; j < NUM_VALS; j++)
        g_vals[j] = gnorm_scale*((float)g_vals[j]);

      # pragma unroll NUM_VALS
      for(unsigned int j = 0; j < NUM_VALS; j++)
      {
          switch(OPTIMIZER)
          {
736
              case ADAM:
Tim Dettmers's avatar
Tim Dettmers committed
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
                  s1_vals[j] = s1_vals[j]*beta1 + ((1.0f -beta1)*((float)g_vals[j]));
                  s2_vals[j] = s2_vals[j]*beta2 + ((1.0f -beta2)*(((float)g_vals[j])*((float)g_vals[j])));
                  s1_vals[j] *= correction1;
                  s2_vals[j] *= correction2;
                  s1_vals[j] = s1_vals[j]/(sqrtf(s2_vals[j])+eps); // update
                  s1_vals[j] *= s1_vals[j]; // update l2 norm (update*update)
                  break;
          }
      }

      # pragma unroll NUM_VALS-1
      for(unsigned int j = 1; j < NUM_VALS; j++)
          s1_vals[0] += s1_vals[j];

      __syncthreads();
      s1_vals[0] = BlockReduce(temp_storage.reduce).Sum(s1_vals[0]);

      if(threadIdx.x == 0)
        atomicAdd(&unorm[0], s1_vals[0]);

      __syncwarp();
  }
}



#define NUM_PER_THREAD 4

template<typename T, int OPTIMIZER>
__launch_bounds__(TH, 1)
767
__global__ void kOptimizer32bit2State(T* g, T* p,
Tim Dettmers's avatar
Tim Dettmers committed
768
                float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
769
                const float beta1, const float beta2, const float beta3, const float alpha, const float eps, const float weight_decay,
770
                const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n)
Tim Dettmers's avatar
Tim Dettmers committed
771
772
773
774
775
776
777
778
779
{

  const int n_full = ((TH*NUM_PER_THREAD)*(n/(TH*NUM_PER_THREAD))) + (n % (TH*NUM_PER_THREAD) == 0 ? 0 : (TH*NUM_PER_THREAD));
  const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
  int valid_items = 0;
  float update_scale = 0.0f;
  T g_vals[NUM_PER_THREAD];
  T p_vals[NUM_PER_THREAD];

780

Tim Dettmers's avatar
Tim Dettmers committed
781
782
783
  float s1_vals[NUM_PER_THREAD];
  float s2_vals[NUM_PER_THREAD];

784
785
786
787
788
789
  // AdEMAMix has an additional state buffer, which we packed
  // into state1. We need thread-local storage here for these.
  // TODO: Mark with [[maybe_unused]] after upgrade to min compiler.
  float s3_vals[NUM_PER_THREAD];


Tim Dettmers's avatar
Tim Dettmers committed
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
  const float correction1 = 1.0f - powf(beta1, step);
  const float correction2 = sqrtf(1.0f - powf(beta2, step));
  const float step_size = -lr*correction2/correction1;

  if(max_unorm > 0.0f)
  {
    update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
    if(update_scale > max_unorm*param_norm){ update_scale = (max_unorm*param_norm)/update_scale; }
    else{ update_scale = 1.0f; }
  }
  else{ update_scale = 1.0f; }

  typedef cub::BlockLoad<T, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
  typedef cub::BlockStore<T, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> Store;

  typedef cub::BlockLoad<float, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
  typedef cub::BlockStore<float, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreFloat;

  __shared__ union {
      typename Load::TempStorage load;
      typename Store::TempStorage store;
      typename LoadFloat::TempStorage loadf;
      typename StoreFloat::TempStorage storef;
  } temp_storage;

  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*TH*NUM_PER_THREAD)
  {
      valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;

      __syncthreads();
      Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items);
      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items);
      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(state2[i]), s2_vals, valid_items);
      __syncthreads();
      Load(temp_storage.load).Load(&(p[i]), p_vals, valid_items);

828
829
830
831
832
833
834
      // Load additional state1 data for AdEMAMix
      // TODO: Make constexpr after updating min compiler
      if (OPTIMIZER == ADEMAMIX) {
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[n + i]), s3_vals, valid_items);
      }

Tim Dettmers's avatar
Tim Dettmers committed
835
836
837
838
839
840
841
842
843
      # pragma unroll 4
      for(unsigned int j = 0; j < NUM_PER_THREAD; j++)
        g_vals[j] = gnorm_scale*((float)g_vals[j]);

      # pragma unroll 4
      for(unsigned int j = 0; j < NUM_PER_THREAD; j++)
      {
          switch(OPTIMIZER)
          {
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
              case ADEMAMIX:
                // m1 update: m1 = beta1 * m1 + (1-beta1) * g
                s1_vals[j] = (s1_vals[j] * beta1) + ((1.0f - beta1) * (float)g_vals[j]);

                // m2 update: m2 = m2 * beta3 + (1-beta3) * g
                s3_vals[j] = (s3_vals[j] * beta3) + ((1.0f - beta3) * (float)g_vals[j]);

                // nu update: nu = beta2 * nu + (1-beta2) * g^2
                s2_vals[j] = (s2_vals[j] * beta2) + ((1.0f - beta2) * (float)g_vals[j] * (float)g_vals[j]);

                p_vals[j] = (float)p_vals[j] - lr * (
                  ((s1_vals[j] / correction1) + (alpha * s3_vals[j])) / (
                    (sqrtf(s2_vals[j]) / correction2) + eps
                  )
                );

                if (weight_decay > 0.0f)
                    p_vals[j] = ((float)p_vals[j]) * (1.0f - (lr * weight_decay));

              break;
864
              case ADAM:
865

866
									if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
867
868
869
870
									{
										s1_vals[j] = s1_vals[j]*beta1 + ((1.0f -beta1)*((float)g_vals[j]));
										s2_vals[j] = s2_vals[j]*beta2 + ((1.0f -beta2)*(((float)g_vals[j])*((float)g_vals[j])));
										p_vals[j] = ((float)p_vals[j]) + (update_scale*step_size*(s1_vals[j]/(sqrtf(s2_vals[j])+(eps*correction2))));
Tim Dettmers's avatar
Tim Dettmers committed
871
872
873

                    if(weight_decay > 0.0f)
                        p_vals[j] = ((float)p_vals[j])*(1.0f-(lr*weight_decay));
874
									}
Tim Dettmers's avatar
Tim Dettmers committed
875
876
877
878
879
880
881
882
883
884
                  break;
          }
      }

      __syncthreads();
      Store(temp_storage.store).Store(&(p[i]), p_vals, valid_items);
      __syncthreads();
      StoreFloat(temp_storage.storef).Store(&(state1[i]), s1_vals, valid_items);
      __syncthreads();
      StoreFloat(temp_storage.storef).Store(&(state2[i]), s2_vals, valid_items);
885
886
887
888
889

      if (OPTIMIZER == ADEMAMIX) {
        __syncthreads();
        StoreFloat(temp_storage.storef).Store(&(state1[n + i]), s3_vals, valid_items);
      }
Tim Dettmers's avatar
Tim Dettmers committed
890
891
892
893
894
  }
}

template<typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__launch_bounds__(BLOCK_SIZE/NUM_VALS, 1)
895
__global__ void kPreconditionOptimizer32bit1State(T* g, T* p,
Tim Dettmers's avatar
Tim Dettmers committed
896
                float* state1, float *unorm,
897
                const float beta1, const float beta2, const float eps, const float weight_decay,
Tim Dettmers's avatar
Tim Dettmers committed
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
                const int step, const float lr, const float gnorm_scale, const int n)
{

  const int n_full = (BLOCK_SIZE*(n/BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
  const int base_idx = (blockIdx.x * blockDim.x * NUM_VALS);
  int valid_items = 0;

  T g_vals[NUM_VALS];

  float s1_vals[NUM_VALS];

  typedef cub::BlockLoad<T, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
  typedef cub::BlockLoad<float, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
  typedef cub::BlockReduce<float, BLOCK_SIZE/NUM_VALS> BlockReduce;

  __shared__ union {
      typename Load::TempStorage load;
      typename LoadFloat::TempStorage loadf;
      typename BlockReduce::TempStorage reduce;
  } temp_storage;

  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
  {
      valid_items = n - i >= (BLOCK_SIZE) ? (BLOCK_SIZE) : n - i;

      __syncthreads();
      Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items, 0.0f);
      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items, 0.0f);

      # pragma unroll NUM_VALS
      for(unsigned int j = 0; j < NUM_VALS; j++)
        g_vals[j] = gnorm_scale*((float)g_vals[j]);

      # pragma unroll NUM_VALS
      for(unsigned int j = 0; j < NUM_VALS; j++)
      {
          switch(OPTIMIZER)
          {
937
              case MOMENTUM:
Tim Dettmers's avatar
Tim Dettmers committed
938
939
940
941
942
943
                  if(step == 1)
                    s1_vals[j] = (float)g_vals[j]; // state update
                  else
                    s1_vals[j] = s1_vals[j]*beta1 + ((float)g_vals[j]); // state update
                  s1_vals[j] = s1_vals[j]*s1_vals[j]; // update norm
                  break;
944
              case LION:
Phil Wang's avatar
Phil Wang committed
945
                  s1_vals[j] = s1_vals[j]*beta2 + ((1.0f-beta2)*(float)g_vals[j]); // state update
946
                  break;
947
              case RMSPROP:
Tim Dettmers's avatar
Tim Dettmers committed
948
949
950
951
                  s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*((float)g_vals[j])*((float)g_vals[j])); // state update
                  s1_vals[j] = __fdividef((float)g_vals[j],sqrtf(s1_vals[j])+eps); // update value
                  s1_vals[j] = s1_vals[j]*s1_vals[j]; // update norm
                  break;
952
              case ADAGRAD:
953
954
955
956
                  s1_vals[j] = s1_vals[j] + ((float)g_vals[j])*((float)g_vals[j]); // state update
                  s1_vals[j] = __fdividef((float)g_vals[j],sqrtf(s1_vals[j])+eps); // update value
                  s1_vals[j] = s1_vals[j]*s1_vals[j]; // update norm
                  break;
Tim Dettmers's avatar
Tim Dettmers committed
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
          }
      }

      # pragma unroll
      for(unsigned int j = 1; j < NUM_VALS; j++)
        s1_vals[0] += s1_vals[j];

      __syncthreads();
      s1_vals[0] = BlockReduce(temp_storage.reduce).Sum(s1_vals[0], valid_items);

      if(threadIdx.x == 0)
        atomicAdd(&unorm[0], s1_vals[0]);

      __syncwarp();
  }
}

template<typename T, int OPTIMIZER>
__launch_bounds__(TH, 1)
976
__global__ void kOptimizer32bit1State(T *g, T *p,
Tim Dettmers's avatar
Tim Dettmers committed
977
                float *state1, float *unorm, const float max_unorm, const float param_norm,
978
                const float beta1, const float beta2, const float eps, const float weight_decay,
979
                const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n)
Tim Dettmers's avatar
Tim Dettmers committed
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
{

  const int n_full = ((TH*NUM_PER_THREAD)*(n/(TH*NUM_PER_THREAD))) + (n % (TH*NUM_PER_THREAD) == 0 ? 0 : (TH*NUM_PER_THREAD));
  const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
  int valid_items = 0;
  float update_scale = 0.0f;

  if(max_unorm > 0.0f)
  {
    update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
    if(update_scale > max_unorm*param_norm+eps){ update_scale = (max_unorm*param_norm+eps)/update_scale; }
    else{ update_scale = 1.0f; }
  }
  else{ update_scale = 1.0f; }

  T g_vals[NUM_PER_THREAD];
  T p_vals[NUM_PER_THREAD];

  float s1_vals[NUM_PER_THREAD];

  typedef cub::BlockLoad<T, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
  typedef cub::BlockStore<T, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> Store;

  typedef cub::BlockLoad<float, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
  typedef cub::BlockStore<float, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreFloat;

  __shared__ union {
      typename Load::TempStorage load;
      typename Store::TempStorage store;
      typename LoadFloat::TempStorage loadf;
      typename StoreFloat::TempStorage storef;
  } temp_storage;

  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*TH*NUM_PER_THREAD)
  {
      valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;

      __syncthreads();
      Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items);
      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items);
      __syncthreads();
      Load(temp_storage.load).Load(&(p[i]), p_vals, valid_items);

      # pragma unroll 4
      for(unsigned int j = 0; j < NUM_PER_THREAD; j++)
      {
        g_vals[j] = gnorm_scale*((float)g_vals[j]);
        if(weight_decay > 0.0f)
          g_vals[j] = (float)g_vals[j] + (((float)p_vals[j])*weight_decay);
      }

      # pragma unroll 4
      for(unsigned int j = 0; j < NUM_PER_THREAD; j++)
      {
1035
					if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
1036
1037
1038
					{
						switch(OPTIMIZER)
						{
1039
								case MOMENTUM:
1040
1041
1042
1043
1044
1045
1046
										if(step == 1)
											s1_vals[j] = (float)g_vals[j];
										else
											s1_vals[j] = s1_vals[j]*beta1 + ((float)g_vals[j]);

										p_vals[j] = ((float)p_vals[j]) + update_scale*(-lr*(s1_vals[j]));
										break;
1047
1048
								case LION:
										p_vals[j] = ((float)p_vals[j]) - update_scale*(lr*sgn(((float)s1_vals[j])*beta1 + ((1.0f-beta1)*((float)g_vals[j]))));
Phil Wang's avatar
Phil Wang committed
1049
										s1_vals[j] = s1_vals[j]*beta2 + ((1.0f-beta2)*((float)g_vals[j]));
1050
										break;
1051
								case RMSPROP:
1052
1053
1054
										s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*((float)g_vals[j])*((float)g_vals[j]));
										p_vals[j] = ((float)p_vals[j]) - update_scale*(lr*__fdividef((float)g_vals[j],sqrtf((float)s1_vals[j])+eps));
										break;
1055
								case ADAGRAD:
1056
1057
1058
										s1_vals[j] = s1_vals[j] + ((float)g_vals[j])*((float)g_vals[j]);
										p_vals[j] = ((float)p_vals[j]) - lr*__fdividef((float)g_vals[j],sqrtf((float)s1_vals[j])+eps);
										break;
1059
1060
						}
					}
Tim Dettmers's avatar
Tim Dettmers committed
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
      }

      __syncthreads();
      Store(temp_storage.store).Store(&(p[i]), p_vals, valid_items);
      __syncthreads();
      StoreFloat(temp_storage.storef).Store(&(state1[i]), s1_vals, valid_items);
  }
}


