kernels.cu 150 KB
Newer Older
1
2
3
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
Tim Dettmers's avatar
Tim Dettmers committed
4
5
// LICENSE file in the root directory of this source tree.

6
7
8
#include "kernels.cuh"
#include "common.cuh"
#include <cuda_fp16.h>
Tim Dettmers's avatar
Tim Dettmers committed
9
10
11
12
13
14
15
16
#include <cub/block/block_radix_sort.cuh>
#include <cub/warp/warp_reduce.cuh>
#include <cub/block/block_load.cuh>
#include <cub/block/block_discontinuity.cuh>
#include <cub/block/block_store.cuh>
#include <cub/block/block_reduce.cuh>
#include <cub/cub.cuh>
#include <math_constants.h>
Tim Dettmers's avatar
Tim Dettmers committed
17
#include <mma.h>
Tim Dettmers's avatar
Tim Dettmers committed
18

Tim Dettmers's avatar
Tim Dettmers committed
19

Tim Dettmers's avatar
Tim Dettmers committed
20
21
22
23
24
#define HLF_MAX 65504
#define TH 1024
#define NUM 4
#define NUM_BLOCK 4096

25
__device__ static float nf4_data[16] = {-1.0, -0.6961928009986877, -0.5250730514526367, -0.39491748809814453, -0.28444138169288635, -0.18477343022823334, -0.09105003625154495, 0.0, 0.07958029955625534, 0.16093020141124725, 0.24611230194568634, 0.33791524171829224, 0.44070982933044434, 0.5626170039176941, 0.7229568362236023, 1.0};
Tim Dettmers's avatar
Tim Dettmers committed
26

Tim Dettmers's avatar
Tim Dettmers committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
// source: https://stackoverflow.com/questions/17399119/how-do-i-use-atomicmax-on-floating-point-values-in-cuda
__device__ float atomicMax(float* address, float val) {
  int* address_as_i = reinterpret_cast<int*>(address);
  int old = *address_as_i, assumed;
  do {
    assumed = old;
    old = atomicCAS(
        reinterpret_cast<int*>(address), assumed,
        __float_as_int(fmaxf(val, __int_as_float(assumed))));
  } while (assumed != old);
  return __int_as_float(old);
}

__device__ float atomicMin(float* address, float val) {
  int* address_as_i = reinterpret_cast<int*>(address);
  int old = *address_as_i, assumed;
  do {
    assumed = old;
    old = atomicCAS(
        reinterpret_cast<int*>(address), assumed,
        __float_as_int(fminf(val, __int_as_float(assumed))));
  } while (assumed != old);
  return __int_as_float(old);
}

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
__device__ float dDequantizeFP4(unsigned char val, float absmax)
{
  float sign = (val & 0b1000) == 8 ? -1.0f : 1.0f;
  if((val & 0b0110) == 0)
  {
    // subnormal
    if((val & 0b0001) == 0)
      return 0.0f;
    else
      return sign*0.0625f*absmax;
  }
  else
  {
    // normal
    float exponent = ((val & 0b0100) == 4 ? 2.0f : 8.0f) + ((val & 0b0010) == 2 ? 0.0f : 2.0f);
    float fraction = (val & 0b0001) == 1 ? 1.5f : 1.0f;

    return sign*exponent*fraction*absmax;
  }
}

Tim Dettmers's avatar
Tim Dettmers committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
__device__ float d2DequantizeFP4(unsigned char val)
{
  float sign = (val & 0b1000) == 8 ? -1.0f : 1.0f;
  if((val & 0b0110) == 0)
  {
    // subnormal
    if((val & 0b0001) == 0)
      return 0.0f;
    else
      return sign*0.0625f;
  }
  else
  {
    // normal
    float exponent = ((val & 0b0100) == 4 ? 2.0f : 8.0f) + ((val & 0b0010) == 2 ? 0.0f : 2.0f);
    float fraction = (val & 0b0001) == 1 ? 1.5f : 1.0f;

