test_linear8bitlt.py 10.5 KB
Newer Older
1
from contextlib import nullcontext
2
import copy
Aarni Koskela's avatar
Aarni Koskela committed
3
import os
4
import pickle
5
import platform
6
from tempfile import TemporaryDirectory
7

8
9
10
import pytest
import torch

11
import bitsandbytes as bnb
12
from bitsandbytes.nn.modules import Linear8bitLt
13
14
from tests.helpers import (
    TRUE_FALSE,
15
    get_available_devices,
16
17
18
19
    id_formatter,
    torch_load_from_buffer,
    torch_save_to_buffer,
)
20

21

22
23
# contributed by Alex Borzunov, see:
# https://github.com/bigscience-workshop/petals/blob/main/tests/test_linear8bitlt.py
24
25
@pytest.mark.parametrize("device", get_available_devices())
def test_linear_no_igemmlt(device):
26
27
28
29
30
31
32
33
34
    linear = torch.nn.Linear(1024, 3072)
    x = torch.randn(3, 1024, dtype=torch.half)
    linear_custom = Linear8bitLt(
        linear.in_features,
        linear.out_features,
        linear.bias is not None,
        has_fp16_weights=False,
        threshold=6.0,
    )
35
36

    # TODO: Remove, this is no longer implemented
37
38
39
    linear_custom.state.force_no_igemmlt = True

    linear_custom.weight = bnb.nn.Int8Params(
Ruff's avatar
Ruff committed
40
41
42
        linear.weight.data.clone(),
        requires_grad=False,
        has_fp16_weights=False,
43
44
    ).to(linear.weight.dtype)
    linear_custom.bias = linear.bias
45
46
    linear_custom = linear_custom.to(device)
    linear = linear.half().to(device)
47

48
49
    x_ref = x.clone().to(device).requires_grad_(True)
    x_ours = x.clone().to(device).requires_grad_(True)
50
51
52
53
54
55
    fx_ref = linear(x_ref).float()
    grad_proj = torch.randn_like(fx_ref)
    (fx_ref * grad_proj).mean().backward()

    fx_ours = linear_custom(x_ours).float()
    (fx_ours * grad_proj).mean().backward()
56

57
    assert linear_custom.state.CB is not None
58
59
60
61
62
63
    assert not linear_custom.state.has_fp16_weights

    idx = torch.isclose(fx_ref, fx_ours, atol=0.02, rtol=1e-5)
    assert (idx == 0).sum().item() < fx_ref.numel() * 2.5e-4
    torch.testing.assert_close(fx_ref, fx_ours, atol=0.03, rtol=1e-5)
    torch.testing.assert_close(x_ref.grad, x_ours.grad, atol=0.01, rtol=1e-5)
64
65


66
@pytest.mark.parametrize("device", get_available_devices())
Aarni Koskela's avatar
Aarni Koskela committed
67
@pytest.mark.parametrize("has_fp16_weights", TRUE_FALSE, ids=id_formatter("has_fp16_weights"))
68
@pytest.mark.parametrize("threshold", [0.0, 6.0], ids=id_formatter("threshold"))
Aarni Koskela's avatar
Aarni Koskela committed
69
70
@pytest.mark.parametrize("serialize_before_forward", TRUE_FALSE, ids=id_formatter("serialize_before_forward"))
@pytest.mark.parametrize("deserialize_before_cuda", TRUE_FALSE, ids=id_formatter("deserialize_before_cuda"))
71
72
@pytest.mark.parametrize("save_before_forward", TRUE_FALSE, ids=id_formatter("save_before_forward"))
@pytest.mark.parametrize("load_before_cuda", TRUE_FALSE, ids=id_formatter("load_before_cuda"))
Ruff's avatar
Ruff committed
73
def test_linear_serialization(
74
    device,
Ruff's avatar
Ruff committed
75
    has_fp16_weights,
76
    threshold,
Ruff's avatar
Ruff committed
77
78
79
80
81
    serialize_before_forward,
    deserialize_before_cuda,
    save_before_forward,
    load_before_cuda,
):
82
83
    if device != "cuda" and has_fp16_weights:
        pytest.skip("has_fp16_weights is only supported on CUDA and is deprecated")
84

