test_linear4bit.py 11.8 KB
Newer Older
1
import copy
Aarni Koskela's avatar
Aarni Koskela committed
2
import os
3
import pickle
4
import platform
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
5
6
7
8
9
10
from tempfile import TemporaryDirectory

import pytest
import torch

import bitsandbytes as bnb
11
12
13
14
15
16
17
18
from tests.helpers import (
    TRUE_FALSE,
    describe_dtype,
    get_available_devices,
    id_formatter,
    torch_load_from_buffer,
    torch_save_to_buffer,
)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
19

20
storage = {
21
22
23
24
    "uint8": torch.uint8,
    "float16": torch.float16,
    "bfloat16": torch.bfloat16,
    "float32": torch.float32,
25
}
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
26

27

28
@pytest.mark.parametrize("device", get_available_devices())
29
@pytest.mark.parametrize("quant_storage", ["uint8", "float16", "bfloat16", "float32"])
30
31
@pytest.mark.parametrize("bias", TRUE_FALSE, ids=id_formatter("bias"))
@pytest.mark.parametrize("compress_statistics", TRUE_FALSE, ids=id_formatter("compress_statistics"))
Aarni Koskela's avatar
Aarni Koskela committed
32
@pytest.mark.parametrize("quant_type", ["nf4", "fp4"])
33
34
@pytest.mark.parametrize("save_before_forward", TRUE_FALSE, ids=id_formatter("save_before_forward"))
def test_linear_serialization(device, quant_type, compress_statistics, bias, quant_storage, save_before_forward):
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
35
36
37
38
    original_dtype = torch.float16
    compute_dtype = None
    layer_shape = (300, 400)

Ruff's avatar
Ruff committed
39
    linear = torch.nn.Linear(*layer_shape, dtype=original_dtype, device="cpu")  # original layer
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
40
41
42
43
44
45
46
47
48

    # Quantizing original layer
    linear_q = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
49
        device="meta",
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
50
    )
Ruff's avatar
Ruff committed
51
    new_weight = bnb.nn.Params4bit(data=linear.weight, quant_type=quant_type, requires_grad=False)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
52
    linear_q.weight = new_weight
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
53
    if bias:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
54
55
        linear_q.bias = torch.nn.Parameter(linear.bias)
    linear_q = linear_q.to(device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
56

57
    # saving to state_dict:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
58
    sd = linear_q.state_dict()
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
59

60
61
62
    # restoring from state_dict:
    bias_data2 = sd.pop("bias", None)
    weight_data2 = sd.pop("weight")
63
    weight2 = bnb.nn.Params4bit.from_prequantized(quantized_stats=sd, data=weight_data2, device=device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
64

65
    # creating new layer with same params:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
66
67
68
69
70
71
72
    linear_q2 = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
73
        device="meta",
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
74
    )
75
    # loading weights from state_dict:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
76
    linear_q2.weight = weight2
77
78
    if bias:
        linear_q2.bias = torch.nn.Parameter(bias_data2)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
79
    linear_q2 = linear_q2.to(device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
80

81
    # MATCHING
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
82
83
    a, b = linear_q.weight, linear_q2.weight

84
85
86
87
88
89
90
91
92
93
94
    # Quantizing original layer with specified quant_storage type
    linear_qs = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
        quant_storage=storage[quant_storage],
        device="meta",
    )
95
96
97
98
99
100
    linear_qs.weight = bnb.nn.Params4bit(
        data=linear.weight,
        requires_grad=False,
        quant_type=quant_type,
        quant_storage=storage[quant_storage],
    )
101
102
103
104
    if bias:
        linear_qs.bias = torch.nn.Parameter(linear.bias)
    linear_qs = linear_qs.to(device)

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
105
106
107
    assert a.device == b.device
    assert a.dtype == b.dtype
    assert torch.equal(a, b)
108

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
109
110
    q0 = a.quant_state
    q1 = b.quant_state
111
    for attr in ("code", "dtype", "blocksize", "absmax"):
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
112
113
114
115
116
117
118
        c, d = getattr(q0, attr), getattr(q1, attr)
        if isinstance(c, torch.Tensor):
            assert torch.equal(c, d)
        else:
            assert c == d, f"{c} != {d}"

    if q0.state2 is not None:
119
        for attr in ("code", "dtype", "blocksize", "absmax"):
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
120
121
122
123
124
125
126
127
128
129
130
131
            c, d = getattr(q0.state2, attr), getattr(q1.state2, attr)
            if isinstance(c, torch.Tensor):
                assert torch.equal(c, d)
            else:
                assert c == d, f"{c} != {d}"

    if bias:
        a, b = linear_q.bias, linear_q2.bias
        assert a.device == b.device
        assert a.dtype == b.dtype
        assert torch.equal(a, b)