    return sign*exponent*fraction;
  }
}

Tim Dettmers's avatar
Tim Dettmers committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
__device__ float dDequantizeFP4Tree(unsigned char val, float absmax)
{
  float sign = (val & 0b1000) == 8 ? -1.0f : 1.0f;
  if((val & 0b0100) == 4) // 0
    if((val & 0b0010) == 2) //01
      if((val & 0b0001) == 1) // 111
        return 0.25000000f*absmax*sign; // 1111
      else
        return 0.16666667f*absmax*sign; // 1110
    else
      if((val & 0b0001) == 1) // 110
        return 0.50000000f*absmax*sign; // 1101
      else
        return 0.33333333f*absmax*sign; // 1100
  else
    if((val & 0b0010) == 2) //10
      if((val & 0b0001) == 1) // 101
        return 1.00000000f*absmax*sign; // 1011
      else
        return 0.66666667f*absmax*sign; // 1010
114
    else
Tim Dettmers's avatar
Tim Dettmers committed
115
116
117
118
119
120
      if((val & 0b0001) == 1) // 100
        return 5.208333333e-03f*absmax*sign; // 1001
      else
        return 0.00000000f*absmax*sign; // 1000
}

121
122
123
124
125
126
127
128
129
130
131
132
133
134
__device__ unsigned char dQuantizeFP4(float x)
{
  // FP4 with bias of 3
  // first bit is a sign
  // subnormals
  // 0b000 = 0
  // 0b001 = 0.0625
  // 0b110 = 2
  // 0b111 = 3
  // 0b100 = 4
  // 0b101 = 6
  // 0b010 = 8
  // 0b011 = 12

Tim Dettmers's avatar
Tim Dettmers committed
135
136
137

  // we do a binary search
  // the pivots are divided by 12 (the FP4 absmax)
138
  // since we assume input data is in [-1.0, 1.0]
Tim Dettmers's avatar
Tim Dettmers committed
139
140

  // !be careful here, its easy to make a mistake
141
  // that is difficult to notice if you add an extra
Tim Dettmers's avatar
Tim Dettmers committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
  // zero somewhere!

  int sign = x < 0 ? 0b1000 : 0b0000;
  x = fabsf(x);
  if(x > 0.29166667f)
    if( x > 0.583333f)
      if( x > 0.8333333f)
        return 0b0011+sign;
      else
        return 0b0010+sign;
    else
      if(x > 0.4166667f)
        return 0b101+sign;
      else
        return 0b100+sign;
  else
    if(x > 0.0859375f)
      if(x > 0.20833333f)
        return 0b0111+sign;
      else
        return 0b0110+sign;
    else
      if(x > 0.00260417f)
        return 0b0001+sign;
      else
        return 0b0000+sign;
}

Tim Dettmers's avatar
Tim Dettmers committed
170
171
172
173
174
175
176
177
__device__ half dhDequantizeNF4(unsigned char val)
{
  // the values for this tree was generated by test_normal_map_tree
  // in the file tests/test_functional.py
  if((val & 0b1000) == 8)
    if((val & 0b0100) == 4) // 1
      if((val & 0b0010) == 2) // 11
        if((val & 0b0001) == 1) // 111
178
          return 1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
179
180
181
182
        else
          return 0.7229568362236023f;
      else
        if((val & 0b0001) == 1) // 110
183
          return 0.5626170039176941f;
Tim Dettmers's avatar
Tim Dettmers committed
184
        else
185
          return 0.44070982933044434f;
Tim Dettmers's avatar
Tim Dettmers committed
186
187
188
    else
      if((val & 0b0010) == 2) //10
        if((val & 0b0001) == 1) // 101
189
          return 0.33791524171829224f;
Tim Dettmers's avatar
Tim Dettmers committed
190
        else
191
192
          return 0.24611230194568634f;
      else
Tim Dettmers's avatar
Tim Dettmers committed
193
        if((val & 0b0001) == 1) // 100
194
          return 0.16093020141124725f;
Tim Dettmers's avatar
Tim Dettmers committed
195
        else
196
          return 0.07958029955625534f;
Tim Dettmers's avatar
Tim Dettmers committed
197
198
199
200
201