85
    linear = torch.nn.Linear(32, 96)
86
87
88
    # TODO: Fallback for bad shapes
    x = torch.randn(4, 32, dtype=torch.half)
    # x = torch.randn(3, 32, dtype=torch.half)
89
90
91
92
93
94

    linear_custom = Linear8bitLt(
        linear.in_features,
        linear.out_features,
        linear.bias is not None,
        has_fp16_weights=has_fp16_weights,
95
        threshold=threshold,
96
    )
97

98
    linear_custom.weight = bnb.nn.Int8Params(
Ruff's avatar
Ruff committed
99
100
101
        linear.weight.data.clone(),
        requires_grad=has_fp16_weights,
        has_fp16_weights=has_fp16_weights,
102
    )
103
    linear_custom.bias = linear.bias
104
    linear_custom = linear_custom.to(device)
105

106
107
108
    if serialize_before_forward:
        state_dict_8bit = linear_custom.state_dict()

109
110
111
    if save_before_forward:
        bytes_8bit = torch_save_to_buffer(linear_custom)

112
    x_first = x.clone().to(device).requires_grad_(True)
113
114
115
116
    fx_first = linear_custom(x_first).float()
    grad_proj = torch.randn_like(fx_first)
    (fx_first * grad_proj).mean().backward()

117
118
119
    if not serialize_before_forward:
        state_dict_8bit = linear_custom.state_dict()

120
121
122
    if not save_before_forward:
        bytes_8bit = torch_save_to_buffer(linear_custom)

123
124
125
126
127
128
129
130
131
132
    with TemporaryDirectory() as tmpdir:
        state_path_8bit = os.path.join(tmpdir, "state_8bit.pth")
        state_path = os.path.join(tmpdir, "state.pth")

        torch.save(linear.state_dict(), state_path)
        torch.save(state_dict_8bit, state_path_8bit)

        if not has_fp16_weights:
            assert os.path.getsize(state_path_8bit) < 0.5 * os.path.getsize(state_path)

133
        new_state_dict = torch.load(state_path_8bit, weights_only=False)
134
135
136
137
138
139

    new_linear_custom = Linear8bitLt(
        linear.in_features,
        linear.out_features,
        linear.bias is not None,
        has_fp16_weights=has_fp16_weights,
140
        threshold=threshold,
141
    )
142
143
144
145
146

    if deserialize_before_cuda:
        with nullcontext() if has_fp16_weights else pytest.raises(RuntimeError):
            new_linear_custom.load_state_dict(new_state_dict, strict=True)

147
148
149
    if load_before_cuda:
        new_linear_custom2 = torch_load_from_buffer(bytes_8bit)

150
    new_linear_custom = new_linear_custom.to(device)
151
152
153

    if not deserialize_before_cuda:
        new_linear_custom.load_state_dict(new_state_dict, strict=True)
154

155
156
157
    if not load_before_cuda:
        new_linear_custom2 = torch_load_from_buffer(bytes_8bit)

158
    x_second = x.clone().to(device).requires_grad_(True)
159
160
161
    fx_second = new_linear_custom(x_second).float()
    (fx_second * grad_proj).mean().backward()

162
    x_third = x.clone().to(device).requires_grad_(True)
163
164
165
    fx_third = new_linear_custom2(x_third).float()
    (fx_third * grad_proj).mean().backward()

166
167
168
169
    # if 8-bit weights were loaded before .cuda, state is incorrect anyway and RuntimeError was raised
    if has_fp16_weights or not deserialize_before_cuda:
        assert torch.allclose(fx_first, fx_second, atol=1e-5)
        assert torch.allclose(x_first.grad, x_second.grad, atol=1e-5)
170
    assert torch.allclose(fx_first, fx_third, atol=1e-5)
171
    assert torch.allclose(x_first.grad, x_third.grad, atol=1e-5)
172
173
174


@pytest.fixture
175
def linear8bit(requires_cuda):
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    linear = torch.nn.Linear(32, 96)
    linear_custom = Linear8bitLt(
        linear.in_features,
        linear.out_features,
        linear.bias is not None,
        has_fp16_weights=False,
        threshold=6.0,
    )
    linear_custom.weight = bnb.nn.Int8Params(
        linear.weight.data.clone(),
        requires_grad=False,
        has_fp16_weights=False,
    )
    linear_custom.bias = linear.bias
    linear_custom = linear_custom.cuda()
    return linear_custom