#define NUM8BIT 16
#define NUM_THREADS 256
#define NUM_PER_BLOCK 4096

template<typename T, int OPTIMIZER>
__global__ void
__launch_bounds__(NUM_THREADS, 2)
kPreconditionOptimizerStatic8bit2State(T* p, T* __restrict__ const g, unsigned char*__restrict__  const state1, unsigned char* __restrict__ const state2,
                float *unorm,
                const float beta1, const float beta2,
                const float eps, const int step,
                float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,
                float* max1, float* max2, float* new_max1, float* new_max2,
                const float gnorm_scale, const int n)
{
    const int n_full = gridDim.x * NUM_PER_BLOCK;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
    int valid_items = n - (blockIdx.x*NUM_PER_BLOCK) > NUM_PER_BLOCK ? NUM_PER_BLOCK : n - (blockIdx.x*NUM_PER_BLOCK);
    float g_val = 0.0f;
    float local_max_s1 = -FLT_MAX;
    float local_max_s2 = -FLT_MAX;
    float local_unorm = 0.0f;

    float s2_vals[NUM8BIT];
    float s1_vals[NUM8BIT];
    T g_vals[NUM8BIT];
    unsigned char m_c1[NUM8BIT];
    unsigned char r_c2[NUM8BIT];

    typedef cub::BlockLoad<T, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadUInt8;
    typedef cub::BlockReduce<float, NUM_THREADS> BlockReduce;


    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadUInt8::TempStorage loadc;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    __shared__ float smem_quantiles1[256];
    __shared__ float smem_quantiles2[256];

    if(threadIdx.x < 256)
    {
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
        smem_quantiles2[threadIdx.x] = quantiles2[threadIdx.x];
    }

    __syncthreads();

    for (unsigned int i = base_idx; i < n_full; i += NUM_THREADS*gridDim.x*NUM8BIT)
    {
        valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;

        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state1[i]), m_c1, valid_items, 128);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state2[i]), r_c2, valid_items, 128);
        __syncthreads();

        #pragma unroll 16
        for(int j = 0; j < NUM8BIT; j++)
        {
            g_val = g_vals[j];
            g_val *= gnorm_scale;
            s1_vals[j] = smem_quantiles1[m_c1[j]]*max1[0]*beta1;
            s1_vals[j] += (1.0f-beta1)*g_val;
            local_max_s1 = fmaxf(local_max_s1, fabsf(s1_vals[j]));
        }

        #pragma unroll 16
        for(int j = 0; j < NUM8BIT; j++)
        {
            g_val = g_vals[j];
            g_val *= gnorm_scale;
            s2_vals[j] = smem_quantiles2[r_c2[j]]*max2[0]*beta2;
            s2_vals[j] += (1.0f-beta2)*g_val*g_val;
            local_max_s2 = fmaxf(local_max_s2, fabsf(s2_vals[j]));
        }

        if(unorm != NULL)
        {
          #pragma unroll 16
          for(int j = 0; j < NUM8BIT; j++)
          {
            float correction1 = __fdividef(1.0f, 1.0f - powf(beta1, step));
            float correction2 = __fdividef(1.0f, 1.0f - powf(beta2, step));
            s1_vals[j] *= correction1;
            s2_vals[j] *= correction2;
            float update_val = s1_vals[j]/(sqrtf(s2_vals[j])+eps); // update
            local_unorm += update_val*update_val;
          }
        }
    }

    __syncthreads();
    local_max_s1 = BlockReduce(temp_storage.reduce).Reduce(local_max_s1, cub::Max(), valid_items);
    __syncthreads();
    local_max_s2 = BlockReduce(temp_storage.reduce).Reduce(local_max_s2, cub::Max(), valid_items);
    if(unorm != NULL)
    {
      __syncthreads();
      local_unorm = BlockReduce(temp_storage.reduce).Reduce(local_unorm, cub::Sum(), valid_items);
    }

    if(threadIdx.x == 0)
    {
        atomicMax(&new_max1[0], local_max_s1);
        atomicMax(&new_max2[0], local_max_s2);
        if(unorm != NULL){ atomicAdd(&unorm[0], local_unorm); }
    }
}

#define NUM_PER_THREAD2 4
#define NUM_THREADS2 1024
#define NUM_PER_BLOCK2 4096

template<typename T, int OPTIMIZER>
__global__ void
__launch_bounds__(NUM_THREADS2, 1)
kOptimizerStatic8bit2State(T* p, T* const g, unsigned char* state1, unsigned char* state2,
                const float *unorm, const float max_unorm, const float param_norm, \
                const float beta1, const float beta2,
                const float eps, const int step, const float lr,
                float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,
                float* max1, float* max2, float* new_max1, float* new_max2,
                float weight_decay,
                const float gnorm_scale, const int n)
{

    const int n_full = (blockDim.x * gridDim.x)*NUM_PER_THREAD2;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD2);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[NUM_PER_THREAD2];
    float s2_vals[NUM_PER_THREAD2];
    const float correction1 = 1.0f - powf(beta1, step);
    const float correction2 = sqrtf(1.0f - powf(beta2, step));
    const float step_size = -lr*correction2/correction1;
    //const float step_size = -lr*correction2/correction1;
    float new_max_val1 = 1.0f/new_max1[0];
    float new_max_val2 = 1.0f/new_max2[0];
    float update_scale = 1.0f;

    if(max_unorm > 0.0f)
    {
      update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
      if(update_scale > max_unorm*param_norm){ update_scale = (max_unorm*param_norm)/update_scale; }
      else{ update_scale = 1.0f; }
    }
    else{ update_scale = 1.0f; }

    unsigned char c1s[NUM_PER_THREAD2];
    unsigned char c2s[NUM_PER_THREAD2];
    T p_vals[NUM_PER_THREAD2];
    T g_vals[NUM_PER_THREAD2];
    typedef cub::BlockLoad<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[256];
    __shared__ float smem_quantiles2[256];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;

    if(threadIdx.x < 512)
    {
        if(threadIdx.x < 256)
            smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
        else
            smem_quantiles2[threadIdx.x-256] = quantiles2[threadIdx.x-256];
    }

    __syncthreads();

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x*NUM_THREADS2*NUM_PER_THREAD2)
    {
        valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state2[i]), c2s, valid_items, 0);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items);

        if((i + (threadIdx.x*NUM_PER_THREAD2) + NUM_PER_THREAD2) > n){ continue; }

        # pragma unroll 4
        for(unsigned int j = 0; j < NUM_PER_THREAD2; j++)
        {
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
            s1_vals[j] = smem_quantiles1[c1s[j]];
            s1_vals[j] = s1_vals[j]*max1[0];

            s1_vals[j] = (s1_vals[j]*beta1) + (((1.0f-beta1)*g_val));

            c1s[j] = dQuantize<0>(smem_quantiles1, 0.0f, s1_vals[j]*new_max_val1);

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
            if(signbit(smem_quantiles1[c1s[j]]) != signbit(s1_vals[j]))
            {
              if(s1_vals[j] > 0.0f)
                  c1s[j] += 1;
              else
                  c1s[j] -= 1;
            }

            s2_vals[j] = smem_quantiles2[c2s[j]];
            s2_vals[j] = s2_vals[j]*max2[0];
            s2_vals[j] = (s2_vals[j]*beta2) + (((1.0f-beta2)*g_val*g_val));
            c2s[j] = dQuantize<0>(smem_quantiles2, 0.0f, s2_vals[j]*new_max_val2);
        }

        # pragma unroll 4
        for(unsigned int j = 0; j < NUM_PER_THREAD2; j++)
        {
            p_vals[j] = (T)(((float)p_vals[j]) + ((update_scale*step_size*(s1_vals[j]/(sqrtf(s2_vals[j])+(correction2*eps))))));
            if(weight_decay > 0.0f)
                p_vals[j] = update_scale*((float)p_vals[j])*(1.0f-(lr*weight_decay));
        }

        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state2[i]), c2s, valid_items);
        __syncthreads();
    }
}


template<typename T, int OPTIMIZER>
__global__ void
__launch_bounds__(NUM_THREADS, 2)
1317
kPreconditionOptimizerStatic8bit1State(T* p, T* __restrict__ const g, unsigned char*__restrict__  const state1,
Tim Dettmers's avatar
Tim Dettmers committed
1318
                float *unorm,
1319
                const float beta1, const float beta2,
Tim Dettmers's avatar
Tim Dettmers committed
1320
                const float eps, const int step,
1321
1322
                float* __restrict__ const quantiles1,
                float* max1, float* new_max1,
Tim Dettmers's avatar
Tim Dettmers committed
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
                const float weight_decay,
                const float gnorm_scale, const int n)
{
    const int n_full = gridDim.x * NUM_PER_BLOCK;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
    int valid_items = n - (blockIdx.x*NUM_PER_BLOCK) > NUM_PER_BLOCK ? NUM_PER_BLOCK : n - (blockIdx.x*NUM_PER_BLOCK);
    float g_val = 0.0f;
    float local_max_s1 = -FLT_MAX;
    float local_unorm = 0.0f;

    float s1_vals[NUM8BIT];
    T g_vals[NUM8BIT];
    unsigned char m_c1[NUM8BIT];

    typedef cub::BlockLoad<T, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadUInt8;
    typedef cub::BlockReduce<float, NUM_THREADS> BlockReduce;


    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadUInt8::TempStorage loadc;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    __shared__ float smem_quantiles1[256];

    if(threadIdx.x < 256)
      smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];

    __syncthreads();

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x*NUM_THREADS*NUM8BIT)
    {
        valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;

        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state1[i]), m_c1, valid_items, 128);

        #pragma unroll 16
        for(int j = 0; j < NUM8BIT; j++)
        {
            g_val = g_vals[j];
            g_val *= gnorm_scale;
            s1_vals[j] = smem_quantiles1[m_c1[j]]*max1[0];
            switch(OPTIMIZER)
            {
1372
1373
                case ADAGRAD:
		case MOMENTUM:
Tim Dettmers's avatar
Tim Dettmers committed
1374
1375
1376
1377
1378
1379
1380
                    if(step == 1)
                      s1_vals[j] = (float)g_vals[j];
                    else
                      s1_vals[j] = s1_vals[j]*beta1 + ((float)g_vals[j]);
                    if(unorm != NULL)
                      local_unorm += s1_vals[j]*s1_vals[j];
                    break;
1381
              case LION:
1382
                  s1_vals[j] = s1_vals[j]*beta2 + ((1.0f-beta2)*g_val);
1383
                  break;
1384
              case RMSPROP:
Tim Dettmers's avatar
Tim Dettmers committed
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
                    s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*(g_val*g_val));
                  break;
            }

            local_max_s1 = fmaxf(local_max_s1, fabsf(s1_vals[j]));
        }
    }

    __syncthreads();
    local_max_s1 = BlockReduce(temp_storage.reduce).Reduce(local_max_s1, cub::Max(), valid_items);
    if(threadIdx.x == 0){ atomicMax(&new_max1[0], local_max_s1); }
    if(unorm != NULL)
    {
      __syncthreads();
      local_unorm = BlockReduce(temp_storage.reduce).Reduce(local_unorm, cub::Sum(), valid_items);
      if(threadIdx.x == 0){ atomicAdd(&unorm[0], local_unorm); }
    }

}

template<typename T, int OPTIMIZER>
__global__ void
1407
__launch_bounds__(1024, 1)
Tim Dettmers's avatar
Tim Dettmers committed
1408
1409
kOptimizerStatic8bit1State(T* p, T* const g, unsigned char* state1,
                const float *unorm, const float max_unorm, const float param_norm,
1410
                const float beta1, const float beta2,
Tim Dettmers's avatar
Tim Dettmers committed
1411
                const float eps, const int step, const float lr,
1412
1413
                float* __restrict__ const quantiles1,
                float* max1, float* new_max1,
Tim Dettmers's avatar
Tim Dettmers committed
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
                float weight_decay,
                const float gnorm_scale, const int n)
{

    const int n_full = (blockDim.x * gridDim.x)*NUM_PER_THREAD2;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD2);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[NUM_PER_THREAD2];
    float new_max_val1 = 1.0f/new_max1[0];
    float update_scale = 1.0f;

    if(max_unorm > 0.0f)
    {
      update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
      if(update_scale > max_unorm*param_norm){ update_scale = (max_unorm*param_norm)/update_scale; }
      else{ update_scale = 1.0f; }
    }
    else{ update_scale = 1.0f; }

    unsigned char c1s[NUM_PER_THREAD2];
    T p_vals[NUM_PER_THREAD2];
    T g_vals[NUM_PER_THREAD2];
    typedef cub::BlockLoad<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[256];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;

    if(threadIdx.x < 256)
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];

    __syncthreads();

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x*NUM_THREADS2*NUM_PER_THREAD2)
    {
        valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items);

        if((i + (threadIdx.x*NUM_PER_THREAD2) + NUM_PER_THREAD2) > n){ continue; }

        # pragma unroll 4
        for(unsigned int j = 0; j < NUM_PER_THREAD2; j++)
        {
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
1473
1474
1475

            if(weight_decay > 0.0f) {
              switch(OPTIMIZER) {
1476
		case ADAGRAD:
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
                case MOMENTUM:
                case RMSPROP:
                  g_val += ((float)p_vals[j])*weight_decay;
                  break;
                case LION:
                  p_vals[j] = ((float)p_vals[j])*(1.0f-lr*weight_decay);
                  break;
              }
            }

Tim Dettmers's avatar
Tim Dettmers committed
1487
1488
            s1_vals[j] = smem_quantiles1[c1s[j]]*max1[0];

1489
1490
            switch(OPTIMIZER){
		case ADAGRAD:
1491
                case MOMENTUM:
Tim Dettmers's avatar
Tim Dettmers committed
1492
1493
1494
1495
1496
1497
1498
                  if(step == 1)
                    s1_vals[j] = g_vals[j];
                  else
                    s1_vals[j] = s1_vals[j]*beta1 + ((float)g_vals[j]);

                  p_vals[j] = ((float)p_vals[j]) + (-lr*update_scale*(s1_vals[j]));
                  break;
1499
              case LION:
1500
                  p_vals[j] = ((float)p_vals[j]) - (lr*sgn(((float)s1_vals[j])*beta1 + ((1.0f-beta1)*((float)g_val))));
1501
                  s1_vals[j] = s1_vals[j]*beta2 + ((1.0f-beta2)*g_val);
1502
                  break;
1503
              case RMSPROP:
Tim Dettmers's avatar
Tim Dettmers committed
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
                  s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*(g_val*g_val));
                  p_vals[j] = ((float)p_vals[j]) - (lr*__fdividef(g_val,sqrtf(s1_vals[j])+eps));
                  break;
            }

            c1s[j] = dQuantize<0>(smem_quantiles1, 0.0f, s1_vals[j]*new_max_val1);