  else
    if((val & 0b0100) == 4) // 0
      if((val & 0b0010) == 2) //01
        if((val & 0b0001) == 1) // 011
202
          return 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
203
        else
204
          return -0.09105003625154495f;
Tim Dettmers's avatar
Tim Dettmers committed
205
206
      else
        if((val & 0b0001) == 1) // 010
207
          return -0.18477343022823334f;
Tim Dettmers's avatar
Tim Dettmers committed
208
209
210
211
212
213
214
        else
          return -0.28444138169288635f;
    else
      if((val & 0b0010) == 2) //00
        if((val & 0b0001) == 1) // 001
          return -0.39491748809814453f;
        else
215
216
          return -0.5250730514526367f;
      else
Tim Dettmers's avatar
Tim Dettmers committed
217
        if((val & 0b0001) == 1) // 000
218
          return -0.6961928009986877f;
Tim Dettmers's avatar
Tim Dettmers committed
219
        else
220
          return -1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
221
222
223

}

224
__device__ __forceinline__ float dDequantizeNF4(unsigned char val)
Tim Dettmers's avatar
Tim Dettmers committed
225
{
226

Tim Dettmers's avatar
Tim Dettmers committed
227
228
229
230
231
232
  // the values for this tree was generated by test_normal_map_tree
  // in the file tests/test_functional.py
  if((val & 0b1000) == 8)
    if((val & 0b0100) == 4) // 1
      if((val & 0b0010) == 2) // 11
        if((val & 0b0001) == 1) // 111
233
          return 1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
234
        else
Tim Dettmers's avatar
Tim Dettmers committed
235
          return 0.7229568362236023f;
Tim Dettmers's avatar
Tim Dettmers committed
236
237
      else
        if((val & 0b0001) == 1) // 110
238
          return 0.5626170039176941f;
Tim Dettmers's avatar
Tim Dettmers committed
239
        else
240
          return 0.44070982933044434f;
Tim Dettmers's avatar
Tim Dettmers committed
241
242
243
    else
      if((val & 0b0010) == 2) //10
        if((val & 0b0001) == 1) // 101
244
          return 0.33791524171829224f;
Tim Dettmers's avatar
Tim Dettmers committed
245
        else
246
247
          return 0.24611230194568634f;
      else
Tim Dettmers's avatar
Tim Dettmers committed
248
        if((val & 0b0001) == 1) // 100
249
          return 0.16093020141124725f;
Tim Dettmers's avatar
Tim Dettmers committed
250
        else
251
          return 0.07958029955625534f;
Tim Dettmers's avatar
Tim Dettmers committed
252
253
254
255
256

  else
    if((val & 0b0100) == 4) // 0
      if((val & 0b0010) == 2) //01
        if((val & 0b0001) == 1) // 011
257
          return 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
258
        else
259
          return -0.09105003625154495f;
Tim Dettmers's avatar
Tim Dettmers committed
260
261
      else
        if((val & 0b0001) == 1) // 010
262
          return -0.18477343022823334f;
Tim Dettmers's avatar
Tim Dettmers committed
263
        else
Tim Dettmers's avatar
Tim Dettmers committed
264
          return -0.28444138169288635f;
Tim Dettmers's avatar
Tim Dettmers committed
265
266
267
    else
      if((val & 0b0010) == 2) //00
        if((val & 0b0001) == 1) // 001
Tim Dettmers's avatar
Tim Dettmers committed
268
          return -0.39491748809814453f;
Tim Dettmers's avatar
Tim Dettmers committed
269
        else
270
271
          return -0.5250730514526367f;
      else
Tim Dettmers's avatar
Tim Dettmers committed
272
        if((val & 0b0001) == 1) // 000
273
          return -0.6961928009986877f;
Tim Dettmers's avatar
Tim Dettmers committed
274
        else
275
          return -1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
276
277
278

