test_linear4bit.py 6.85 KB
Newer Older
1
import copy
Aarni Koskela's avatar
Aarni Koskela committed
2
import os
3
import pickle
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
4
5
6
7
8
9
from tempfile import TemporaryDirectory

import pytest
import torch

import bitsandbytes as bnb
10
from tests.helpers import TRUE_FALSE, torch_load_from_buffer, torch_save_to_buffer
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
11

12
storage = {
13
14
15
16
    "uint8": torch.uint8,
    "float16": torch.float16,
    "bfloat16": torch.bfloat16,
    "float32": torch.float32,
17
}
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
18

19
20

@pytest.mark.parametrize("quant_storage", ["uint8", "float16", "bfloat16", "float32"])
Aarni Koskela's avatar
Aarni Koskela committed
21
22
23
@pytest.mark.parametrize("bias", TRUE_FALSE)
@pytest.mark.parametrize("compress_statistics", TRUE_FALSE)
@pytest.mark.parametrize("quant_type", ["nf4", "fp4"])
24
25
@pytest.mark.parametrize("save_before_forward", TRUE_FALSE)
def test_linear_serialization(quant_type, compress_statistics, bias, quant_storage, save_before_forward):
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
26
27
28
29
30
    original_dtype = torch.float16
    compute_dtype = None
    device = "cuda"
    layer_shape = (300, 400)

31
32
33
    linear = torch.nn.Linear(
        *layer_shape, dtype=original_dtype, device="cpu"
    )  # original layer
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
34
35
36
37
38
39
40
41
42

    # Quantizing original layer
    linear_q = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
43
        device="meta",
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
44
    )
45
46
47
    new_weight = bnb.nn.Params4bit(
        data=linear.weight, quant_type=quant_type, requires_grad=False
    )
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
48
    linear_q.weight = new_weight
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
49
    if bias:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
50
51
        linear_q.bias = torch.nn.Parameter(linear.bias)
    linear_q = linear_q.to(device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
52

53
    # saving to state_dict:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
54
    sd = linear_q.state_dict()
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
55

56
57
58
59
    # restoring from state_dict:
    bias_data2 = sd.pop("bias", None)
    weight_data2 = sd.pop("weight")
    weight2 = bnb.nn.Params4bit.from_prequantized(quantized_stats=sd, data=weight_data2)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
60

61
    # creating new layer with same params:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
62
63
64
65
66
67
68
    linear_q2 = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
69
        device="meta",
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
70
    )
71
    # loading weights from state_dict:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
72
    linear_q2.weight = weight2
73
74
    if bias:
        linear_q2.bias = torch.nn.Parameter(bias_data2)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
75
    linear_q2 = linear_q2.to(device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
76

77
    # MATCHING
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
78
79
    a, b = linear_q.weight, linear_q2.weight

80
81
82
83
84
85
86
87
88
89
90
    # Quantizing original layer with specified quant_storage type
    linear_qs = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
        quant_storage=storage[quant_storage],
        device="meta",
    )
91
92
93
94
95
96
    linear_qs.weight = bnb.nn.Params4bit(
        data=linear.weight,
        requires_grad=False,
        quant_type=quant_type,
        quant_storage=storage[quant_storage],
    )
97
98
99
100
    if bias:
        linear_qs.bias = torch.nn.Parameter(linear.bias)
    linear_qs = linear_qs.to(device)

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
101
102
103
    assert a.device == b.device
    assert a.dtype == b.dtype
    assert torch.equal(a, b)
104

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
105
106
    q0 = a.quant_state
    q1 = b.quant_state
107
    for attr in ("code", "dtype", "blocksize", "absmax"):
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
108
109
110
111
112
113
114
        c, d = getattr(q0, attr), getattr(q1, attr)
        if isinstance(c, torch.Tensor):
            assert torch.equal(c, d)
        else:
            assert c == d, f"{c} != {d}"

    if q0.state2 is not None:
115
        for attr in ("code", "dtype", "blocksize", "absmax"):
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
116
117
118
119
120
121
122
123
124
125
126
127
            c, d = getattr(q0.state2, attr), getattr(q1.state2, attr)
            if isinstance(c, torch.Tensor):
                assert torch.equal(c, d)
            else:
                assert c == d, f"{c} != {d}"

    if bias:
        a, b = linear_q.bias, linear_q2.bias
        assert a.device == b.device
        assert a.dtype == b.dtype
        assert torch.equal(a, b)