            // make sure state1 term has still the same sign after quantization
            if(signbit(smem_quantiles1[c1s[j]]) != signbit(s1_vals[j]))
            {
              if(s1_vals[j] > 0.0f)
                  c1s[j] += 1;
              else
                  c1s[j] -= 1;
            }
        }

        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
    }
}


template<typename T, int BLOCK_SIZE, int NUM_VALS>
__global__ void kPercentileClipping(T * __restrict__ g, float *gnorm_vec, int step, const int n)
{
  const int n_full = (BLOCK_SIZE*(n/BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
  int valid_items = 0;

  typedef cub::BlockReduce<float, BLOCK_SIZE/NUM_VALS> BlockReduce;
  typedef cub::BlockLoad<T, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;

  __shared__ typename BlockReduce::TempStorage reduce;

  __shared__ typename LoadT::TempStorage loadT;
  T vals[NUM_VALS];
  float local_sum = 0.0f;

  for (unsigned int i = (blockIdx.x * BLOCK_SIZE); i < n_full; i += gridDim.x*BLOCK_SIZE)
  {
      valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
      local_sum = 0.0f;

      __syncthreads();
      LoadT(loadT).Load(&(g[i]), vals, valid_items, (T)0.0f);

     #pragma unroll NUM_VALS
     for(int j = 0; j < NUM_VALS; j++)
       local_sum += ((float)vals[j])*((float)vals[j]);

    local_sum = BlockReduce(reduce).Sum(local_sum, valid_items);
    if(threadIdx.x == 0)
    {
      if(step == 1)
      {
        // initialize with the same norm for all positions
        //#pragma unroll 10
        for(int j = 0; j < 100; j++)
          atomicAdd(&gnorm_vec[j], local_sum);
      }
      else
          atomicAdd(&gnorm_vec[step % 100], local_sum);
    }

  }
}


#define LANES 2
#define QUAD 3
template<typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH>
__launch_bounds__(256, 3)
__global__ void
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
kOptimizerStatic8bit2StateBlockwise(
    T* p,
    T* __restrict__ const g,
    unsigned char* state1,
    unsigned char* state2,
    const float beta1,
    const float beta2,
    const float beta3,
    const float alpha,
    const float eps,
    const int step,
    const float lr,
    float* __restrict__ const quantiles1,
    float* __restrict__ const quantiles2,
    float* absmax1,
    float* absmax2,
    float weight_decay,
    const float gnorm_scale,
    const bool skip_zeros,
    const int n
) {
Tim Dettmers's avatar
Tim Dettmers committed
1600
1601
1602
1603
1604
1605
1606
1607

    //const int n_full = n + (n%BLOCK_SIZE);
    const int n_full = gridDim.x * BLOCK_SIZE;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[N_PER_TH];
    float s2_vals[N_PER_TH];
1608
1609
    float s3_vals[N_PER_TH];

Tim Dettmers's avatar
Tim Dettmers committed
1610
1611
1612
1613
1614
1615
1616
    // 2-5%
    const float correction1 = 1.0f - __powf(beta1, step);
    const float correction2 = sqrtf(1.0f -__powf(beta2, step));
    const float step_size = __fdividef(-lr*correction2,correction1);
    const int lane_id = threadIdx.x % LANES;
    float new_local_abs_max1 = -FLT_MAX;
    float new_local_abs_max2 = -FLT_MAX;
1617
    float new_local_abs_max3 = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
1618
1619
1620
1621
1622
    float quadrants1[QUAD];
    float quadrants2[QUAD];

    unsigned char c1s[N_PER_TH];
    unsigned char c2s[N_PER_TH];
1623
1624
    unsigned char c3s[N_PER_TH];

Tim Dettmers's avatar
Tim Dettmers committed
1625
    T g_vals[N_PER_TH];
1626
    T p_vals[N_PER_TH];
Tim Dettmers's avatar
Tim Dettmers committed
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
    typedef cub::BlockLoad<T, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[LANES][257];
    __shared__ float smem_quantiles2[LANES][257];
    typedef cub::BlockReduce<float, BLOCK_SIZE/N_PER_TH> BlockReduce1;
    typedef cub::BlockReduce<float, BLOCK_SIZE/N_PER_TH> BlockReduce2;
1637
    typedef cub::BlockReduce<float, BLOCK_SIZE/N_PER_TH> BlockReduce3;
Tim Dettmers's avatar
Tim Dettmers committed
1638
1639
    __shared__ typename BlockReduce1::TempStorage reduce1;
    __shared__ typename BlockReduce2::TempStorage reduce2;
1640
    __shared__ typename BlockReduce2::TempStorage reduce3;
Tim Dettmers's avatar
Tim Dettmers committed
1641
1642
    __shared__ float smem_exchange1[1];
    __shared__ float smem_exchange2[1];
1643
    __shared__ float smem_exchange3[1];   // [[maybe_unused]]
Tim Dettmers's avatar
Tim Dettmers committed
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;
    // init: 0.2 -> 0.23

    // 0.23 -> 0.23
      smem_quantiles1[0][threadIdx.x] = quantiles1[threadIdx.x];
      smem_quantiles2[0][threadIdx.x] = quantiles2[threadIdx.x];
      # pragma unroll
      for(unsigned int j = 1; j < LANES; j++)
      {
        smem_quantiles1[j][threadIdx.x] = smem_quantiles1[0][threadIdx.x];
        smem_quantiles2[j][threadIdx.x] = smem_quantiles2[0][threadIdx.x];
      }

    __syncthreads();

    #pragma unroll
    for(int k = 0; k < QUAD; k++)
    {
      quadrants1[k] = smem_quantiles1[lane_id][(k*256/(QUAD+1)) + (256/(QUAD+1)-1)];
      quadrants2[k] = smem_quantiles2[lane_id][(k*256/(QUAD+1)) + (256/(QUAD+1)-1)];
    }


    for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
    {
        // loads: 0.23 -> 0.85/1.44
        valid_items = n - i >= BLOCK_SIZE ? BLOCK_SIZE : n - i;
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state2[i]), c2s, valid_items, 0);

1684
1685
1686
1687
1688
1689
        // AdEMAMix has an additional state packed into state1.
        if (OPTIMIZER == ADEMAMIX) {
          __syncthreads();
          LoadChar(temp_storage.loadc).Load(&(state1[n + i]), c3s, valid_items, 128);
        }

Tim Dettmers's avatar
Tim Dettmers committed
1690
1691
        new_local_abs_max1 = -FLT_MAX;
        new_local_abs_max2 = -FLT_MAX;
1692
        new_local_abs_max3 = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
1693
1694
1695
1696
1697

        //  update: 2.48/1.57 -> 2.51/1.60
        # pragma unroll N_PER_TH
        for(unsigned int j = 0; j < N_PER_TH; j++)
        {
1698
            if(!isnan((float)g_vals[j]) && !isinf((float)g_vals[j]))
1699
1700
						{
							s2_vals[j] = smem_quantiles2[lane_id][c2s[j]]*absmax2[i/BLOCK_SIZE];
1701
1702
1703
1704
              g_val = g_vals[j];
              //float ratio = (g_val*g_val)/fmaxf(s2_vals[j], eps*eps);
              //g_val = ratio > 2.0f ? 2.0f*g_val/ratio : g_val;
              g_val *= gnorm_scale;
1705

1706
							s2_vals[j] = (s2_vals[j]*beta2) + (((1.0f-beta2)*g_val*g_val));
1707
1708
1709

							s1_vals[j] = smem_quantiles1[lane_id][c1s[j]]*absmax1[i/BLOCK_SIZE];
							s1_vals[j] = (s1_vals[j]*beta1) + (((1.0f-beta1)*g_val));
1710
1711
1712
1713
1714
1715

              if (OPTIMIZER == ADEMAMIX) {
                // The absmax for the third state is appended to absmax1
                s3_vals[j] = smem_quantiles1[lane_id][c3s[j]] * absmax1[(n + i)/BLOCK_SIZE];
                s3_vals[j] = (s3_vals[j] * beta3) + (((1.0f - beta3) * g_val));
              }
1716
						}
1717
1718
1719
1720
            else
            {
              s1_vals[j] = 0.0f;
              s2_vals[j] = 0.0f;
1721
1722
1723
1724

              if (OPTIMIZER == ADEMAMIX) {
                s3_vals[j] = 0.0f;
              }
1725
            }
Tim Dettmers's avatar
Tim Dettmers committed
1726
1727
1728

            new_local_abs_max1 = fmaxf(new_local_abs_max1, fabsf(s1_vals[j]));
            new_local_abs_max2 = fmaxf(new_local_abs_max2, fabsf(s2_vals[j]));
1729
1730
1731
1732

            if (OPTIMIZER == ADEMAMIX) {
              new_local_abs_max3 = fmaxf(new_local_abs_max3, fabsf(s3_vals[j]));
            }
Tim Dettmers's avatar
Tim Dettmers committed
1733
1734
1735
1736
1737
1738
1739
        }


        //  reduce: 2.51/1.60 -> 2.67/1.69
        new_local_abs_max1 = BlockReduce1(reduce1).Reduce(new_local_abs_max1, cub::Max());
        new_local_abs_max2 = BlockReduce2(reduce2).Reduce(new_local_abs_max2, cub::Max());

1740
1741
1742
1743
        if (OPTIMIZER == ADEMAMIX) {
          new_local_abs_max3 = BlockReduce3(reduce3).Reduce(new_local_abs_max3, cub::Max());
        }

Tim Dettmers's avatar
Tim Dettmers committed
1744
1745
1746
1747
        if(threadIdx.x == 0)
        {
          smem_exchange1[0] = new_local_abs_max1;
          smem_exchange2[0] = new_local_abs_max2;
1748
1749
1750
1751

          if (OPTIMIZER == ADEMAMIX) {
            smem_exchange3[0] = new_local_abs_max3;
          }
Tim Dettmers's avatar
Tim Dettmers committed
1752
1753
1754
1755
1756
1757
1758
1759
        }

        __syncthreads();

        if(threadIdx.x == 0)
        {
          absmax1[i/BLOCK_SIZE] = new_local_abs_max1;
          absmax2[i/BLOCK_SIZE] = new_local_abs_max2;
1760
1761
1762
1763

          if (OPTIMIZER == ADEMAMIX) {
            absmax1[(n + i)/BLOCK_SIZE] = new_local_abs_max3;
          }
Tim Dettmers's avatar
Tim Dettmers committed
1764
1765
1766
1767
1768
        }
        else
        {
          new_local_abs_max1 = smem_exchange1[0];
          new_local_abs_max2 = smem_exchange2[0];
1769
1770
1771
1772

          if (OPTIMIZER == ADEMAMIX) {
            new_local_abs_max3 = smem_exchange3[0];
          }
Tim Dettmers's avatar
Tim Dettmers committed
1773
1774
1775
        }

        __syncthreads();
1776
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items, (T)0.0f);
Tim Dettmers's avatar
Tim Dettmers committed
1777
1778
1779
1780
        //  reduce: 2.67/1.69 -> 2.67/1.70
        # pragma unroll N_PER_TH
        for(unsigned int j = 0; j < N_PER_TH; j++)
        {
1781
1782
						//if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
            if(!isnan((float)g_vals[j]) && !isinf((float)g_vals[j]))
1783
						{
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
              if (OPTIMIZER == ADEMAMIX) {
                p_vals[j] = T((float)p_vals[j] - lr * (
                  ((s1_vals[j] / correction1) + (alpha * s3_vals[j])) / (
                    (sqrtf(s2_vals[j]) / correction2) + eps
                  )
                ));
              } else {
                p_vals[j] = (T)(((float)p_vals[j]) + ((step_size*(__fdividef(s1_vals[j],(sqrtf(s2_vals[j])+(correction2*eps)))))));
              }

              if(weight_decay > 0.0f)
1795
									p_vals[j] = ((float)p_vals[j])*(1.0f-(lr*weight_decay));
1796
						}
Tim Dettmers's avatar
Tim Dettmers committed
1797
1798
1799
1800
        }

        //  store: 0.85/1.44 -> 2.48/1.57
        __syncthreads();
1801
        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
1802
1803

        //  quantizaztion: 2.67/1.70  -> 3.4/3.3
1804
        # pragma unroll N_PER_TH
Tim Dettmers's avatar
Tim Dettmers committed
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
        for(unsigned int j = 0; j < N_PER_TH; j++)
        {
            c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j],new_local_abs_max1));
            c2s[j] = quantize_2D<0>(quadrants2, smem_quantiles2[lane_id], __fdividef(s2_vals[j],new_local_abs_max2));

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
            if(signbit(smem_quantiles1[lane_id][c1s[j]]) != signbit(s1_vals[j]))
            {
              if(s1_vals[j] > 0.0f)
                  c1s[j] += 1;
              else
                  c1s[j] -= 1;
            }
1819
1820
1821
1822
1823
1824
1825
1826

            if (OPTIMIZER == ADEMAMIX) {
              c3s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s3_vals[j],new_local_abs_max3));

              if (signbit(smem_quantiles1[lane_id][c3s[j]]) != signbit(s3_vals[j])) {
                c3s[j] += (s3_vals[j] > 0.0f) ? 1 : -1;
              }
            }
Tim Dettmers's avatar
Tim Dettmers committed
1827
1828
1829
1830
1831
1832
        }

        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state2[i]), c2s, valid_items);
1833
1834
1835
1836
1837

        if (OPTIMIZER == ADEMAMIX) {
          __syncthreads();
          StoreChar(temp_storage.storec).Store(&(state1[n + i]), c3s, valid_items);
        }
Tim Dettmers's avatar
Tim Dettmers committed
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
    }
}


#define LANES 2
#define QUAD 3
template<typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH>
__launch_bounds__(256, 3)
__global__ void
kOptimizerStatic8bit1StateBlockwise(T* p, T* __restrict__ const g, unsigned char* state1,
                const float beta1, const float beta2,
                const float eps, const int step, const float lr,
                float* __restrict__ const quantiles1,
                float* absmax1,
                float weight_decay,
1853
                const float gnorm_scale, const bool skip_zeros, const int n)
Tim Dettmers's avatar
Tim Dettmers committed
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
{

