test_linear8bitlt.py 7.48 KB
Newer Older
1
from contextlib import nullcontext
2
import copy
Aarni Koskela's avatar
Aarni Koskela committed
3
import os
4
import pickle
5
from tempfile import TemporaryDirectory
6

7
8
9
import pytest
import torch

10
import bitsandbytes as bnb
11
from bitsandbytes.nn.modules import Linear8bitLt
12
13
14
15
16
17
from tests.helpers import (
    TRUE_FALSE,
    id_formatter,
    torch_load_from_buffer,
    torch_save_to_buffer,
)
18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# contributed by Alex Borzunov, see:
# https://github.com/bigscience-workshop/petals/blob/main/tests/test_linear8bitlt.py
def test_linear_no_igemmlt():
    linear = torch.nn.Linear(1024, 3072)
    x = torch.randn(3, 1024, dtype=torch.half)
    linear_custom = Linear8bitLt(
        linear.in_features,
        linear.out_features,
        linear.bias is not None,
        has_fp16_weights=False,
        threshold=6.0,
    )
    linear_custom.state.force_no_igemmlt = True

    linear_custom.weight = bnb.nn.Int8Params(
Ruff's avatar
Ruff committed
35
36
37
        linear.weight.data.clone(),
        requires_grad=False,
        has_fp16_weights=False,
38
39
    ).to(linear.weight.dtype)
    linear_custom.bias = linear.bias
40
    linear_custom = linear_custom.cuda()
41
42
43
44
45
46
47
48
49
50
    linear = linear.half().cuda()

    x_ref = x.clone().cuda().requires_grad_(True)
    x_ours = x.clone().cuda().requires_grad_(True)
    fx_ref = linear(x_ref).float()
    grad_proj = torch.randn_like(fx_ref)
    (fx_ref * grad_proj).mean().backward()

    fx_ours = linear_custom(x_ours).float()
    (fx_ours * grad_proj).mean().backward()
51

52
    assert linear_custom.state.CB is not None
53
54
55
56
57
58
    assert not linear_custom.state.has_fp16_weights

    idx = torch.isclose(fx_ref, fx_ours, atol=0.02, rtol=1e-5)
    assert (idx == 0).sum().item() < fx_ref.numel() * 2.5e-4
    torch.testing.assert_close(fx_ref, fx_ours, atol=0.03, rtol=1e-5)
    torch.testing.assert_close(x_ref.grad, x_ours.grad, atol=0.01, rtol=1e-5)
59
60


Aarni Koskela's avatar
Aarni Koskela committed
61
62
63
@pytest.mark.parametrize("has_fp16_weights", TRUE_FALSE, ids=id_formatter("has_fp16_weights"))
@pytest.mark.parametrize("serialize_before_forward", TRUE_FALSE, ids=id_formatter("serialize_before_forward"))
@pytest.mark.parametrize("deserialize_before_cuda", TRUE_FALSE, ids=id_formatter("deserialize_before_cuda"))
64
65
@pytest.mark.parametrize("save_before_forward", TRUE_FALSE, ids=id_formatter("save_before_forward"))
@pytest.mark.parametrize("load_before_cuda", TRUE_FALSE, ids=id_formatter("load_before_cuda"))
Ruff's avatar
Ruff committed
66
67
68
69
70
71
72
def test_linear_serialization(
    has_fp16_weights,
    serialize_before_forward,
    deserialize_before_cuda,
    save_before_forward,
    load_before_cuda,
):
73
    linear = torch.nn.Linear(32, 96)
74
75
76
    # TODO: Fallback for bad shapes
    x = torch.randn(4, 32, dtype=torch.half)
    # x = torch.randn(3, 32, dtype=torch.half)
77
78
79
80
81
82
83
84

    linear_custom = Linear8bitLt(
        linear.in_features,
        linear.out_features,
        linear.bias is not None,
        has_fp16_weights=has_fp16_weights,
        threshold=6.0,
    )
85

86
    linear_custom.weight = bnb.nn.Int8Params(
Ruff's avatar
Ruff committed
87
88
89
        linear.weight.data.clone(),
        requires_grad=has_fp16_weights,
        has_fp16_weights=has_fp16_weights,
90
    )
91
92
93
    linear_custom.bias = linear.bias
    linear_custom = linear_custom.cuda()

94
95
96
    if serialize_before_forward:
        state_dict_8bit = linear_custom.state_dict()

97
98
99
    if save_before_forward:
        bytes_8bit = torch_save_to_buffer(linear_custom)

100
101
102
103
104
    x_first = x.clone().cuda().requires_grad_(True)
    fx_first = linear_custom(x_first).float()
    grad_proj = torch.randn_like(fx_first)
    (fx_first * grad_proj).mean().backward()

105
106
107
    if not serialize_before_forward:
        state_dict_8bit = linear_custom.state_dict()