}

279
__device__ unsigned char dQuantizeNF4(float x)
Tim Dettmers's avatar
Tim Dettmers committed
280
281
{

Tim Dettmers's avatar
Tim Dettmers committed
282
283
284
285
286
287
288
289
290
  // the values for this tree was generated by test_normal_map_tree
  // in the file tests/test_functional.py
  if(x > 0.03979014977812767f)
    if(x > 0.3893125355243683f) // 1
      if(x > 0.6427869200706482f) // 11
        if(x > 0.8614784181118011f) // 111
          return 0b1111;
        else
          return 0b1110;
291
      else
Tim Dettmers's avatar
Tim Dettmers committed
292
293
294
295
        if(x > 0.5016634166240692f) // 110
          return 0b1101;
        else
          return 0b1100;
296
    else
Tim Dettmers's avatar
Tim Dettmers committed
297
298
299
300
301
      if(x > 0.2035212516784668f) // 10
        if(x > 0.2920137718319893f) // 101
          return 0b1011;
        else
          return 0b1010;
302
      else
Tim Dettmers's avatar
Tim Dettmers committed
303
304
305
        if(x > 0.1202552504837513f) // 100
          return 0b1001;
        else
306
          return 0b1000;
307
  else
Tim Dettmers's avatar
Tim Dettmers committed
308
309
310
311
312
313
    if(x > -0.33967943489551544f) // 0
      if(x > -0.13791173323988914f) // 01
        if(x > -0.045525018125772476f) // 011
          return 0b0111;
        else
          return 0b0110;
314
      else
Tim Dettmers's avatar
Tim Dettmers committed
315
316
317
318
        if(x > -0.23460740596055984f) // 010
          return 0b0101;
        else
          return 0b0100;
319
    else
Tim Dettmers's avatar
Tim Dettmers committed
320
321
322
323
324
      if(x > -0.6106329262256622f) // 00
        if(x > -0.4599952697753906f) // 001
          return 0b0011;
        else
          return 0b0010;
325
      else
Tim Dettmers's avatar
Tim Dettmers committed
326
327
328
329
        if(x > -0.8480964004993439f) // 000
          return 0b0001;
        else
          return 0b0000;
330
}
331
332
333
// sign function for lion
// taken from https://stackoverflow.com/a/4609795, but not sure if there's a proper way to do this in CUDA

334
335
template <typename T> __device__ int sgn(T val)
{
336
337
  return (T(0) < val) - (val < T(0));
}
338

Tim Dettmers's avatar
Tim Dettmers committed
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
template <int STOCHASTIC>
__device__ unsigned char dQuantize(float* smem_code, const float rand, float x)
{
    int pivot = 127;
    int upper_pivot = 255;
    int lower_pivot = 0;

    float lower = -1.0f;
    float upper = 1.0f;

    float val = smem_code[pivot];
    // i>>=1 = {32, 16, 8, 4, 2, 1}
    for(int i = 64; i > 0; i>>=1)
    {
        if(x > val)
        {
            lower_pivot = pivot;
            lower = val;
            pivot+=i;
        }
        else
        {
            upper_pivot = pivot;
            upper = val;
            pivot-=i;
        }
        val = smem_code[pivot];
    }

    if(upper_pivot == 255)
        upper = smem_code[upper_pivot];
    if(lower_pivot == 0)
        lower = smem_code[lower_pivot];

    if(!STOCHASTIC)
    {
      if(x > val)
      {
        float midpoint = (upper+val)*0.5f;
        if(x > midpoint)
        {
          return upper_pivot;
        }
        else
          return pivot;
      }
      else
      {
        float midpoint = (lower+val)*0.5f;
        if(x < midpoint)
          return lower_pivot;
        else
          return pivot;
      }
    }
    else
    {
      if(x > val)
      {
        float dist_to_upper = fabsf(upper-x);
        float dist_full = upper-val;
        if(rand >= dist_to_upper/dist_full) return upper_pivot;
        else return pivot;
      }
      else
      {
        float dist_to_lower = fabsf(lower-x);
        float dist_full = val-lower;
        if(rand >= dist_to_lower/dist_full) return lower_pivot;
        else return pivot;
      }
    }
}