    //const int n_full = n + (n%BLOCK_SIZE);
    const int n_full = gridDim.x * BLOCK_SIZE;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[N_PER_TH];
    // 2-5%
    const int lane_id = threadIdx.x % LANES;
    float new_local_abs_max1 = -FLT_MAX;
    float quadrants1[QUAD];

    unsigned char c1s[N_PER_TH];
    T g_vals[N_PER_TH];
		T p_vals[N_PER_TH];

    typedef cub::BlockLoad<T, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[LANES][257];
    typedef cub::BlockReduce<float, BLOCK_SIZE/N_PER_TH> BlockReduce1;
    __shared__ typename BlockReduce1::TempStorage reduce1;
    __shared__ float smem_exchange1[1];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;
    // init: 0.2 -> 0.23

    // 0.23 -> 0.23
		smem_quantiles1[0][threadIdx.x] = quantiles1[threadIdx.x];
		# pragma unroll
		for(unsigned int j = 1; j < LANES; j++)
			smem_quantiles1[j][threadIdx.x] = smem_quantiles1[0][threadIdx.x];

    __syncthreads();

    #pragma unroll
    for(int k = 0; k < QUAD; k++)
      quadrants1[k] = smem_quantiles1[lane_id][(k*256/(QUAD+1)) + (256/(QUAD+1)-1)];

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
    {
        // loads: 0.23 -> 0.85/1.44
        valid_items = n - i >= BLOCK_SIZE ? BLOCK_SIZE : n - i;
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items, (T)0.0f);

        new_local_abs_max1 = -FLT_MAX;

        //  update: 2.48/1.57 -> 2.51/1.60
        # pragma unroll N_PER_TH
        for(unsigned int j = 0; j < N_PER_TH; j++)
        {
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
Phil Wang's avatar
Phil Wang committed
1921
1922
1923
1924
            if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
            {
              if(weight_decay > 0.0f) {
                switch(OPTIMIZER) {
1925
                  case MOMENTUM:
Phil Wang's avatar
Phil Wang committed
1926
                  case ADAGRAD:
1927
1928
1929
1930
1931
1932
1933
1934
                  case RMSPROP:
                    g_val += ((float)p_vals[j])*weight_decay;
                    break;
                  case LION:
                    p_vals[j] = ((float)p_vals[j])*(1.0f-lr*weight_decay);
                    break;
                }
              }
1935
1936
1937
1938
1939

							s1_vals[j] = smem_quantiles1[lane_id][c1s[j]]*absmax1[i/BLOCK_SIZE];

							switch(OPTIMIZER)
							{
1940
									case MOMENTUM:
1941
1942
1943
1944
1945
										if(step == 1)
											s1_vals[j] = g_val;
										else
											s1_vals[j] = (s1_vals[j]*beta1) + g_val;
										break;
1946
									case LION:
Phil Wang's avatar
Phil Wang committed
1947
										// here, using gvals[j] to store the gradient smoothed by beta1 for the following parameter update, before the momentum is updated by beta2
Phil Wang's avatar
Phil Wang committed
1948
										g_vals[j] = lr*sgn(((float)s1_vals[j])*beta1 + ((1.0f-beta1)*g_val));
1949
										s1_vals[j] = s1_vals[j]*beta2 + ((1.0f-beta2)*g_val);
1950
										break;
1951
									case RMSPROP:
1952
1953
										s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*(g_val*g_val));
										break;
1954
									case ADAGRAD:
1955
1956
										s1_vals[j] = s1_vals[j] + (g_val*g_val);
										break;
1957
1958
							}
						}
Tim Dettmers's avatar
Tim Dettmers committed
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980

            new_local_abs_max1 = fmaxf(new_local_abs_max1, fabsf(s1_vals[j]));
        }


        //  reduce: 2.51/1.60 -> 2.67/1.69
        new_local_abs_max1 = BlockReduce1(reduce1).Reduce(new_local_abs_max1, cub::Max());

        if(threadIdx.x == 0)
          smem_exchange1[0] = new_local_abs_max1;

        __syncthreads();

        if(threadIdx.x == 0)
          absmax1[i/BLOCK_SIZE] = new_local_abs_max1;
        else
          new_local_abs_max1 = smem_exchange1[0];

        //  reduce: 2.67/1.69 -> 2.67/1.70
        # pragma unroll N_PER_TH
        for(unsigned int j = 0; j < N_PER_TH; j++)
				{
1981
						if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
1982
1983
1984
						{
							switch(OPTIMIZER)
							{
1985
									case MOMENTUM:
1986
1987
										p_vals[j] = ((float)p_vals[j]) - lr*(s1_vals[j]);
										break;
1988
									case LION:
1989
										p_vals[j] = ((float)p_vals[j]) - ((float)g_vals[j]);
1990
										break;
1991
									case RMSPROP:
1992
1993
1994
										g_val = g_vals[j];
										p_vals[j] = ((float)p_vals[j]) - lr*(__fdividef(g_val, sqrtf(s1_vals[j])+eps));
										break;
1995
									case ADAGRAD:
1996
1997
1998
										g_val = g_vals[j];
										p_vals[j] = ((float)p_vals[j]) - lr*(__fdividef(g_val, sqrtf(s1_vals[j])+eps));
										break;
1999
2000
							}
						}
Tim Dettmers's avatar
Tim Dettmers committed
2001
2002
2003
2004
2005
2006
2007
				}

        //  store: 0.85/1.44 -> 2.48/1.57
        __syncthreads();
        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);

        //  quantizaztion: 2.67/1.70  -> 3.4/3.3
2008
        # pragma unroll N_PER_TH
Tim Dettmers's avatar
Tim Dettmers committed
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
        for(unsigned int j = 0; j < N_PER_TH; j++)
        {
            c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j],new_local_abs_max1));

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
            if(signbit(smem_quantiles1[lane_id][c1s[j]]) != signbit(s1_vals[j]))
            {
              if(s1_vals[j] > 0.0f)
                  c1s[j] += 1;
              else
                  c1s[j] -= 1;
            }
        }

        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
    }
}

2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
// Inputs:
//  A [rows, cols]
// Outputs:
//  rowStats [rows]
//  out [rows, cols]
template<typename T, int THREADS, int SPARSE_DECOMP>
__launch_bounds__(1024, BNB_MAX_THREADS_PER_SM / 1024)
__global__ void kInt8VectorQuant(T * __restrict__ A, int8_t* out, float* rowStats, float threshold, int rows, int cols) {

  // For sm50/sm52 and CUDA < 12.2 we need to do the reduction in fp32.
  // Otherwise `T` is `fp16`. This can be removed when Maxwell is dropped.
#if (__CUDACC_VER_MAJOR__ >= 12 && __CUDACC_VER_MINOR >= 2) || BNB_FP16_AVAILABLE
  using TReduction = T;
#else
  using TReduction = float;
#endif
Tim Dettmers's avatar
Tim Dettmers committed
2045

2046
  using BlockReduceT = cub::BlockReduce<TReduction, THREADS>;
Tim Dettmers's avatar
Tim Dettmers committed
2047

2048
2049
2050
2051
2052
2053
  // One block per row.
  // Threads load column values in a striped arrangement.
  // e.g. t0 reads row[0], row[0+nthreads], ..
  // and  t1 reads row[1], row[1+nthreads], ..
  // Each thread will determine its local absmax.
  // We then do a blockwise reduction to determine the row's absmax.
Tim Dettmers's avatar
Tim Dettmers committed
2054

2055
2056
  __shared__ typename BlockReduceT::TempStorage temp_storage;
  __shared__ TReduction smem_row_absmax;
Tim Dettmers's avatar
Tim Dettmers committed
2057

2058
2059
  const int row_id = blockIdx.x;
  const T* row_data = A + (row_id * cols);
Tim Dettmers's avatar
Tim Dettmers committed
2060

2061
2062
2063
2064
  // Threads will read the row values in a striped access pattern and find a local absmax.
  TReduction row_local_absmax = -FLT_MIN;
  for (int i = threadIdx.x; i < cols; i += THREADS) {
    const TReduction absval = fabsf(__ldcs(&(row_data[i])));
Tim Dettmers's avatar
Tim Dettmers committed
2065

2066
2067
2068
2069
2070
2071
2072
    // For sparse decomposition, values outside of the threshold are not to be
    // included when calculating the row's absmax.
    if constexpr (SPARSE_DECOMP) {
      row_local_absmax = fmaxf(row_local_absmax, absval < TReduction(threshold) ? absval : row_local_absmax);
    } else {
      row_local_absmax = fmaxf(row_local_absmax, absval);
    }
2073
2074
  }

2075
2076
2077
2078
2079
  // Reduce thread-local absmax across the block.
  const TReduction row_absmax = BlockReduceT(temp_storage).Reduce(row_local_absmax, cub::Max(), cols);
  if (threadIdx.x == 0) {
    // Save our block's absmax to shared memory for the quantization step.
    rowStats[row_id] = smem_row_absmax = row_absmax;
Tim Dettmers's avatar
Tim Dettmers committed
2080
2081
2082
  }
  __syncthreads();

2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
  // Quantize row-wise.
  const float scale = __fdividef(127.0f, smem_row_absmax);
  for (int i = threadIdx.x; i < cols; i += THREADS) {
    float val = row_data[i];

    if constexpr (SPARSE_DECOMP) {
      // For sparse decomposition, we do not want to quantize the outliers.
      // Instead they're zeroed out.
      out[row_id * cols + i] = fabs(val) < threshold ? __float2int_rn(val * scale) : 0;
    } else {
      out[row_id * cols + i] = __float2int_rn(val * scale);
Tim Dettmers's avatar
Tim Dettmers committed
2094
2095
    }
  }
2096
}
Tim Dettmers's avatar
Tim Dettmers committed
2097

2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
template<typename T, int THREADS, int SPARSE_DECOMP>
__launch_bounds__(1024, BNB_MAX_THREADS_PER_SM / 1024)
__global__ void kgetRowStats(T * __restrict__ A, float *rowStats, float threshold, int rows, int cols) {
  using BlockReduceT = cub::BlockReduce<float, THREADS>;

  // One block per row.
  // Threads load column values in a striped arrangement.
  // e.g. t0 reads row[0], row[0+nthreads], ..
  // and  t1 reads row[1], row[1+nthreads], ..
  // Each thread will determine its local absmax.
  // We then do a blockwise reduction to determine the row's absmax.

  __shared__ typename BlockReduceT::TempStorage temp_storage;

  const int row_id = blockIdx.x;
  const T* __restrict__ row_data = A + (row_id * cols);

  // Threads will read the row values in a striped access pattern and find a local absmax.
  float row_local_absmax = -FLT_MIN;
  for (int i = threadIdx.x; i < cols; i += THREADS) {
    const float absval = fabsf(row_data[i]);

    // For sparse decomposition, values outside of the threshold are not to be
    // included when calculating the row's absmax.
    if constexpr (SPARSE_DECOMP) {
      row_local_absmax = fmaxf(row_local_absmax, absval < threshold ? absval : row_local_absmax);
    } else {
      row_local_absmax = fmaxf(row_local_absmax, absval);
Tim Dettmers's avatar
Tim Dettmers committed
2126
    }
2127
  }
Tim Dettmers's avatar
Tim Dettmers committed
2128

2129
2130
2131
2132
2133
2134
2135
2136
  // Reduce thread-local absmax across the block.
  // TODO: Consider algorithm BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY
  const float row_absmax = BlockReduceT(temp_storage).Reduce(row_local_absmax, cub::Max(), cols);
  if (threadIdx.x == 0) {
    // Save our block's absmax to shared memory for the quantization step.
    rowStats[row_id] = row_absmax;
  }
}
Tim Dettmers's avatar
Tim Dettmers committed
2137

2138
2139
template __global__ void kgetRowStats<half, 1024, 0>(half * __restrict__ A, float *rowStats, float threshold, int rows, int cols);
template __global__ void kgetRowStats<half, 1024, 1>(half * __restrict__ A, float *rowStats, float threshold, int rows, int cols);
Tim Dettmers's avatar
Tim Dettmers committed
2140

2141
2142
template __global__ void kInt8VectorQuant<half, 1024, 0>(half * __restrict__ A, int8_t *out, float *rowStats, float threshold, int rows, int cols);
template __global__ void kInt8VectorQuant<half, 1024, 1>(half * __restrict__ A, int8_t *out, float *rowStats, float threshold, int rows, int cols);
Tim Dettmers's avatar
Tim Dettmers committed
2143
2144
2145
2146


#define MM_DEQUANT_CONST 6.200012e-05f //1.0f/(127.0f*127.0f)

2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
template <int ITEMS_PER_THREAD, int THREADS>
__global__ void kdequant_mm_int32_fp16(
  int* __restrict__ const A,
  float *__restrict__ const rowStats,
  float *__restrict__ const colStats,
  half *out,
  half *__restrict__ const bias,
  const int numRows,
  const int numCols,
  const int n
) {
  const int n_out = numRows * numCols;
Tim Dettmers's avatar
Tim Dettmers committed
2159

2160
2161
  int block_offset = blockIdx.x * THREADS * ITEMS_PER_THREAD;
  int thread_offset = threadIdx.x * ITEMS_PER_THREAD;
Tim Dettmers's avatar
Tim Dettmers committed
2162
2163
2164

  int local_values[ITEMS_PER_THREAD];
  half local_output[ITEMS_PER_THREAD];
2165

Tim Dettmers's avatar
Tim Dettmers committed
2166
  float local_rowStats[ITEMS_PER_THREAD];
2167
2168
  float local_colStats[ITEMS_PER_THREAD];
  float local_biasValue[ITEMS_PER_THREAD];
Tim Dettmers's avatar
Tim Dettmers committed
2169

2170
  typedef cub::BlockLoad<int, THREADS, ITEMS_PER_THREAD, cub::BLOCK_LOAD_VECTORIZE> LoadInt32;
Tim Dettmers's avatar
Tim Dettmers committed
2171
2172
  __shared__ typename LoadInt32::TempStorage loadint32;

2173
  int row_idx, col_idx;
Tim Dettmers's avatar
Tim Dettmers committed
2174

2175
2176
  #pragma unroll ITEMS_PER_THREAD
  for (int j = 0; j < ITEMS_PER_THREAD; ++j) {
Tim Dettmers's avatar
Tim Dettmers committed
2177

2178
2179
    row_idx = (block_offset + thread_offset + j) / numCols;
    col_idx = (block_offset + thread_offset + j) % numCols;
Tim Dettmers's avatar
Tim Dettmers committed
2180