132
133
134
    if save_before_forward:
        bytes_4bit = torch_save_to_buffer(linear_q)

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
135
    # Forward test
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
136
    x = torch.rand(42, layer_shape[0], device=device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
137
138
    a = linear_q(x)
    b = linear_q2(x)
139
    c = linear_qs(x)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
140
141
    assert a.device == b.device
    assert a.dtype == b.dtype
142
143
    assert a.device == c.device
    assert a.dtype == c.dtype
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
144
    assert torch.equal(a, b)
145
146
    assert torch.equal(a, c)

147
148
149
150
    if not save_before_forward:
        bytes_4bit = torch_save_to_buffer(linear_q)
    linear_q3 = torch_load_from_buffer(bytes_4bit)

151
    # Test moving to CPU and back to GPU
152
153
154
    if device != "cpu":
        linear_q2.to("cpu")
        linear_q2.to(device)
155
156
157
158
    d = linear_qs(x)
    assert c.dtype == d.dtype
    assert c.device == d.device
    assert torch.equal(c, d)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
159

160
161
162
163
164
    d = linear_q3(x)
    assert c.dtype == d.dtype
    assert c.device == d.device
    assert torch.equal(c, d)

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
165
166
167
168
169
170
171
    # Saved size ratio test. Target set for layer_shape == (300, 400) w/ bias
    with TemporaryDirectory() as tmpdir:
        state_path_4bit = os.path.join(tmpdir, "state_4bit.pth")
        state_path = os.path.join(tmpdir, "state.pth")
        torch.save(linear.state_dict(), state_path)
        torch.save(linear_q.state_dict(), state_path_4bit)

172
173
174
        size_orig, size_4 = (
            os.path.getsize(state_path),
            os.path.getsize(state_path_4bit),
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
175
176
        )
        size_ratio = size_4 / size_orig
177
178
179
        target_compression = (
            0.143 if original_dtype == torch.float32 else 0.29
        )  # these numbers get lower as weight shape increases
Ruff's avatar
Ruff committed
180
181
182
        ratio_error_msg = (
            f"quantized_size {size_4:,} is larger on disk than {target_compression:.2%} of original size {size_orig:,}"
        )
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
183
        assert size_ratio < target_compression, ratio_error_msg
184
185


186
187
188
189
190
@pytest.mark.parametrize("device", get_available_devices())
@pytest.mark.parametrize("quant_type", ["nf4", "fp4"])
@pytest.mark.parametrize("blocksize", [64, 128])
@pytest.mark.parametrize("compress_statistics", TRUE_FALSE, ids=id_formatter("compress_statistics"))
def test_copy_param(device, quant_type, blocksize, compress_statistics):
191
    tensor = torch.randn(300, 400)
192
193
194
195
196
197
198
    param = bnb.nn.Params4bit(
        data=tensor,
        quant_type=quant_type,
        blocksize=blocksize,
        compress_statistics=compress_statistics,
        requires_grad=False,
    ).to(device)
199
200
201
202
203
204

    shallow_copy_param = copy.copy(param)
    assert param.quant_state is shallow_copy_param.quant_state
    assert param.data.data_ptr() == shallow_copy_param.data.data_ptr()


205
206
207
208
209
@pytest.mark.parametrize("device", get_available_devices())
@pytest.mark.parametrize("quant_type", ["nf4", "fp4"])
@pytest.mark.parametrize("blocksize", [64, 128])
@pytest.mark.parametrize("compress_statistics", TRUE_FALSE, ids=id_formatter("compress_statistics"))
def test_deepcopy_param(device, quant_type, blocksize, compress_statistics):
210
    tensor = torch.randn(300, 400)
211
212
213
214
215
216
217
    param = bnb.nn.Params4bit(
        data=tensor,
        quant_type=quant_type,
        blocksize=blocksize,
        compress_statistics=compress_statistics,
        requires_grad=False,
    ).to(device)
218
    dict_keys_before = set(param.__dict__.keys())
219
    copy_param = copy.deepcopy(param)
220
221
222
    dict_keys_after = set(param.__dict__.keys())
    dict_keys_copy = set(copy_param.__dict__.keys())

223
224
225
    assert param.quant_state is not copy_param.quant_state
    assert param.data.data_ptr() != copy_param.data.data_ptr()

226
227
228
229
    # there was a bug where deepcopy would modify the original object
    assert dict_keys_before == dict_keys_after
    assert dict_keys_before == dict_keys_copy