128
129
130
    if save_before_forward:
        bytes_4bit = torch_save_to_buffer(linear_q)

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
131
    # Forward test
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
132
    x = torch.rand(42, layer_shape[0], device=device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
133
134
    a = linear_q(x)
    b = linear_q2(x)
135
    c = linear_qs(x)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
136
137
    assert a.device == b.device
    assert a.dtype == b.dtype
138
139
    assert a.device == c.device
    assert a.dtype == c.dtype
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
140
    assert torch.equal(a, b)
141
142
    assert torch.equal(a, c)

143
144
145
146
    if not save_before_forward:
        bytes_4bit = torch_save_to_buffer(linear_q)
    linear_q3 = torch_load_from_buffer(bytes_4bit)

147
    # Test moving to CPU and back to GPU
148
    linear_q2.to("cpu")
149
150
151
152
153
    linear_q2.to(device)
    d = linear_qs(x)
    assert c.dtype == d.dtype
    assert c.device == d.device
    assert torch.equal(c, d)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
154

155
156
157
158
159
    d = linear_q3(x)
    assert c.dtype == d.dtype
    assert c.device == d.device
    assert torch.equal(c, d)

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
160
161
162
163
164
165
166
    # Saved size ratio test. Target set for layer_shape == (300, 400) w/ bias
    with TemporaryDirectory() as tmpdir:
        state_path_4bit = os.path.join(tmpdir, "state_4bit.pth")
        state_path = os.path.join(tmpdir, "state.pth")
        torch.save(linear.state_dict(), state_path)
        torch.save(linear_q.state_dict(), state_path_4bit)

167
168
169
        size_orig, size_4 = (
            os.path.getsize(state_path),
            os.path.getsize(state_path_4bit),
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
170
171
        )
        size_ratio = size_4 / size_orig
172
173
174
        target_compression = (
            0.143 if original_dtype == torch.float32 else 0.29
        )  # these numbers get lower as weight shape increases
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
175
176
        ratio_error_msg = f"quantized_size {size_4:,} is larger on disk than {target_compression:.2%} of original size {size_orig:,}"
        assert size_ratio < target_compression, ratio_error_msg
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210


def test_copy_param():
    tensor = torch.tensor([1.0, 2.0, 3.0, 4.0])
    param = bnb.nn.Params4bit(data=tensor, requires_grad=False).cuda(0)

    shallow_copy_param = copy.copy(param)
    assert param.quant_state is shallow_copy_param.quant_state
    assert param.data.data_ptr() == shallow_copy_param.data.data_ptr()


def test_deepcopy_param():
    tensor = torch.tensor([1.0, 2.0, 3.0, 4.0])
    param = bnb.nn.Params4bit(data=tensor, requires_grad=False).cuda(0)
    copy_param = copy.deepcopy(param)
    assert param.quant_state is not copy_param.quant_state
    assert param.data.data_ptr() != copy_param.data.data_ptr()


def test_params4bit_real_serialization():
    original_tensor = torch.tensor([1.0, 2.0, 3.0, 4.0], dtype=torch.float32)
    original_param = bnb.nn.Params4bit(data=original_tensor, quant_type="fp4")

    original_param.cuda(0)  # move to CUDA to trigger quantization

    serialized_param = pickle.dumps(original_param)
    deserialized_param = pickle.loads(serialized_param)

    assert torch.equal(original_param.data, deserialized_param.data)
    assert original_param.requires_grad == deserialized_param.requires_grad == False
    assert original_param.quant_type == deserialized_param.quant_type
    assert original_param.blocksize == deserialized_param.blocksize
    assert original_param.compress_statistics == deserialized_param.compress_statistics
    assert original_param.quant_state == deserialized_param.quant_state