test_linear8bitlt.py 7.97 KB
Newer Older
1
from contextlib import nullcontext
2
import copy
Aarni Koskela's avatar
Aarni Koskela committed
3
import os
4
import pickle
5
from tempfile import TemporaryDirectory
6

7
8
9
import pytest
import torch

10
import bitsandbytes as bnb
11
from bitsandbytes.nn.modules import Linear8bitLt
12
13
from tests.helpers import (
    TRUE_FALSE,
14
    get_available_devices,
15
16
17
18
    id_formatter,
    torch_load_from_buffer,
    torch_save_to_buffer,
)
19

20

21
22
# contributed by Alex Borzunov, see:
# https://github.com/bigscience-workshop/petals/blob/main/tests/test_linear8bitlt.py
23
24
25
26
27
@pytest.mark.parametrize("device", get_available_devices())
def test_linear_no_igemmlt(device):
    if device == "cpu":
        pytest.xfail("Not yet implemented on CPU")

28
29
30
31
32
33
34
35
36
    linear = torch.nn.Linear(1024, 3072)
    x = torch.randn(3, 1024, dtype=torch.half)
    linear_custom = Linear8bitLt(
        linear.in_features,
        linear.out_features,
        linear.bias is not None,
        has_fp16_weights=False,
        threshold=6.0,
    )
37
38

    # TODO: Remove, this is no longer implemented
39
40
41
    linear_custom.state.force_no_igemmlt = True

    linear_custom.weight = bnb.nn.Int8Params(
Ruff's avatar
Ruff committed
42
43
44
        linear.weight.data.clone(),
        requires_grad=False,
        has_fp16_weights=False,
45
46
    ).to(linear.weight.dtype)
    linear_custom.bias = linear.bias
47
48
    linear_custom = linear_custom.to(device)
    linear = linear.half().to(device)
49

50
51
    x_ref = x.clone().to(device).requires_grad_(True)
    x_ours = x.clone().to(device).requires_grad_(True)
52
53
54
55
56
57
    fx_ref = linear(x_ref).float()
    grad_proj = torch.randn_like(fx_ref)
    (fx_ref * grad_proj).mean().backward()

    fx_ours = linear_custom(x_ours).float()
    (fx_ours * grad_proj).mean().backward()
58

59
    assert linear_custom.state.CB is not None
60
61
62
63
64
65
    assert not linear_custom.state.has_fp16_weights

    idx = torch.isclose(fx_ref, fx_ours, atol=0.02, rtol=1e-5)
    assert (idx == 0).sum().item() < fx_ref.numel() * 2.5e-4
    torch.testing.assert_close(fx_ref, fx_ours, atol=0.03, rtol=1e-5)
    torch.testing.assert_close(x_ref.grad, x_ours.grad, atol=0.01, rtol=1e-5)
66
67


68
@pytest.mark.parametrize("device", get_available_devices())
Aarni Koskela's avatar
Aarni Koskela committed
69
@pytest.mark.parametrize("has_fp16_weights", TRUE_FALSE, ids=id_formatter("has_fp16_weights"))
70
@pytest.mark.parametrize("threshold", [0.0, 6.0], ids=id_formatter("threshold"))
Aarni Koskela's avatar
Aarni Koskela committed
71
72
@pytest.mark.parametrize("serialize_before_forward", TRUE_FALSE, ids=id_formatter("serialize_before_forward"))
@pytest.mark.parametrize("deserialize_before_cuda", TRUE_FALSE, ids=id_formatter("deserialize_before_cuda"))
73
74
@pytest.mark.parametrize("save_before_forward", TRUE_FALSE, ids=id_formatter("save_before_forward"))
@pytest.mark.parametrize("load_before_cuda", TRUE_FALSE, ids=id_formatter("load_before_cuda"))
Ruff's avatar
Ruff committed
75
def test_linear_serialization(
76
    device,
Ruff's avatar
Ruff committed
77
    has_fp16_weights,
78
    threshold,
Ruff's avatar
Ruff committed
79
80
81
82
83
    serialize_before_forward,
    deserialize_before_cuda,
    save_before_forward,
    load_before_cuda,
):
84
85
86
    if device == "cpu":
        pytest.xfail("Not yet implemented on CPU")

87
    linear = torch.nn.Linear(32, 96)
88
89
90
    # TODO: Fallback for bad shapes
    x = torch.randn(4, 32, dtype=torch.half)
    # x = torch.randn(3, 32, dtype=torch.half)
91
92
93
94
95
96

    linear_custom = Linear8bitLt(
        linear.in_features,
        linear.out_features,
        linear.bias is not None,
        has_fp16_weights=has_fp16_weights,
97
        threshold=threshold,
98
    )
99

100
    linear_custom.weight = bnb.nn.Int8Params(
Ruff's avatar
Ruff committed
101
102
103
        linear.weight.data.clone(),
        requires_grad=has_fp16_weights,
        has_fp16_weights=has_fp16_weights,
104
    )
105
    linear_custom.bias = linear.bias
106
    linear_custom = linear_custom.to(device)
107

108
109
110
    if serialize_before_forward:
        state_dict_8bit = linear_custom.state_dict()

111
112
113
    if save_before_forward:
        bytes_8bit = torch_save_to_buffer(linear_custom)