230

231
232
233
234
235
@pytest.mark.parametrize("device", get_available_devices())
@pytest.mark.parametrize("quant_type", ["nf4", "fp4"])
@pytest.mark.parametrize("blocksize", [64, 128])
@pytest.mark.parametrize("compress_statistics", TRUE_FALSE, ids=id_formatter("compress_statistics"))
def test_params4bit_real_serialization(device, quant_type, blocksize, compress_statistics):
236
    original_tensor = torch.randn(300, 400)
237
238
239
240
241
242
    original_param = bnb.nn.Params4bit(
        data=original_tensor,
        quant_type=quant_type,
        blocksize=blocksize,
        compress_statistics=compress_statistics,
    )
243
    dict_keys_before = set(original_param.__dict__.keys())
244

245
    original_param.to(device)  # change device to trigger quantization
246
247
248

    serialized_param = pickle.dumps(original_param)
    deserialized_param = pickle.loads(serialized_param)
249
250
    dict_keys_after = set(original_param.__dict__.keys())
    dict_keys_deserialized = set(deserialized_param.__dict__.keys())
251
252
253
254
255
256
257

    assert torch.equal(original_param.data, deserialized_param.data)
    assert original_param.requires_grad == deserialized_param.requires_grad == False
    assert original_param.quant_type == deserialized_param.quant_type
    assert original_param.blocksize == deserialized_param.blocksize
    assert original_param.compress_statistics == deserialized_param.compress_statistics
    assert original_param.quant_state == deserialized_param.quant_state
258
259
260
261

    # there was a bug where deepcopy would modify the original object
    assert dict_keys_before == dict_keys_after
    assert dict_keys_before == dict_keys_deserialized
262
263
264
265
266
267
268
269
270
271
272


@pytest.mark.parametrize("device", get_available_devices())
@pytest.mark.parametrize("quant_type", ["nf4", "fp4"])
@pytest.mark.parametrize("compute_dtype", [torch.bfloat16, torch.float32], ids=describe_dtype)
@pytest.mark.parametrize("compress_statistics", TRUE_FALSE, ids=id_formatter("compress_statistics"))
@pytest.mark.parametrize("bias", TRUE_FALSE, ids=id_formatter("bias"))
@pytest.mark.parametrize("fullgraph", TRUE_FALSE, ids=id_formatter("fullgraph"))
@pytest.mark.parametrize("mode", ["default", "reduce-overhead"], ids=id_formatter("mode"))
@pytest.mark.skipif(torch.__version__ < (2, 4), reason="Not supported in torch < 2.4")
def test_linear4bit_torch_compile(device, quant_type, compute_dtype, compress_statistics, bias, fullgraph, mode):
273
    if fullgraph and torch.__version__ < (2, 8, 0, "dev"):
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        pytest.skip("fullgraph mode requires torch 2.8 or higher")

    if device == "cuda" and platform.system() == "Windows":
        pytest.skip("Triton is not officially supported on Windows")

    # Has a strange regression on Linux aarch64 CPU in torch==2.6.0 when fullgraph=False.
    if (
        not fullgraph
        and device == "cpu"
        and platform.machine() == "aarch64"
        and platform.system() == "Linux"
        and ((2, 7) > torch.__version__ >= (2, 6))
    ):
        pytest.xfail("Regression in torch==2.6.0 on Linux aarch64 CPU")

    dim = 256
    batch_size = 16

    torch.compiler.reset()

    # Create a small network with Linear4bit layers
    net = torch.nn.Sequential(
        *[
            bnb.nn.Linear4bit(
                dim,
                dim,
                bias=bias,
                compute_dtype=compute_dtype,
                compress_statistics=compress_statistics,
                quant_type=quant_type,
            )
            for _ in range(4)
        ]
    ).to(device)

    # Create input tensor
    x = torch.randn(batch_size, dim, dtype=compute_dtype, device=device)

    # Get reference output before compilation
    with torch.no_grad():
        ref_output = net(x)

    # Compile the model
    compiled_net = torch.compile(net, fullgraph=fullgraph, mode=mode)

    # Get output from compiled model
    with torch.no_grad():
        compiled_output = compiled_net(x)

    # Check outputs match
    assert compiled_output.shape == ref_output.shape
    assert compiled_output.device == ref_output.device
    assert compiled_output.dtype == ref_output.dtype
    torch.testing.assert_close(compiled_output, ref_output)

    # Test with gradients
    x.requires_grad_(True)
    y1 = net(x).sum()
    y1.backward()
    grad_ref = x.grad.clone()

    x.grad = None
    y2 = compiled_net(x).sum()
    y2.backward()
    grad_compiled = x.grad.clone()

    torch.testing.assert_close(grad_compiled, grad_ref)