2181
2182
2183
    local_colStats[j] = col_idx >= numCols ? 0.0f : __ldg(&colStats[col_idx]);
    local_rowStats[j] = row_idx >= numRows ? 0.0f : __ldg(&rowStats[row_idx]);
    local_biasValue[j] = ((bias == nullptr) || col_idx >= numCols) ? 0.0f : __half2float(bias[col_idx]);
Tim Dettmers's avatar
Tim Dettmers committed
2184
2185
  }

2186
2187
2188
2189
2190
  // Each block loads THREADS * ITEMS_PER_THREAD values from A
  int valid_items = block_offset + THREADS * ITEMS_PER_THREAD < n_out
    ? THREADS * ITEMS_PER_THREAD
    : n_out - block_offset;
  LoadInt32(loadint32).Load(&(A[block_offset]), local_values, valid_items, 0);
Tim Dettmers's avatar
Tim Dettmers committed
2191
2192

  #pragma unroll ITEMS_PER_THREAD
2193
2194
2195
2196
  for (int j = 0; j < ITEMS_PER_THREAD; ++j) {
    local_output[j] = __float2half(
      fmaf(local_values[j] * local_rowStats[j] * local_colStats[j], MM_DEQUANT_CONST, local_biasValue[j])
    );
Tim Dettmers's avatar
Tim Dettmers committed
2197
2198
  }

2199
2200
2201
2202
2203
  #pragma unroll ITEMS_PER_THREAD
  for (int j = 0; j < ITEMS_PER_THREAD; j++) {
    int outIdx = block_offset + thread_offset + j;
    if (outIdx < n_out) {
      out[outIdx] = local_output[j];
Tim Dettmers's avatar
Tim Dettmers committed
2204
2205
2206
2207
    }
  }
}

Tim Dettmers's avatar
Tim Dettmers committed
2208
#define DENORM 1.0f/127.0f
Tim Dettmers's avatar
Tim Dettmers committed
2209
2210
#define MAX_SPARSE_COUNT 32
#define SMEM_SIZE 8*256
2211
template <typename T, int SPMM_ITEMS, int BITS>
2212
__global__ void kspmm_coo_very_sparse_naive(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, T *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB)
Tim Dettmers's avatar
Tim Dettmers committed
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
{

  // 0. load balancing: We process rows with most columns first (count_vec)and we process one row per block
  //    If a block finishes, the next one is scheduled. Since the last blocks like have fewer
  //    elements they finish faster "fillin up" the gaps left by larger blocks

  // without tensor cores
  // 1. use rowidx_length to find what to load (as many blocks as there are rows)
  // 2. Load A into registers
  // 3. each warp loads all required rows of B but each warp is offset by k
  // 4. Do mma operations that accumulate into registers
  // 5. Each warp stores its output row into matrix C

  const int count = max_count[blockIdx.x];
  const int local_max_idx = max_idx[blockIdx.x];
  const int offset = local_max_idx == 0 ? 0 : offset_rowidx[local_max_idx-1];
  const int local_row_idx = rowidx[offset];

  const int warp_id = threadIdx.x / 32;
  const int warp_idx = threadIdx.x % 32;
  const int warp_offset = (warp_id*32)*SPMM_ITEMS;
  const int num_items = BITS == 8 ? 8 : 8;
  int idx_col_B = warp_offset;
  int local_idx_col_B_offset = 0;

  half local_valA[MAX_SPARSE_COUNT];
  int local_colidxA[MAX_SPARSE_COUNT];
  half local_valC[SPMM_ITEMS];
  T local_valsB[num_items];
  half local_valOut[num_items];
  // 128 byte loads per warp == 4 bytes per thread

  // 2. Load A into registers
  for(int j = 0; j < MAX_SPARSE_COUNT; j++)
  {
    local_valA[j] = j < count ? values[offset+j] : __float2half(0.0f);
    local_colidxA[j] = j < count ? colidx[offset+j] : 0;
  }

  // each thread processes SPMM_ITEMS=32 per iteration. We have 256 threads. 32*256=x192
  // we expect each warp to be SPMM_ITEMS*32 apart
  // we have a total of 128 bytes for the bank with a bank size of 4 bytes
  // added 3 bytes = 6 values between warps should reduce bank conflicts
  __shared__ half smem_dequant_stats[SMEM_SIZE];


  while(idx_col_B <  colsB)
  {

    if(dequant_stats != NULL)
    {
      for(int i = threadIdx.x; i < SMEM_SIZE; i+=blockDim.x)
        if((idx_col_B+i-local_idx_col_B_offset) < colsB)
2266
          smem_dequant_stats[i] = dequant_stats[idx_col_B+i-local_idx_col_B_offset];
Tim Dettmers's avatar
Tim Dettmers committed
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311

      __syncthreads();
    }

    #pragma unroll SPMM_ITEMS
    for(int j = 0; j < SPMM_ITEMS; j++)
      local_valC[j] = 0.0f;

    #pragma unroll
    for(int i = 0; i < count; i++)
    {
        // 3. each warp loads all required rows of B but each warp is offset by k
        int row_offset = colsB*local_colidxA[i];

        #pragma unroll SPMM_ITEMS
        for(int j = 0; j < SPMM_ITEMS; j+=num_items)
        {
          // 4. Multiply the tile -> accumulate outputs in shared memory until 128 bytes it reached
          int idx = idx_col_B + (warp_idx*SPMM_ITEMS) + j;
          if(idx >= colsB){ break; }
          if((idx+num_items < colsB))
          {
            if(BITS == 8)
              reinterpret_cast<float2(&)[num_items]>(local_valsB)[0] = reinterpret_cast<float2*>(B)[(row_offset+ idx)/num_items];
            else
              reinterpret_cast<float4(&)[num_items]>(local_valsB)[0] = reinterpret_cast<float4*>(B)[(row_offset+ idx)/num_items];
          }
          else
          {
            #pragma unroll num_items
            for(int k = 0; k < num_items; k++)
              if(idx+k < colsB)
                local_valsB[k] = B[row_offset+idx+k];
              else
                local_valsB[k] = 0.0f;
          }
          #pragma unroll num_items
          for(int k = 0; k < num_items; k++)
          {
            if(BITS == 8 && dequant_stats != NULL)
              // we do texture cache reads (__ldg) on dequant_stats which should be super fast
            {
              float valB = local_valsB[k];
              float valA = local_valA[i];
              if(valB != 0.0 && valA != 0.0)
Tim Dettmers's avatar
Tim Dettmers committed
2312
                local_valC[j+k] = (float)local_valC[j+k] + ((float)smem_dequant_stats[idx+k-local_idx_col_B_offset])*DENORM*valB*valA;
Tim Dettmers's avatar
Tim Dettmers committed
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
            }
            else
              local_valC[j+k] = (float)local_valC[j+k] + (float)local_valsB[k]*(float)local_valA[i];
          }
        }
    }

    int idx_row_C = (colsB*local_row_idx);

    #pragma unroll SPMM_ITEMS
    for(int j = 0; j < SPMM_ITEMS; j+=num_items)
    {
      //int idx_col_C =  idx_col_B + (32*j) + warp_idx;
      int idx_col_C =  idx_col_B + warp_idx*SPMM_ITEMS + j;
      int idx_val = idx_col_C + idx_row_C;

      if(idx_col_C +num_items < colsB)
      {

          // load outputs to do inplace addition
          reinterpret_cast<float4(&)[num_items/4]>(local_valOut)[0] = reinterpret_cast<float4*>(out)[idx_val/num_items];

          #pragma unroll num_items
          for(int k = 0; k < num_items; k++)
            local_valC[(j/num_items) + k] = (float)local_valC[(j/num_items) + k] + (float)local_valOut[k];
2338

Tim Dettmers's avatar
Tim Dettmers committed
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
          reinterpret_cast<float4*>(out)[idx_val/num_items] = reinterpret_cast<float4(&)[num_items]>(local_valC)[j/num_items];
      }
      else
      {
        #pragma unroll num_items
        for(int k = 0; k < num_items; k++)
         if(idx_col_C + k < colsB)
           out[idx_val+k] = (float)out[idx_val+k]+(float)local_valC[j+k];
      }
    }

    idx_col_B += blockDim.x*SPMM_ITEMS;
    local_idx_col_B_offset += blockDim.x*SPMM_ITEMS;
2352
  }
Tim Dettmers's avatar
Tim Dettmers committed
2353
2354
}

2355
#define WARPS 3
Tim Dettmers's avatar
Tim Dettmers committed
2356
template <typename T, int BITS, int THREADS> __global__ void gemm_device(int M, int N, int K, T * __restrict__ const A,  T* B,  T * out,  int lda, int ldb, int ldc)
Tim Dettmers's avatar
Tim Dettmers committed
2357
{
Tim Dettmers's avatar
Tim Dettmers committed
2358
2359
2360

#if __CUDA_ARCH__ >= 750
	using namespace nvcuda;
Tim Dettmers's avatar
Tim Dettmers committed
2361
  int col_offset = blockIdx.x *32;
Tim Dettmers's avatar
Tim Dettmers committed
2362
  const int warp_id = threadIdx.x / 32;
Tim Dettmers's avatar
Tim Dettmers committed
2363
2364
  const int half_warp_id = threadIdx.x / 16;
  const int half_warp_lane = threadIdx.x % 16;
Tim Dettmers's avatar
Tim Dettmers committed
2365
  const int batch_size_warps = (WARPS-1)*2;
2366
  const int val_per_iter = blockDim.x-32;
Tim Dettmers's avatar
Tim Dettmers committed
2367

2368
2369
  T local_A[4];
  T local_B[128];
Tim Dettmers's avatar
Tim Dettmers committed
2370

Tim Dettmers's avatar
Tim Dettmers committed
2371
  const int a_tile_offset = 16;
Tim Dettmers's avatar
Tim Dettmers committed
2372
  const int b_tile_offset = (16*32 + 16);
Tim Dettmers's avatar
Tim Dettmers committed
2373

Tim Dettmers's avatar
Tim Dettmers committed
2374
  __shared__ T smem_A[8*16 + (2*16*(batch_size_warps-1))];
Tim Dettmers's avatar
Tim Dettmers committed
2375
  __shared__ T smem_B[2*batch_size_warps*16*32 + (2*16*(batch_size_warps-1))];
Tim Dettmers's avatar
Tim Dettmers committed
2376
  //__shared__ T smem_C[8*32];
Tim Dettmers's avatar
Tim Dettmers committed
2377

Tim Dettmers's avatar
Tim Dettmers committed
2378
2379
2380
   wmma::fragment<wmma::matrix_a, 8, 32, 16, half, wmma::row_major> a_frag;
   wmma::fragment<wmma::matrix_b, 8, 32, 16, half, wmma::col_major> b_frag;
   wmma::fragment<wmma::accumulator, 8, 32, 16, half> c_frag;
Tim Dettmers's avatar
Tim Dettmers committed
2381
2382
   wmma::fill_fragment(c_frag, 0.0f);

Tim Dettmers's avatar
Tim Dettmers committed
2383
2384
  int ticktock = 0;
  int idx = 0 + threadIdx.x;
Tim Dettmers's avatar
Tim Dettmers committed
2385
  int loaded_values = 0;
Tim Dettmers's avatar
Tim Dettmers committed
2386
2387
  // prefetch
  if(idx < K && warp_id < (WARPS-1))
2388
  {
Tim Dettmers's avatar
Tim Dettmers committed
2389
2390
2391
    if(loaded_values == 0)
    {
      local_A[0] = A[idx];
2392
2393
2394
      local_A[1] = A[idx+(1*val_per_iter)];
      local_A[2] = A[idx+(2*val_per_iter)];
      local_A[3] = A[idx+(3*val_per_iter)];
Tim Dettmers's avatar
Tim Dettmers committed
2395

Tim Dettmers's avatar
Tim Dettmers committed
2396
2397
2398
2399
      #pragma unroll 32
      for(int col = 0; col < 32; col++)
      {
        local_B[col] = B[(col_offset+col)*ldb+idx];
2400
2401
2402
        local_B[col+32] = B[(col_offset+col)*ldb+idx+(1*val_per_iter)];
        local_B[col+64] = B[(col_offset+col)*ldb+idx+(2*val_per_iter)];
        local_B[col+96] = B[(col_offset+col)*ldb+idx+(3*val_per_iter)];
Tim Dettmers's avatar
Tim Dettmers committed
2403
      }
2404
      loaded_values = 3;
Tim Dettmers's avatar
Tim Dettmers committed
2405
2406
2407
2408
    }
    else
    {

2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
      if(loaded_values == 3)
      {
        local_A[0] = local_A[1];
        #pragma unroll 32
        for(int col = 0; col < 32; col++)
          local_B[col] = local_B[col+(32)];
      }
      else if(loaded_values == 2)
      {
        local_A[0] = local_A[2];
        #pragma unroll 32
        for(int col = 0; col < 32; col++)
          local_B[col] = local_B[col+(64)];
      }
      else
      {
        local_A[0] = local_A[3];
        #pragma unroll 32
        for(int col = 0; col < 32; col++)
          local_B[col] = local_B[col+(96)];
      }
      loaded_values--;
Tim Dettmers's avatar
Tim Dettmers committed
2431
    }
Tim Dettmers's avatar
Tim Dettmers committed
2432

Tim Dettmers's avatar
Tim Dettmers committed
2433
    smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] = local_A[0];
Tim Dettmers's avatar
Tim Dettmers committed
2434

Tim Dettmers's avatar
Tim Dettmers committed
2435
2436
    #pragma unroll 32
    for(int col = 0; col < 32; col++)
Tim Dettmers's avatar
Tim Dettmers committed
2437
        smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = local_B[col];
Tim Dettmers's avatar
Tim Dettmers committed
2438
  }
Tim Dettmers's avatar
Tim Dettmers committed
2439
2440
2441
  else if(warp_id < (WARPS-1))
  {
    local_A[0] = T(0.0);
Tim Dettmers's avatar
Tim Dettmers committed
2442
    smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] =  0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2443
2444
2445

    #pragma unroll 32
    for(int col = 0; col < 32; col++)
Tim Dettmers's avatar
Tim Dettmers committed
2446
      local_B[col] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2447
2448
2449

    #pragma unroll 32
    for(int col = 0; col < 32; col++)
Tim Dettmers's avatar
Tim Dettmers committed
2450
      smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2451
  }
Tim Dettmers's avatar
Tim Dettmers committed
2452
  ticktock = ticktock == 0 ? 1 : 0;
Tim Dettmers's avatar
Tim Dettmers committed
2453