template <int SIGNED>
__device__ __forceinline__ unsigned char quantize_2D(float *__restrict__ quadrants, float *__restrict__ const smem_code, float x)
{
    int pivot = 127;
    int upper_pivot = 255;
    int lower_pivot = 0;

    float lower = SIGNED ? -1.0f : 0.0f;
    float upper = 1.0f;
    float midpoint;
    float val = quadrants[1];
    int local_pivot = 1;
    int offset = 1;

    // i>>=1 = {32, 16, 8, 4, 2, 1}
    for(int i = 64; i > 0; i>>=1)
    {
        if(x > val)
        {
            lower_pivot = pivot;
            lower = val;
            pivot+=i;
            //val = i == 64 ? quadrants[2] : smem_code[pivot];
            local_pivot += offset;
        }
        else
        {
            upper_pivot = pivot;
            upper = val;
            pivot-=i;
            //val = i == 64 ? quadrants[0] : smem_code[pivot];
            local_pivot -= offset;
        }
        val = i >= 64 ? quadrants[local_pivot] : smem_code[pivot];
        offset -= 1;
    }

    if(x > val)
    {
      midpoint = (upper+val)*0.5f;
      if(x > midpoint)
        return upper_pivot;
      else
        return pivot;
    }
    else
    {
      midpoint = (lower+val)*0.5f;
      if(x < midpoint)
        return lower_pivot;
      else
        return pivot;
    }
}


__global__ void kHistogramScatterAdd2D(float* histogram, int *index1, int *index2, float *src, const int maxidx1, const int n)
{
  const int tid = threadIdx.x + (blockDim.x*blockIdx.x);
  const int numThreads = blockDim.x*gridDim.x;

  for(int i = tid; i < n; i+=numThreads)
  {
      int idx = (index1[i]*maxidx1) + index2[i];
      atomicAdd(&histogram[idx], src[i]);
  }
}

#define THREADS_ESTIMATE 512
#define NUM_ESTIMATE 8
#define BLOCK_ESTIMATE 4096

template<typename T>
__launch_bounds__(THREADS_ESTIMATE, 1)
__global__ void kEstimateQuantiles(T *__restrict__ const A, float *code, const float offset, const T max_val, const int n)
{
  const int n_full = (BLOCK_ESTIMATE*(n/BLOCK_ESTIMATE)) + (n % BLOCK_ESTIMATE == 0 ? 0 : BLOCK_ESTIMATE);
  int valid_items = (blockIdx.x+1 == gridDim.x) ? n - (blockIdx.x*BLOCK_ESTIMATE) : BLOCK_ESTIMATE;
  const int base_idx = (blockIdx.x * BLOCK_ESTIMATE);
  const float reciprocal_num_blocks = 1.0f/(n < 4096 ? 1.0f : (n/BLOCK_ESTIMATE));

  T vals[NUM_ESTIMATE];

  typedef cub::BlockRadixSort<T, THREADS_ESTIMATE, NUM_ESTIMATE, cub::NullType, 4, true, cub::BLOCK_SCAN_RAKING> BlockRadixSort;
  typedef cub::BlockLoad<T, THREADS_ESTIMATE, NUM_ESTIMATE, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;

  __shared__ union {
      typename LoadFloat::TempStorage loadf;
      typename BlockRadixSort::TempStorage sort;
      int smem_qidx[BLOCK_ESTIMATE];
  } temp_storage;

  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_ESTIMATE)
  {
      valid_items = n - i > BLOCK_ESTIMATE ? BLOCK_ESTIMATE : n - i;

      // do not process half-blocks
      if(valid_items < BLOCK_ESTIMATE && n > BLOCK_ESTIMATE){ continue; }

      #pragma unroll 4
      for(int j = 0; j < NUM_ESTIMATE; j++)
          vals[j] = max_val;

      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(A[i]), vals, valid_items);

