test_linear4bit.py 3.68 KB
Newer Older
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
from contextlib import nullcontext
from itertools import product
from tempfile import TemporaryDirectory

import pytest
import torch

import bitsandbytes as bnb
from bitsandbytes import functional as F
from bitsandbytes.nn.modules import Linear4bit


@pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU")
@pytest.mark.parametrize(
    "quant_type, compress_statistics, bias",
    list(product(["nf4", "fp4"], [False, True], [False, True])),
)
def test_linear4_state_dict(quant_type, compress_statistics, bias):
    original_dtype = torch.float16
    compute_dtype = None
    device = "cuda"
    layer_shape = (300, 400)

    linear = torch.nn.Linear(*layer_shape, dtype=original_dtype)  # original layer

    # Quantizing original layer
    linear_q = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
        device=device,
    )
    new_weight = bnb.nn.Params4bit(data=linear.weight, requires_grad=False)
    linear_q.weight = new_weight.to(device)
    if bias:
        linear_q.bias.data = linear.bias.data.to(device)

    sd = linear_q.state_dict()

    # restoring from state_dict:

    sd = linear_q.state_dict()
    bias_data2 = sd.pop("bias", None)
    weight_data2 = sd.pop("weight")

    weight2 = bnb.nn.Params4bit.from_prequantized(quantized_stats=sd, data=weight_data2)

    linear_q2 = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
59
        device='meta',
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
60
61
62
    )
    linear_q2.weight = weight2.to(device)
    if bias:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
63
        linear_q2.bias = torch.nn.Parameter(bias_data2)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

    # matching
    a, b = linear_q.weight, linear_q2.weight

    assert a.device == b.device
    assert a.dtype == b.dtype
    assert torch.equal(a, b)
    
    q0 = a.quant_state
    q1 = b.quant_state
    for attr in ('code', 'dtype', 'blocksize', 'absmax'):
        c, d = getattr(q0, attr), getattr(q1, attr)
        if isinstance(c, torch.Tensor):
            assert torch.equal(c, d)
        else:
            assert c == d, f"{c} != {d}"

    if q0.state2 is not None:
        for attr in ('code', 'dtype', 'blocksize', 'absmax'):
            c, d = getattr(q0.state2, attr), getattr(q1.state2, attr)
            if isinstance(c, torch.Tensor):
                assert torch.equal(c, d)
            else:
                assert c == d, f"{c} != {d}"

    if bias:
        a, b = linear_q.bias, linear_q2.bias
        assert a.device == b.device
        assert a.dtype == b.dtype
        assert torch.equal(a, b)

    # Forward test
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
96
    x = torch.rand(42, layer_shape[0], device=device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    a = linear_q(x)
    b = linear_q2(x)
    assert a.device == b.device
    assert a.dtype == b.dtype
    assert torch.equal(a, b)

    # Saved size ratio test. Target set for layer_shape == (300, 400) w/ bias
    with TemporaryDirectory() as tmpdir:
        state_path_4bit = os.path.join(tmpdir, "state_4bit.pth")
        state_path = os.path.join(tmpdir, "state.pth")
        torch.save(linear.state_dict(), state_path)
        torch.save(linear_q.state_dict(), state_path_4bit)

        size_orig, size_4 = os.path.getsize(state_path), os.path.getsize(
            state_path_4bit
        )
        size_ratio = size_4 / size_orig
        target_compression = 0.143 if original_dtype == torch.float32 else 0.285
        ratio_error_msg = f"quantized_size {size_4:,} is larger on disk than {target_compression:.2%} of original size {size_orig:,}"
        assert size_ratio < target_compression, ratio_error_msg