2454
  //for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
Tim Dettmers's avatar
Tim Dettmers committed
2455
  for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
Tim Dettmers's avatar
Tim Dettmers committed
2456
2457
  {
    idx = base_idx + threadIdx.x;
Tim Dettmers's avatar
Tim Dettmers committed
2458

Tim Dettmers's avatar
Tim Dettmers committed
2459
2460
2461
    __syncthreads();
    if(idx < K && warp_id < (WARPS-1))
    {
Tim Dettmers's avatar
Tim Dettmers committed
2462
      //local_A[0] = A[idx];
Tim Dettmers's avatar
Tim Dettmers committed
2463

Tim Dettmers's avatar
Tim Dettmers committed
2464
2465
2466
2467
2468
2469
      //#pragma unroll 32
      //for(int col = 0; col < 32; col++)
      //  local_B[col] = B[(col_offset+col)*ldb+idx];
      if(loaded_values == 0)
      {
        local_A[0] = A[idx];
2470
2471
2472
        local_A[1] = A[idx+(1*val_per_iter)];
        local_A[2] = A[idx+(2*val_per_iter)];
        local_A[3] = A[idx+(3*val_per_iter)];
Tim Dettmers's avatar
Tim Dettmers committed
2473
2474
2475
2476
2477

        #pragma unroll 32
        for(int col = 0; col < 32; col++)
        {
          local_B[col] = B[(col_offset+col)*ldb+idx];
2478
2479
2480
          local_B[col+32] = B[(col_offset+col)*ldb+idx+(1*val_per_iter)];
          local_B[col+64] = B[(col_offset+col)*ldb+idx+(2*val_per_iter)];
          local_B[col+96] = B[(col_offset+col)*ldb+idx+(3*val_per_iter)];
Tim Dettmers's avatar
Tim Dettmers committed
2481
        }
2482
2483
        loaded_values = 3;

Tim Dettmers's avatar
Tim Dettmers committed
2484
2485
2486
2487
      }
      else
      {

2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
        if(loaded_values == 3)
        {
          local_A[0] = local_A[1];
          #pragma unroll 32
          for(int col = 0; col < 32; col++)
            local_B[col] = local_B[col+(32)];
        }
        else if(loaded_values == 2)
        {
          local_A[0] = local_A[2];
          #pragma unroll 32
          for(int col = 0; col < 32; col++)
            local_B[col] = local_B[col+(64)];
        }
        else
        {
          local_A[0] = local_A[3];
          #pragma unroll 32
          for(int col = 0; col < 32; col++)
            local_B[col] = local_B[col+(96)];
        }
        loaded_values--;
Tim Dettmers's avatar
Tim Dettmers committed
2510
      }
Tim Dettmers's avatar
Tim Dettmers committed
2511
2512
2513

      smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] = local_A[0];

Tim Dettmers's avatar
Tim Dettmers committed
2514
2515
      #pragma unroll 32
      for(int col = 0; col < 32; col++)
Tim Dettmers's avatar
Tim Dettmers committed
2516
          smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = local_B[col];
Tim Dettmers's avatar
Tim Dettmers committed
2517
    }
Tim Dettmers's avatar
Tim Dettmers committed
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
    else if(warp_id < (WARPS-1))
    {
      local_A[0] = T(0.0);
      smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] =  0.0f;

      #pragma unroll 32
      for(int col = 0; col < 32; col++)
        local_B[col] = 0.0f;

      #pragma unroll 32
      for(int col = 0; col < 32; col++)
        smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = 0.0f;
    }
Tim Dettmers's avatar
Tim Dettmers committed
2531
    ticktock = ticktock == 0 ? 1 : 0;
Tim Dettmers's avatar
Tim Dettmers committed
2532
2533
2534
2535
2536
2537
2538
2539

    if(warp_id == (WARPS-1))
      for(int k = 0; k < batch_size_warps; k++)
      {
        wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock*batch_size_warps + k)*a_tile_offset]), 16); //  111 mu
        wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock*batch_size_warps + k)*b_tile_offset]), 16); // 35 mu
        wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
      }
Tim Dettmers's avatar
Tim Dettmers committed
2540
  }
Tim Dettmers's avatar
Tim Dettmers committed
2541

Tim Dettmers's avatar
Tim Dettmers committed
2542
  __syncthreads();
Tim Dettmers's avatar
Tim Dettmers committed
2543
2544
2545
2546
  if(warp_id != (WARPS-1)){ return; }
  // only warp_id == (WARPS-1) from here
  int warp_lane = threadIdx.x % 32;

Tim Dettmers's avatar
Tim Dettmers committed
2547
  ticktock = ticktock == 0 ? 1 : 0;
Tim Dettmers's avatar
Tim Dettmers committed
2548
2549
2550
2551
2552
2553
  for(int k = 0; k < batch_size_warps; k++)
  {
    wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock*batch_size_warps + k)*a_tile_offset]), 16); //  111 mu
    wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock*batch_size_warps + k)*b_tile_offset]), 16); // 35 mu
    wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
  }
2554

Tim Dettmers's avatar
Tim Dettmers committed
2555
  // 129 mu
Tim Dettmers's avatar
Tim Dettmers committed
2556
  if(warp_id == (WARPS-1))
Tim Dettmers's avatar
Tim Dettmers committed
2557
    wmma::store_matrix_sync(&(smem_A[0]), c_frag, 32, wmma::mem_row_major);
2558

Tim Dettmers's avatar
Tim Dettmers committed
2559
2560
  if(col_offset + warp_lane < M)
    out[col_offset + warp_lane] = smem_A[warp_lane];
Tim Dettmers's avatar
Tim Dettmers committed
2561
#endif
Tim Dettmers's avatar
Tim Dettmers committed
2562
2563
}

Tim Dettmers's avatar
Tim Dettmers committed
2564

2565
template <typename T> __device__ void printnonzero(T *A, int num_values, const char * strval)
Tim Dettmers's avatar
Tim Dettmers committed
2566
2567
2568
{
  for(int i = 0; i < num_values; i++)
    if((float)A[i] != 0.0)
2569
      printf("%s %i %f\n", strval, i, (float)A[i]);
Tim Dettmers's avatar
Tim Dettmers committed
2570
2571
2572
}


Tim Dettmers's avatar
Tim Dettmers committed
2573
2574
2575
template <typename T, int THREADS> __global__ void kgemm_4bit_inference(int M, int N, int K, T * __restrict__ const A, unsigned char *B,  float *absmax, T * out,  int lda, int ldb, int ldc, int blocksize)
{

2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
  //// element-wise kernel
  //// 1. Load batch x k into registers
  //// 2. Load k x k into registers
  //// 3. dequantize and store in second pair of k x k
  //// 4. matmul
  //// 5. sum with cub
  //// 6. store outputs
  //// TC kernel
  //// use k warps per thread block
  //// 1. threadblock use read-only cache to read in register tile for A into shared memory
  //// 2. each warp loops over shared memory tiles of A of size 8x16 and loads them into fragments
  //// 3. each warp reads a segment of values 16x32 from B
  //// 4. do dequantization from register of B into second pair of registers
  //// 5. store (4) into fragment
  //// 6. matmul aggregate into fragment C
  //// 7. aggregate files of C into shared memory block C
  //// 8. sum (7)
  //// 9. write outputs to matmul output matrix
2594
#if __CUDA_ARCH__ >= 750
Tim Dettmers's avatar
Tim Dettmers committed
2595
	using namespace nvcuda;
2596
2597
  int col_offset = blockIdx.x *32;
  const int warp_id = threadIdx.x / 32;
2598
  const int warp_idx = threadIdx.x % 32;
2599
2600
2601
  const int half_warp_id = threadIdx.x / 16;
  const int half_warp_lane = threadIdx.x % 16;
  const int batch_size_warps = (WARPS-1)*2;
Tim Dettmers's avatar
Tim Dettmers committed
2602

Tim Dettmers's avatar
Tim Dettmers committed
2603
2604
2605
2606
2607
  T quant_map[16];

  #pragma unroll 16
  for(int i = 0; i < 16; i++)
    quant_map[i] = nf4_data[i];
2608
  //__shared__ T quant_map[16*160];
Tim Dettmers's avatar
Tim Dettmers committed
2609

2610
2611
2612
  T local_A[2];
  T local_B[64];
  unsigned char local_B_4bit[32];
Tim Dettmers's avatar
Tim Dettmers committed
2613

2614

2615
2616
  const int a_tile_offset = 16;
  const int b_tile_offset = (16*32 + 16);
Tim Dettmers's avatar
Tim Dettmers committed
2617

2618
  __shared__ T smem_A[8*16 + (16*(batch_size_warps-1))];
2619
  __shared__ T smem_B[2*batch_size_warps*16*32 + (2*16*(batch_size_warps-1))];
2620
  __shared__ T smem_C[8*32];
Tim Dettmers's avatar
Tim Dettmers committed
2621

2622
2623
2624
2625
   wmma::fragment<wmma::matrix_a, 8, 32, 16, half, wmma::row_major> a_frag;
   wmma::fragment<wmma::matrix_b, 8, 32, 16, half, wmma::col_major> b_frag;
   wmma::fragment<wmma::accumulator, 8, 32, 16, half> c_frag;
   wmma::fill_fragment(c_frag, 0.0f);
Tim Dettmers's avatar
Tim Dettmers committed
2626

2627
2628
2629
2630
2631
  for(int i = threadIdx.x; i < (8*32); i+=blockDim.x)
    smem_C[i] = 0.0f;

  __syncthreads();

2632
2633
2634
2635
2636
  int ticktock = 0;
  int idx = 0 + threadIdx.x;
  int loaded_values = 0;
  // prefetch
  if(idx < K && warp_id < (WARPS-1))
Tim Dettmers's avatar
Tim Dettmers committed
2637
  {
2638
2639
2640
2641
    if(loaded_values == 0)
    {
      local_A[0] = A[idx];
      local_A[1] = A[idx+blockDim.x-32];
Tim Dettmers's avatar
Tim Dettmers committed
2642

2643
2644
2645
      #pragma unroll 32
      for(int col = 0; col < 32; col++)
        local_B_4bit[col] = B[(col_offset+col)*ldb+idx];
Tim Dettmers's avatar
Tim Dettmers committed
2646

2647
2648
2649
      loaded_values = 1;
    }
    else
Tim Dettmers's avatar
Tim Dettmers committed
2650
    {
2651
2652
      local_A[0] = local_A[1];
      loaded_values--;
Tim Dettmers's avatar
Tim Dettmers committed
2653

2654
2655
2656
      #pragma unroll 64
      for(int col = 0; col < 64; col+=2)
      {
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
        //local_B[col] = dhDequantizeNF4(local_B_4bit[col/2] >> 4)*T(1.0f);
        //local_B[col+1] = dhDequantizeNF4(local_B_4bit[col/2] & 0x0F)*T(1.0f);
        //local_B[col] = d2DequantizeFP4(local_B_4bit[col/2] >> 4)*(float)(17.0);
        //local_B[col+1] = d2DequantizeFP4(local_B_4bit[col/2] & 0x0F)*(float)(17.0);
        //local_B[col] = 127*(local_B_4bit[col/2] >> 4)*(float)(17.0);
        //local_B[col+1] = 127*(local_B_4bit[col/2] & 0x0F)*(float)(17.0);

        //local_B[col] = quant_map[(local_B_4bit[col/2] >> 4)]*T(17.0);
        //local_B[col+1] = quant_map[(local_B_4bit[col/2] & 0x0F)]*T(17.0);
        local_B[col] = quant_map[160*(local_B_4bit[col/2] >> 4)+warp_idx]*T(17.0);
        local_B[col+1] = quant_map[160*(local_B_4bit[col/2] & 0x0F)+warp_idx]*T(17.0);
2668
2669
      }
    }
Tim Dettmers's avatar
Tim Dettmers committed
2670

2671
    smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] = local_A[0];
Tim Dettmers's avatar
Tim Dettmers committed
2672

2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
    #pragma unroll 32
    for(int col = 0; col < 32; col++)
        smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = local_B[col];
  }
  else if(warp_id < (WARPS-1))
  {
    local_A[0] = T(0.0);
    smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] =  0.0f;

    #pragma unroll 32
    for(int col = 0; col < 32; col++)
      local_B[col] = 0.0f;

    #pragma unroll 32
    for(int col = 0; col < 32; col++)
      smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = 0.0f;
  }
  ticktock = ticktock == 0 ? 1 : 0;
2691
2692
    //if(threadIdx.x == 0)
      //printf("aa %i %i\n", idx, loaded_values);
Tim Dettmers's avatar
Tim Dettmers committed
2693

2694
2695
2696
2697
  //for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
  for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
  {
    idx = base_idx + threadIdx.x;
2698
2699
    //if(threadIdx.x == 0)
      //printf("%i %i\n", idx, loaded_values);
2700

2701
    //__syncthreads();
2702
2703
2704
    if(idx < K && warp_id < (WARPS-1))
    {
      if(loaded_values == 0)
Tim Dettmers's avatar
Tim Dettmers committed
2705
      {
2706
2707
        local_A[0] = A[idx];
        local_A[1] = A[idx+blockDim.x-32];
Tim Dettmers's avatar
Tim Dettmers committed
2708

2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
        #pragma unroll 32
        for(int col = 0; col < 32; col++)
        {
          local_B_4bit[col] = B[(col_offset+col)*ldb+idx];
          local_B_4bit[col+16] = B[(col_offset+col)*ldb+idx];
        }

        loaded_values = 1;
      }
      else
      {
        local_A[0] = local_A[1];
        loaded_values--;

        int absidx = (idx + col_offset)/blocksize;
        half local_absmax = __ldg(&(absmax[absidx]));

        #pragma unroll 64
        for(int col = 0; col < 64; col+=2)
        {
2729
2730
2731
2732
2733
2734
2735
2736
2737
          //local_B[col] = dhDequantizeNF4(local_B_4bit[col/2] >> 4)*T(absidx);
          //local_B[col+1] = dhDequantizeNF4(local_B_4bit[col/2] & 0x0F)*T(absidx);
          //local_B[col] = T(127)*T(local_B_4bit[col/2] >> 4)*T(absidx);
          //local_B[col+1] = T(127)*T(local_B_4bit[col/2] & 0x0F)*T(absidx);