114
115
116
117
118
    x_first = x.clone().cuda().requires_grad_(True)
    fx_first = linear_custom(x_first).float()
    grad_proj = torch.randn_like(fx_first)
    (fx_first * grad_proj).mean().backward()

119
120
121
    if not serialize_before_forward:
        state_dict_8bit = linear_custom.state_dict()

122
123
124
    if not save_before_forward:
        bytes_8bit = torch_save_to_buffer(linear_custom)

125
126
127
128
129
130
131
132
133
134
    with TemporaryDirectory() as tmpdir:
        state_path_8bit = os.path.join(tmpdir, "state_8bit.pth")
        state_path = os.path.join(tmpdir, "state.pth")

        torch.save(linear.state_dict(), state_path)
        torch.save(state_dict_8bit, state_path_8bit)

        if not has_fp16_weights:
            assert os.path.getsize(state_path_8bit) < 0.5 * os.path.getsize(state_path)

135
        new_state_dict = torch.load(state_path_8bit, weights_only=False)
136
137
138
139
140
141

    new_linear_custom = Linear8bitLt(
        linear.in_features,
        linear.out_features,
        linear.bias is not None,
        has_fp16_weights=has_fp16_weights,
142
        threshold=threshold,
143
    )
144
145
146
147
148

    if deserialize_before_cuda:
        with nullcontext() if has_fp16_weights else pytest.raises(RuntimeError):
            new_linear_custom.load_state_dict(new_state_dict, strict=True)

149
150
151
    if load_before_cuda:
        new_linear_custom2 = torch_load_from_buffer(bytes_8bit)

152
    new_linear_custom = new_linear_custom.to(device)
153
154
155

    if not deserialize_before_cuda:
        new_linear_custom.load_state_dict(new_state_dict, strict=True)
156

157
158
159
    if not load_before_cuda:
        new_linear_custom2 = torch_load_from_buffer(bytes_8bit)

160
161
162
163
    x_second = x.clone().cuda().requires_grad_(True)
    fx_second = new_linear_custom(x_second).float()
    (fx_second * grad_proj).mean().backward()

164
165
166
167
    x_third = x.clone().cuda().requires_grad_(True)
    fx_third = new_linear_custom2(x_third).float()
    (fx_third * grad_proj).mean().backward()

168
169
170
171
    # if 8-bit weights were loaded before .cuda, state is incorrect anyway and RuntimeError was raised
    if has_fp16_weights or not deserialize_before_cuda:
        assert torch.allclose(fx_first, fx_second, atol=1e-5)
        assert torch.allclose(x_first.grad, x_second.grad, atol=1e-5)
172
    assert torch.allclose(fx_first, fx_third, atol=1e-5)
173
    assert torch.allclose(x_first.grad, x_third.grad, atol=1e-5)
174
175
176


@pytest.fixture
177
def linear8bit(requires_cuda):
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    linear = torch.nn.Linear(32, 96)
    linear_custom = Linear8bitLt(
        linear.in_features,
        linear.out_features,
        linear.bias is not None,
        has_fp16_weights=False,
        threshold=6.0,
    )
    linear_custom.weight = bnb.nn.Int8Params(
        linear.weight.data.clone(),
        requires_grad=False,
        has_fp16_weights=False,
    )
    linear_custom.bias = linear.bias
    linear_custom = linear_custom.cuda()
    return linear_custom


def test_linear8bit_copy_param(linear8bit):
    shallow_copy = copy.copy(linear8bit)
    assert linear8bit.weight is shallow_copy.weight
    assert linear8bit.bias is shallow_copy.bias
    assert linear8bit.weight.data.data_ptr() == shallow_copy.weight.data.data_ptr()


def test_linear8bit_deepcopy_param(linear8bit):
    deep_copy = copy.deepcopy(linear8bit)
    assert linear8bit.weight is not deep_copy.weight
    assert linear8bit.bias is not deep_copy.bias
    assert linear8bit.weight.data.data_ptr() != deep_copy.weight.data.data_ptr()
    assert torch.allclose(linear8bit.weight.data, deep_copy.weight.data)
    assert linear8bit.state == deep_copy.state

    # check for a bug where SCB and CB were not copied
    assert deep_copy.weight.SCB is not None
    assert (linear8bit.weight.SCB == deep_copy.weight.SCB).all()
    assert deep_copy.weight.CB is not None
    assert (linear8bit.weight.CB == deep_copy.weight.CB).all()


def test_linear8bit_serialization(linear8bit):
    serialized = pickle.dumps(linear8bit)
    deserialized = pickle.loads(serialized)
    assert linear8bit.weight.data.data_ptr() != deserialized.weight.data.data_ptr()
    assert torch.allclose(linear8bit.weight.data, deserialized.weight.data)
    assert linear8bit.bias.data.data_ptr() != deserialized.bias.data.data_ptr()
    assert torch.allclose(linear8bit.bias.data, deserialized.bias.data)
    assert linear8bit.state == deserialized.state

    # check for a bug where SCB and CB were not copied
    assert (linear8bit.weight.SCB == deserialized.weight.SCB).all()
    assert (linear8bit.weight.CB == deserialized.weight.CB).all()