def test_linear8bit_copy_param(linear8bit):
    shallow_copy = copy.copy(linear8bit)
    assert linear8bit.weight is shallow_copy.weight
    assert linear8bit.bias is shallow_copy.bias
    assert linear8bit.weight.data.data_ptr() == shallow_copy.weight.data.data_ptr()


def test_linear8bit_deepcopy_param(linear8bit):
    deep_copy = copy.deepcopy(linear8bit)
    assert linear8bit.weight is not deep_copy.weight
    assert linear8bit.bias is not deep_copy.bias
    assert linear8bit.weight.data.data_ptr() != deep_copy.weight.data.data_ptr()
    assert torch.allclose(linear8bit.weight.data, deep_copy.weight.data)
    assert linear8bit.state == deep_copy.state

    # check for a bug where SCB and CB were not copied
    assert deep_copy.weight.SCB is not None
    assert (linear8bit.weight.SCB == deep_copy.weight.SCB).all()
    assert deep_copy.weight.CB is not None
    assert (linear8bit.weight.CB == deep_copy.weight.CB).all()


def test_linear8bit_serialization(linear8bit):
    serialized = pickle.dumps(linear8bit)
    deserialized = pickle.loads(serialized)
    assert linear8bit.weight.data.data_ptr() != deserialized.weight.data.data_ptr()
    assert torch.allclose(linear8bit.weight.data, deserialized.weight.data)
    assert linear8bit.bias.data.data_ptr() != deserialized.bias.data.data_ptr()
    assert torch.allclose(linear8bit.bias.data, deserialized.bias.data)
    assert linear8bit.state == deserialized.state

    # check for a bug where SCB and CB were not copied
    assert (linear8bit.weight.SCB == deserialized.weight.SCB).all()
    assert (linear8bit.weight.CB == deserialized.weight.CB).all()
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292


@pytest.mark.parametrize("device", get_available_devices())
@pytest.mark.parametrize("threshold", [0.0, 6.0], ids=id_formatter("threshold"))
@pytest.mark.parametrize("bias", TRUE_FALSE, ids=id_formatter("bias"))
@pytest.mark.parametrize("fullgraph", TRUE_FALSE, ids=id_formatter("fullgraph"))
@pytest.mark.parametrize("mode", ["default", "reduce-overhead"], ids=id_formatter("mode"))
@pytest.mark.skipif(torch.__version__ < (2, 4), reason="Not supported in torch < 2.4")
def test_linear8bitlt_torch_compile(device, threshold, bias, fullgraph, mode):
    if device == "cuda" and platform.system() == "Windows":
        pytest.skip("Triton is not officially supported on Windows")

    dim = 256
    batch_size = 16

    torch.compiler.reset()

    # Create a small network with Linear8bitLt layers
    net = torch.nn.Sequential(
        *[bnb.nn.Linear8bitLt(dim, dim, bias=bias, has_fp16_weights=False, threshold=threshold) for _ in range(4)]
    ).to(device)

    dynamic_output_shapes = fullgraph and threshold > 0
    with torch._dynamo.config.patch("capture_dynamic_output_shape_ops", dynamic_output_shapes):
        # Create input tensor
        x = torch.randn(batch_size, dim, dtype=torch.float16, device=device)

        # Get reference output before compilation
        with torch.no_grad():
            ref_output = net(x)

        # Compile the model
        compiled_net = torch.compile(net, fullgraph=fullgraph, mode=mode)

        # Get output from compiled model
        with torch.no_grad():
            compiled_output = compiled_net(x)

        # Check outputs match
        assert compiled_output.shape == ref_output.shape
        assert compiled_output.device == ref_output.device
        assert compiled_output.dtype == ref_output.dtype
        torch.testing.assert_close(compiled_output, ref_output)

        # Test with gradients. Currently only works with threshold=0.
        # Has a strange regression on Linux aarch64 CPU in torch==2.6.0.
        is_broken_platform = (
            device == "cpu"
            and platform.machine() == "aarch64"
            and platform.system() == "Linux"
            and ((2, 7) > torch.__version__ >= (2, 6))
        )

        if threshold == 0 and not is_broken_platform:
            x.requires_grad_(True)
            y1 = net(x).sum()
            y1.backward()
            grad_ref = x.grad.clone()

            x.grad = None
            y2 = compiled_net(x).sum()
            y2.backward()
            grad_compiled = x.grad.clone()

            torch.testing.assert_close(grad_compiled, grad_ref)