          //local_B[col] = quant_map[160*(local_B_4bit[col/2] >> 4)+warp_idx]*T(local_absmax);
          //local_B[col+1] = quant_map[160*(local_B_4bit[col/2] & 0x0F)+warp_idx]*T(local_absmax);
          local_B[col] = quant_map[(local_B_4bit[col/2] >> 4)]*T(absidx);
          local_B[col+1] = quant_map[(local_B_4bit[col/2] & 0x0F)]*T(absidx);
2738
        }
2739
        //printnonzero<T>(local_B, 128, "");
Tim Dettmers's avatar
Tim Dettmers committed
2740
2741
      }

2742
2743
      smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] = local_A[0];

Tim Dettmers's avatar
Tim Dettmers committed
2744
      #pragma unroll 32
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
      for(int col = 0; col < 32; col++)
          smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = local_B[col];
    }
    else if(warp_id < (WARPS-1))
    {
      local_A[0] = T(0.0);
      smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] =  0.0f;

      #pragma unroll 32
      for(int col = 0; col < 32; col++)
        local_B[col] = 0.0f;

      #pragma unroll 32
      for(int col = 0; col < 32; col++)
        smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = 0.0f;
    }
    ticktock = ticktock == 0 ? 1 : 0;

    if(warp_id == (WARPS-1))
      for(int k = 0; k < batch_size_warps; k++)
Tim Dettmers's avatar
Tim Dettmers committed
2765
      {
2766
2767
2768
        wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock*batch_size_warps + k)*a_tile_offset]), 16); //  111 mu
        wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock*batch_size_warps + k)*b_tile_offset]), 16); // 35 mu
        wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
Tim Dettmers's avatar
Tim Dettmers committed
2769
2770
2771
      }
  }

2772
  __syncthreads();
2773
2774
2775
2776
2777
  //if(threadIdx.x == 0)
  //{
  //  printnonzero<T>(smem_A, 8*16 + (2*16*(batch_size_warps-1)), "A: ");
  //  printnonzero<T>(smem_B, 2*batch_size_warps*16*32 + (2*16*(batch_size_warps-1)), "B: ");
  //}
2778
2779
2780
  if(warp_id != (WARPS-1)){ return; }
  // only warp_id == (WARPS-1) from here
  int warp_lane = threadIdx.x % 32;
Tim Dettmers's avatar
Tim Dettmers committed
2781

2782
2783
  ticktock = ticktock == 0 ? 1 : 0;
  for(int k = 0; k < batch_size_warps; k++)
Tim Dettmers's avatar
Tim Dettmers committed
2784
  {
2785
2786
    //if(warp_lane == 0)
      //printf("%i %i %i %i\n", (ticktock*batch_size_warps + k)*a_tile_offset, k, ticktock, threadIdx.x);
2787
2788
2789
    wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock*batch_size_warps + k)*a_tile_offset]), 16); //  111 mu
    wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock*batch_size_warps + k)*b_tile_offset]), 16); // 35 mu
    wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
Tim Dettmers's avatar
Tim Dettmers committed
2790
2791
  }

2792
2793
  // 129 mu
  if(warp_id == (WARPS-1))
2794
    wmma::store_matrix_sync(&(smem_C[0]), c_frag, 32, wmma::mem_row_major);
Tim Dettmers's avatar
Tim Dettmers committed
2795

2796
  //printnonzero<T>(smem_C, 32, "");
Tim Dettmers's avatar
Tim Dettmers committed
2797

2798
  if(col_offset + warp_lane < M)
2799
    out[col_offset + warp_lane] = smem_C[warp_lane];
2800
#endif
Tim Dettmers's avatar
Tim Dettmers committed
2801
2802
}

2803
#define num_values_4bit 32
2804
template <typename T, int THREADS, int BITS> __global__ void kgemm_4bit_inference_naive(int M, int N, int K, T * __restrict__ const A, unsigned char *B,  float *absmax, const float *datatype, T * out,  int lda, int ldb, int ldc, int blocksize)
2805
2806
{

2807
  // per threadblock:
2808
  // load step-by-step in chunks of [32,warps]: 1x32 * [32,warps] -> [1,warps]
2809
  // 4 warps -> 4 loads per iter
2810
  // 1x32 * 32x4 -> 1x4 outputs per thread block
2811
  typedef cub::WarpReduce<float> WarpReduce;
2812
  __shared__ typename WarpReduce::TempStorage temp_storage[THREADS/32];
2813
2814
2815

  const int warp_idx = threadIdx.x / 32;
  const int warp_lane = threadIdx.x % 32;
2816
  const int row_B = (THREADS/32)*blockIdx.x + warp_idx;
2817
  const int offset_B = ldb*row_B;
2818
  const int num_values_8bit = num_values_4bit/2;
2819
  float local_C = 0.0f;
2820

2821
  unsigned char local_B_4bit[num_values_8bit];
Tim Dettmers's avatar
Tim Dettmers committed
2822
2823
  T local_B[num_values_4bit/4];
  T local_A[num_values_4bit/4];
2824
2825
  __shared__ T quant_map[16];
	T local_absmax = T(0.0f);
2826

2827
2828
2829
2830
  if (threadIdx.x < 16)
    quant_map[threadIdx.x] = T(__ldg(&datatype[threadIdx.x]));
  //for(int i = threadIdx.x; i < 16; i++)
    //quant_map[i] = T(__ldg(&datatype[i]));
2831
  __syncthreads();
2832
2833
2834
2835
2836

  // A: [1, K]
  // B: [N, K]
  for(int inner_idx = warp_lane*num_values_4bit; inner_idx < K; inner_idx += 32*num_values_4bit)
  {
2837
2838
2839
2840
2841
2842
2843
2844
    const int inner_idx_halved = inner_idx/2;

    // Since blocksize will always be a power-of-2, we avoid more expensive
    // division by the blocksize and instead use a shift operation.
    // This is equivalent to (i+threadId.x*NUM_PER_TH)/blocksize.
    const int absidx = ((2*offset_B)+inner_idx) >> (31 - __clz(blocksize));

    local_absmax = __ldg(&(absmax[absidx]));
2845

2846
    if(row_B < M)
2847
    {
Tim Dettmers's avatar
Tim Dettmers committed
2848
      if((inner_idx_halved + num_values_8bit) < (K/2))
2849
      {
2850
        // this is the most important for performance considerations
2851
2852
        reinterpret_cast<int4(&)[num_values_8bit]>(local_B_4bit)[0] = reinterpret_cast<int4*>(B)[(offset_B+(inner_idx_halved))/(num_values_8bit)];
      }
2853
      else
2854
2855
2856
      {
        #pragma unroll
        for(int j = 0; j < (num_values_8bit); j++)
Tim Dettmers's avatar
Tim Dettmers committed
2857
          if((inner_idx_halved) + j < (K/2))
2858
2859
            local_B_4bit[j] = B[offset_B+inner_idx_halved + j];
          else
2860
2861
            local_B_4bit[j] = 0b01110111;
      }
2862
    }
Tim Dettmers's avatar
Tim Dettmers committed
2863
2864
2865
2866
2867
2868
    else
    {
      #pragma unroll
      for(int j = 0; j < (num_values_8bit); j++)
          local_B_4bit[j] = 0b01110111;
    }
2869

Tim Dettmers's avatar
Tim Dettmers committed
2870
    for(int i = 0; i < 4; i++)
2871
    {
Tim Dettmers's avatar
Tim Dettmers committed
2872
2873
      #pragma unroll
      for(int k = 0; k < num_values_8bit/4; k++)
2874
      {
2875
        #if BNB_BF16_AVAILABLE
Tim Dettmers's avatar
Tim Dettmers committed
2876
2877
2878
2879
2880
2881
2882
          local_B[k*2] = quant_map[local_B_4bit[(i*num_values_8bit/4) + k] >> 4]*local_absmax;
          local_B[k*2 + 1] = quant_map[local_B_4bit[(i*num_values_8bit/4) + k] & 0x0F]*local_absmax;
        #else
          // bf16 multipliation not supported
          local_B[k*2] = T((float)quant_map[local_B_4bit[(i*num_values_8bit/4) + k] >> 4]*(float)local_absmax);
          local_B[k*2 + 1] = T((float)quant_map[local_B_4bit[(i*num_values_8bit/4) + k] & 0x0F]*(float)local_absmax);
        #endif
2883
      }
2884

Tim Dettmers's avatar
Tim Dettmers committed
2885
2886
2887
2888
2889
2890
2891
      if(inner_idx+(num_values_4bit/4) + (i*num_values_4bit/4) < K)
      {
        // this is also relatively important for performance
        if(BITS==16)
        {
          reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[0] = reinterpret_cast<int4*>(A)[inner_idx/(num_values_4bit/4) + i];
        }
2892
        else
Tim Dettmers's avatar
Tim Dettmers committed
2893
2894
2895
2896
        {
          reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[0] = reinterpret_cast<int4*>(A)[inner_idx/(num_values_4bit/8) + (2*i) + 0];
          reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[1] = reinterpret_cast<int4*>(A)[inner_idx/(num_values_4bit/8) + (2*i) + 1];
        }
2897

Tim Dettmers's avatar
Tim Dettmers committed
2898
2899
2900
2901
2902
2903
2904
2905
      }
      else
        #pragma unroll
        for(int k = 0; k < num_values_4bit/4; k++)
          if(inner_idx + (i*num_values_4bit/4) + k < K)
            local_A[k] = A[inner_idx + k + (i*num_values_4bit/4)];
          else
            local_A[k] = T(0.0f);
2906

Tim Dettmers's avatar
Tim Dettmers committed
2907
2908
2909
2910
2911

      // accumulate in float; small performance hit for Ampere, but lower error for outputs
      #pragma unroll
      for(int k = 0; k < num_values_4bit/4; k++)
      {
2912
        #if BNB_BF16_AVAILABLE
Tim Dettmers's avatar
Tim Dettmers committed
2913
2914
2915
2916
2917
2918
          local_C += (float)(local_A[k]*local_B[k]);
        #else
          // bf16 multipliation not supported
          local_C += ((float)local_A[k]*(float)local_B[k]);
        #endif
      }
2919
    }
2920
2921
2922
2923
2924
  }

  local_C = WarpReduce(temp_storage[warp_idx]).Sum(local_C);

  if(row_B < M && warp_lane == 0)
2925
    out[row_B] = T(local_C);
2926
2927
2928

}

Tim Dettmers's avatar
Tim Dettmers committed
2929
template <typename T, int FUNC> __global__ void kfunc(T *A, T *B, T value, long n)
Tim Dettmers's avatar
Tim Dettmers committed
2930
{
Tim Dettmers's avatar
Tim Dettmers committed
2931
2932
2933
2934
  for(long i = (blockDim.x*blockIdx.x) + threadIdx.x; i < n; i+=(blockDim.x*gridDim.x))
  {
    switch(FUNC)
    {
2935
      case FILL:
Tim Dettmers's avatar
Tim Dettmers committed
2936
2937
2938
2939
2940
2941
2942
2943
        A[i] = (T)value;
        break;
      case ARANGE:
        A[i] = (T)i;
        break;
      case _MUL:
        A[i] = A[i]*B[i];
        break;
Tim Dettmers's avatar
Tim Dettmers committed
2944
    }
Tim Dettmers's avatar
Tim Dettmers committed
2945
  }
Tim Dettmers's avatar
Tim Dettmers committed
2946
2947
}

Tim Dettmers's avatar
Tim Dettmers committed
2948

Tim Dettmers's avatar
Tim Dettmers committed
2949
2950
2951
2952
//==============================================================
//                   TEMPLATE DEFINITIONS
//==============================================================

Tim Dettmers's avatar
Tim Dettmers committed
2953
2954
2955
2956
template __global__ void kfunc<float, FILL>(float *A, float *B, float value, long n);
template __global__ void kfunc<unsigned char, FILL>(unsigned char *A, unsigned char *B, unsigned char value, long n);
template __global__ void kfunc<float, ARANGE>(float *A, float *B, float value, long n);
template __global__ void kfunc<float, _MUL>(float *A, float *B, float value, long n);
Tim Dettmers's avatar
Tim Dettmers committed
2957
2958

// these are not used and make no sense, but the compiler needs them
Tim Dettmers's avatar
Tim Dettmers committed
2959
//template __global__ void gemm_device<float, 16, 128>(int M, int N, int K, float * __restrict__ const A,  float* B,  float * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
2960
template __global__ void gemm_device<half, 32, 256>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
2961
template __global__ void gemm_device<half, 32, 192>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
2962
template __global__ void gemm_device<half, 32, 160>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
2963
template __global__ void gemm_device<half, 32, 128>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
2964
2965
//template __global__ void gemm_device<float, 16, 32>(int M, int N, int K, float * __restrict__ const A,  float* B,  float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 32, 32>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
2966
template __global__ void gemm_device<half, 32, 64>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
2967
template __global__ void gemm_device<half, 32, 96>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
2968
2969
// these are not used and make no sense, but the compiler needs them

Tim Dettmers's avatar
Tim Dettmers committed
2970
//template __global__ void gemm_device<float, 32, 128>(int M, int N, int K, float * __restrict__ const A,  float* B,  float * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
2971
template __global__ void gemm_device<half, 16, 256>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
2972
template __global__ void gemm_device<half, 16, 192>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
2973
template __global__ void gemm_device<half, 16, 160>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
2974
template __global__ void gemm_device<half, 16, 128>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
2975
2976
//template __global__ void gemm_device<float, 32, 32>(int M, int N, int K, float * __restrict__ const A,  float* B,  float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 16, 32>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
2977
template __global__ void gemm_device<half, 16, 64>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
2978
template __global__ void gemm_device<half, 16, 96>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
2979

2980
template __global__ void kgemm_4bit_inference<half, 96>(int M, int N, int K, half * __restrict__ const A, unsigned char *B,  float *absmax, half * out,  int lda, int ldb, int ldc, int blocksize);
Tim Dettmers's avatar
Tim Dettmers committed
2981
template __global__ void kgemm_4bit_inference<half, 128>(int M, int N, int K, half * __restrict__ const A, unsigned char *B,  float *absmax, half * out,  int lda, int ldb, int ldc, int blocksize);
2982
template __global__ void kgemm_4bit_inference<half, 160>(int M, int N, int K, half * __restrict__ const A, unsigned char *B,  float *absmax, half * out,  int lda, int ldb, int ldc, int blocksize);
2983
2984
template __global__ void kgemm_4bit_inference<half, 256>(int M, int N, int K, half * __restrict__ const A, unsigned char *B,  float *absmax, half * out,  int lda, int ldb, int ldc, int blocksize);