108
109
110
    if not save_before_forward:
        bytes_8bit = torch_save_to_buffer(linear_custom)

111
112
113
114
115
116
117
118
119
120
    with TemporaryDirectory() as tmpdir:
        state_path_8bit = os.path.join(tmpdir, "state_8bit.pth")
        state_path = os.path.join(tmpdir, "state.pth")

        torch.save(linear.state_dict(), state_path)
        torch.save(state_dict_8bit, state_path_8bit)

        if not has_fp16_weights:
            assert os.path.getsize(state_path_8bit) < 0.5 * os.path.getsize(state_path)

121
        new_state_dict = torch.load(state_path_8bit, weights_only=False)
122
123
124
125
126
127
128
129

    new_linear_custom = Linear8bitLt(
        linear.in_features,
        linear.out_features,
        linear.bias is not None,
        has_fp16_weights=has_fp16_weights,
        threshold=6.0,
    )
130
131
132
133
134

    if deserialize_before_cuda:
        with nullcontext() if has_fp16_weights else pytest.raises(RuntimeError):
            new_linear_custom.load_state_dict(new_state_dict, strict=True)

135
136
137
    if load_before_cuda:
        new_linear_custom2 = torch_load_from_buffer(bytes_8bit)

138
    new_linear_custom = new_linear_custom.cuda()
139
140
141

    if not deserialize_before_cuda:
        new_linear_custom.load_state_dict(new_state_dict, strict=True)
142

143
144
145
    if not load_before_cuda:
        new_linear_custom2 = torch_load_from_buffer(bytes_8bit)

146
147
148
149
    x_second = x.clone().cuda().requires_grad_(True)
    fx_second = new_linear_custom(x_second).float()
    (fx_second * grad_proj).mean().backward()

150
151
152
153
    x_third = x.clone().cuda().requires_grad_(True)
    fx_third = new_linear_custom2(x_third).float()
    (fx_third * grad_proj).mean().backward()

154
155
156
157
    # if 8-bit weights were loaded before .cuda, state is incorrect anyway and RuntimeError was raised
    if has_fp16_weights or not deserialize_before_cuda:
        assert torch.allclose(fx_first, fx_second, atol=1e-5)
        assert torch.allclose(x_first.grad, x_second.grad, atol=1e-5)
158
    assert torch.allclose(fx_first, fx_third, atol=1e-5)
159
    assert torch.allclose(x_first.grad, x_third.grad, atol=1e-5)
160
161
162


@pytest.fixture
163
def linear8bit(requires_cuda):
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    linear = torch.nn.Linear(32, 96)
    linear_custom = Linear8bitLt(
        linear.in_features,
        linear.out_features,
        linear.bias is not None,
        has_fp16_weights=False,
        threshold=6.0,
    )
    linear_custom.weight = bnb.nn.Int8Params(
        linear.weight.data.clone(),
        requires_grad=False,
        has_fp16_weights=False,
    )
    linear_custom.bias = linear.bias
    linear_custom = linear_custom.cuda()
    return linear_custom


def test_linear8bit_copy_param(linear8bit):
    shallow_copy = copy.copy(linear8bit)
    assert linear8bit.weight is shallow_copy.weight
    assert linear8bit.bias is shallow_copy.bias
    assert linear8bit.weight.data.data_ptr() == shallow_copy.weight.data.data_ptr()


def test_linear8bit_deepcopy_param(linear8bit):
    deep_copy = copy.deepcopy(linear8bit)
    assert linear8bit.weight is not deep_copy.weight
    assert linear8bit.bias is not deep_copy.bias
    assert linear8bit.weight.data.data_ptr() != deep_copy.weight.data.data_ptr()
    assert torch.allclose(linear8bit.weight.data, deep_copy.weight.data)
    assert linear8bit.state == deep_copy.state

    # check for a bug where SCB and CB were not copied
    assert deep_copy.weight.SCB is not None
    assert (linear8bit.weight.SCB == deep_copy.weight.SCB).all()
    assert deep_copy.weight.CB is not None
    assert (linear8bit.weight.CB == deep_copy.weight.CB).all()


def test_linear8bit_serialization(linear8bit):
    serialized = pickle.dumps(linear8bit)
    deserialized = pickle.loads(serialized)
    assert linear8bit.weight.data.data_ptr() != deserialized.weight.data.data_ptr()
    assert torch.allclose(linear8bit.weight.data, deserialized.weight.data)
    assert linear8bit.bias.data.data_ptr() != deserialized.bias.data.data_ptr()
    assert torch.allclose(linear8bit.bias.data, deserialized.bias.data)
    assert linear8bit.state == deserialized.state

    # check for a bug where SCB and CB were not copied
    assert (linear8bit.weight.SCB == deserialized.weight.SCB).all()
    assert (linear8bit.weight.CB == deserialized.weight.CB).all()