2985
2986
2987
template __global__ void kgemm_4bit_inference_naive<half, 128, 16>(int M, int N, int K, half * __restrict__ const A, unsigned char *B,  float *absmax, const float *datatype, half * out,  int lda, int ldb, int ldc, int blocksize);
template __global__ void kgemm_4bit_inference_naive<__nv_bfloat16, 128, 16>(int M, int N, int K, __nv_bfloat16 * __restrict__ const A, unsigned char *B,  float *absmax, const float *datatype, __nv_bfloat16 * out,  int lda, int ldb, int ldc, int blocksize);
template __global__ void kgemm_4bit_inference_naive<float, 128, 32>(int M, int N, int K, float * __restrict__ const A, unsigned char *B,  float *absmax, const float *datatype, float * out,  int lda, int ldb, int ldc, int blocksize);
Tim Dettmers's avatar
Tim Dettmers committed
2988

James Wyatt's avatar
James Wyatt committed
2989
2990
2991
2992
2993
2994
template __global__ void kspmm_coo_very_sparse_naive<half, 8, 16>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, half *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB);
template __global__ void kspmm_coo_very_sparse_naive<half, 16, 16>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, half *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB);
template __global__ void kspmm_coo_very_sparse_naive<half, 32, 16>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, half *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 8, 8>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, signed char *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 16, 8>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, signed char *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 32, 8>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, signed char *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB);
Tim Dettmers's avatar
Tim Dettmers committed
2995

2996
template __global__ void kdequant_mm_int32_fp16<4, 512>(int *__restrict__ const A, float *__restrict__ const rowStats, float *__restrict__ const colStats, half *out, half * __restrict__ const bias, const int numRows, const int numCols, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
2997

Tim Dettmers's avatar
Tim Dettmers committed
2998
2999
3000
3001
3002
3003
3004
3005
3006
template __device__ unsigned char dQuantize<0>(float* smem_code, const float rand, float x);
template __device__ unsigned char dQuantize<1>(float* smem_code, const float rand, float x);

template __global__ void kEstimateQuantiles(float *__restrict__ const A, float *code, const float offset, const float max_val, const int n);
template __global__ void kEstimateQuantiles(half *__restrict__ const A, float *code, const float offset, const half max_val, const int n);

#define MAKE_PreconditionOptimizer32bit1State(oname, gtype) \
template __global__ void kPreconditionOptimizer32bit1State<gtype, oname, 4096, 8>(gtype* g, gtype* p, \
                float* state1, float *unorm, \
3007
                const float beta1, const float beta2, const float eps, const float weight_decay, \
Tim Dettmers's avatar
Tim Dettmers committed
3008
3009
3010
3011
                const int step, const float lr, const float gnorm_scale, const int n); \

MAKE_PreconditionOptimizer32bit1State(MOMENTUM, half)
MAKE_PreconditionOptimizer32bit1State(MOMENTUM, float)
3012
MAKE_PreconditionOptimizer32bit1State(MOMENTUM, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
3013
3014
MAKE_PreconditionOptimizer32bit1State(RMSPROP, half)
MAKE_PreconditionOptimizer32bit1State(RMSPROP, float)
3015
MAKE_PreconditionOptimizer32bit1State(RMSPROP, __nv_bfloat16)
3016
3017
MAKE_PreconditionOptimizer32bit1State(LION, half)
MAKE_PreconditionOptimizer32bit1State(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
3018
MAKE_PreconditionOptimizer32bit1State(LION, __nv_bfloat16)
3019
3020
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, half)
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, float)
3021
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
3022
3023
3024

#define MAKE_Optimizer32bit1State(oname, gtype) \
template __global__ void kOptimizer32bit1State<gtype, oname>(gtype* g, gtype* p, float* state1, float *unorm, const float max_unorm, const float param_norm, \
3025
    const float beta1, const float beta2, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n); \
Tim Dettmers's avatar
Tim Dettmers committed
3026
3027
3028

MAKE_Optimizer32bit1State(MOMENTUM, half)
MAKE_Optimizer32bit1State(MOMENTUM, float)
3029
MAKE_Optimizer32bit1State(MOMENTUM, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
3030
3031
MAKE_Optimizer32bit1State(RMSPROP, half)
MAKE_Optimizer32bit1State(RMSPROP, float)
3032
MAKE_Optimizer32bit1State(RMSPROP, __nv_bfloat16)
3033
3034
MAKE_Optimizer32bit1State(LION, half)
MAKE_Optimizer32bit1State(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
3035
MAKE_Optimizer32bit1State(LION, __nv_bfloat16)
3036
3037
MAKE_Optimizer32bit1State(ADAGRAD, half)
MAKE_Optimizer32bit1State(ADAGRAD, float)
3038
MAKE_Optimizer32bit1State(ADAGRAD, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
3039
3040
3041
3042
3043
3044
3045
3046

#define MAKE_PreconditionOptimizer32bit2State(oname, gtype) \
template __global__ void kPreconditionOptimizer32bit2State<gtype, oname, 4096, 8>(gtype* g, gtype* p,  \
                float* state1, float* state2, float *unorm, \
                const float beta1, const float beta2, const float eps, const float weight_decay, \
                const int step, const float lr, const float gnorm_scale, const int n); \

MAKE_PreconditionOptimizer32bit2State(ADAM, float)
3047
3048
MAKE_PreconditionOptimizer32bit2State(ADAM, half)
MAKE_PreconditionOptimizer32bit2State(ADAM, __nv_bfloat16)
3049
3050
3051
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, float)
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, half)
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
3052

3053
template __global__ void kOptimizer32bit2State<float, ADAM>(float* g, float* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
3054
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
3055
template __global__ void kOptimizer32bit2State<half, ADAM>(half* g, half* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
3056
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
3057
template __global__ void kOptimizer32bit2State<__nv_bfloat16, ADAM>(__nv_bfloat16* g, __nv_bfloat16* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
3058
3059
3060
3061
3062
3063
3064
3065
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
template __global__ void kOptimizer32bit2State<float, ADEMAMIX>(float* g, float* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
template __global__ void kOptimizer32bit2State<half, ADEMAMIX>(half* g, half* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
template __global__ void kOptimizer32bit2State<__nv_bfloat16, ADEMAMIX>(__nv_bfloat16* g, __nv_bfloat16* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);

Tim Dettmers's avatar
Tim Dettmers committed
3066
3067
3068
3069
3070

#define MAKE_PreconditionStatic8bit1State(oname, gtype) \
template __global__ void kPreconditionOptimizerStatic8bit1State<gtype, oname>(gtype* p, gtype* __restrict__ const g, unsigned char*__restrict__  const state1,  \
                float *unorm,  \
                const float beta1,  \
3071
                const float beta2,  \
Tim Dettmers's avatar
Tim Dettmers committed
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
                const float eps, const int step,  \
                float* __restrict__ const quantiles1,  \
                float* max1, float* new_max1,  \
                const float weight_decay, \
                const float gnorm_scale,  \
                const int n); \

MAKE_PreconditionStatic8bit1State(MOMENTUM, half)
MAKE_PreconditionStatic8bit1State(MOMENTUM, float)
MAKE_PreconditionStatic8bit1State(RMSPROP, half)
MAKE_PreconditionStatic8bit1State(RMSPROP, float)
3083
3084
MAKE_PreconditionStatic8bit1State(LION, half)
MAKE_PreconditionStatic8bit1State(LION, float)
3085
3086
MAKE_PreconditionStatic8bit1State(ADAGRAD, half)
MAKE_PreconditionStatic8bit1State(ADAGRAD, float)
Tim Dettmers's avatar
Tim Dettmers committed
3087
3088
3089
3090
3091

#define MAKE_optimizerStatic8bit1State(oname, gtype) \
template __global__ void kOptimizerStatic8bit1State<gtype, oname>(gtype* p, gtype* const g, unsigned char* state1,  \
                const float *unorm, const float max_unorm, const float param_norm, \
                const float beta1,  \
3092
                const float beta2,  \
Tim Dettmers's avatar
Tim Dettmers committed
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
                const float eps, const int step, const float lr, \
                float* __restrict__ const quantiles1,  \
                float* max1, float* new_max1,  \
                float weight_decay, \
                const float gnorm_scale,  \
                const int n); \

MAKE_optimizerStatic8bit1State(MOMENTUM, half)
MAKE_optimizerStatic8bit1State(MOMENTUM, float)
MAKE_optimizerStatic8bit1State(RMSPROP, half)
MAKE_optimizerStatic8bit1State(RMSPROP, float)
3104
3105
MAKE_optimizerStatic8bit1State(LION, half)
MAKE_optimizerStatic8bit1State(LION, float)
3106
3107
3108
MAKE_optimizerStatic8bit1State(ADAGRAD, half)
MAKE_optimizerStatic8bit1State(ADAGRAD, float)

Tim Dettmers's avatar
Tim Dettmers committed
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139

#define MAKE_PreconditionStatic8bit2State(oname, gtype) \
template __global__ void kPreconditionOptimizerStatic8bit2State<gtype, oname>(gtype* p, gtype* __restrict__ const g, unsigned char*__restrict__  const state1, unsigned char* __restrict__ const state2, \
                float *unorm, \
                const float beta1, const float beta2, \
                const float eps, const int step,  \
                float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, \
                float* max1, float* max2, float* new_max1, float* new_max2, \
                const float gnorm_scale,  \
                const int n); \

MAKE_PreconditionStatic8bit2State(ADAM, half)
MAKE_PreconditionStatic8bit2State(ADAM, float)

#define MAKE_optimizerStatic8bit2State(oname, gtype) \
template __global__ void kOptimizerStatic8bit2State<gtype, oname>(gtype* p, gtype* const g, unsigned char* state1, unsigned char* state2, \
                const float *unorm, const float max_unorm, const float param_norm, \
                const float beta1, const float beta2, \
                const float eps, const int step, const float lr, \
                float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, \
                float* max1, float* max2, float* new_max1, float* new_max2, \
                float weight_decay, \
                const float gnorm_scale,  \
                const int n); \

MAKE_optimizerStatic8bit2State(ADAM, half)
MAKE_optimizerStatic8bit2State(ADAM, float)

template __global__ void kPercentileClipping<float, 2048, 4>(float * __restrict__ g, float *gnorm_vec, int step, const int n);
template __global__ void kPercentileClipping<half, 2048, 4>(half * __restrict__ g, float *gnorm_vec, int step, const int n);

Tim Dettmers's avatar
Tim Dettmers committed
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
#define MAKE_kQuantizeBlockwise(dtype, blocksize, num_per_thread, stochastic, data_type_name) \
template __global__ void kQuantizeBlockwise<dtype, blocksize, num_per_thread, stochastic, data_type_name>(float * code, dtype * __restrict__ const A, float *absmax, unsigned char *out, float * __restrict__ const rand, const int rand_offset, const int n); \

MAKE_kQuantizeBlockwise(half,  4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half,  4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(half,  2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half,  1024, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half,   512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half,   256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half,   128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half,    64, 2, 0, General8bit)
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
MAKE_kQuantizeBlockwise(half,  4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half,  2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half,  1024, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half,   512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half,   256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half,   128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half,    64, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half,  4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half,  2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half,  1024, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half,   512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half,   256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half,   128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half,    64, 2, 0, NF4)
Tim Dettmers's avatar
Tim Dettmers committed
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float,  512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float,  256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float,  128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float,   64, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float,  512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float,  256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float,  128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float,   64, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float,  512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float,  256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float,  128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float,   64, 2, 0, NF4)

3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16,   64, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,   64, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,   64, 2, 0, NF4)

Tim Dettmers's avatar
Tim Dettmers committed
3211
3212
3213
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, FP4>(float *code, unsigned char * A, float * absmax, half *out, const int blocksize, const int n);
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, General8bit>(float *code, unsigned char * A, float * absmax, half *out, const int blocksize, const int n);
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, NF4>(float *code, unsigned char * A, float * absmax, half *out, const int blocksize, const int n);
3214
3215
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, FP4>(float *code, unsigned char * A, float * absmax, float *out, const int blocksize, const int n);
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, General8bit>(float *code, unsigned char * A, float * absmax, float *out, const int blocksize, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
3216
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, NF4>(float *code, unsigned char * A, float * absmax, float *out, const int blocksize, const int n);
3217
3218
3219
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, FP4>(float *code, unsigned char * A, float * absmax, __nv_bfloat16 *out, const int blocksize, const int n);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, General8bit>(float *code, unsigned char * A, float * absmax, __nv_bfloat16 *out, const int blocksize, const int n);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, NF4>(float *code, unsigned char * A, float * absmax, __nv_bfloat16 *out, const int blocksize, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
3220
3221
3222

#define MAKE_OptimizerStatic8bit2StateBlockwise(oname, gtype, block_size, num_per_thread) \
template __global__ void kOptimizerStatic8bit2StateBlockwise<gtype, oname, block_size, num_per_thread>(gtype* p, gtype* __restrict__ const g, unsigned char* state1, unsigned char* state2, \
3223
                const float beta1, const float beta2, const float beta3, const float alpha, \
Tim Dettmers's avatar
Tim Dettmers committed
3224
3225
3226
3227
                const float eps, const int step, const float lr, \
                float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, \
                float* absmax1, float* absmax2,  \
                float weight_decay, \
3228
                const float gnorm_scale, const bool skip_zeros, const int n); \
Tim Dettmers's avatar
Tim Dettmers committed
3229

3230
3231
3232
3233
3234
3235
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, float, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, half, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, float, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, half, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, __nv_bfloat16, 256, 1)
Tim Dettmers's avatar
Tim Dettmers committed
3236
3237
3238
3239
3240
3241
3242
3243
3244

#define MAKE_OptimizerStatic8bit1StateBlockwise(oname, gtype, block_size, num_per_thread) \
template __global__ void kOptimizerStatic8bit1StateBlockwise<gtype, oname, block_size, num_per_thread>( \
		gtype* p, gtype* __restrict__ const g, unsigned char* state1, \
                const float beta1, const float beta2, \
                const float eps, const int step, const float lr, \
                float* __restrict__ const quantiles1, \
                float* absmax1, \
                float weight_decay, \
3245
                const float gnorm_scale, const bool skip_zeros, const int n); \
Tim Dettmers's avatar
Tim Dettmers committed
3246

3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, __nv_bfloat16, 256, 1)
3259
3260
3261

template __device__ void printnonzero<float>(float *A, int num_values, const char*strval);
template __device__ void printnonzero<half>(half *A, int num_values, const char*strval);