      #pragma unroll 4
      for(int j = 0; j < NUM_ESTIMATE; j++)
          vals[j] = ((float)vals[j]) * reciprocal_num_blocks;


      __syncthreads();
      // sort into striped pattern to mitigate bank conflicts
      // striped pattern index for thread 0 [0, 1024, 2048, 3096]
      // striped pattern index for thread 1 [1, 1025, 2049, 3097]
      BlockRadixSort(temp_storage.sort).SortBlockedToStriped(vals);

      __syncthreads();
      for(int j = threadIdx.x; j < BLOCK_ESTIMATE; j+=blockDim.x)
          temp_storage.smem_qidx[j] = -1;

534
535
      __syncthreads();

Tim Dettmers's avatar
Tim Dettmers committed
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
      if(threadIdx.x < 256)
      {
          float q_interval = (1.0f-(2.0f*offset))/255.0f;
          int local_idx = round(((offset+(threadIdx.x*q_interval))*(valid_items-1)));
          temp_storage.smem_qidx[local_idx] = threadIdx.x;
      }

      __syncthreads();

      for(int i = threadIdx.x; i < BLOCK_ESTIMATE; i+=blockDim.x)
      {
          if(temp_storage.smem_qidx[i] != -1)
              atomicAdd(&code[temp_storage.smem_qidx[i]], vals[i/THREADS_ESTIMATE]);
      }
  }
}


__launch_bounds__(TH, 4)
__global__ void kQuantize(float * code, float * __restrict__ const A, unsigned char *out, const int n)
{
  const int n_full = (NUM_BLOCK*(n/NUM_BLOCK)) + (n % NUM_BLOCK == 0 ? 0 : NUM_BLOCK);
  int valid_items = (blockIdx.x+1 == gridDim.x) ? n - (blockIdx.x*NUM_BLOCK) : NUM_BLOCK;
  const int base_idx = (blockIdx.x * NUM_BLOCK);

  float vals[NUM];
  unsigned char qvals[NUM];
  //const int lane_id = threadIdx.x % 2;

  typedef cub::BlockLoad<float, TH, NUM, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
  typedef cub::BlockStore<unsigned char, TH, NUM, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;

  __shared__ typename LoadFloat::TempStorage loadf;
  __shared__ typename StoreChar::TempStorage storec;
  __shared__ float smem_code[256];
  //__shared__ float smem_code[2][257];

  if(threadIdx.x < 256)
  {
    smem_code[threadIdx.x] = code[threadIdx.x];
    //smem_code[0][threadIdx.x] = code[threadIdx.x];
    //smem_code[1][threadIdx.x] = smem_code[0][threadIdx.x];
  }


  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*NUM_BLOCK)
  {
      // number of values already processed in blocks +
      // number of values already processed in this block +
      // rand_offset % mod value
      valid_items = n - i > NUM_BLOCK ? NUM_BLOCK : n - i;

      __syncthreads();
      LoadFloat(loadf).Load(&(A[i]), vals, valid_items);


      #pragma unroll 4
      for(int j = 0; j < NUM; j++)
          qvals[j] = dQuantize<0>(smem_code, 0.0f, vals[j]);

      __syncthreads();
      StoreChar(storec).Store(&(out[i]), qvals, valid_items);
  }
}

Tim Dettmers's avatar
Tim Dettmers committed
601
template<typename T, int BLOCK_SIZE, int NUM_PER_TH, int STOCHASTIC, int DATA_TYPE>
602
//__launch_bounds__(TH, 4)
Tim Dettmers's avatar
Tim Dettmers committed
603
604
605
606
607
608
__global__ void kQuantizeBlockwise(float * code, T * __restrict__ const A, float *absmax, unsigned char *out, float * __restrict__ const rand, const int rand_offset, const int n)
{
  const int n_full = gridDim.x * BLOCK_SIZE;
  int valid_items = 0;
  const int base_idx = (blockIdx.x * BLOCK_SIZE);

609
610
  T vals[NUM_PER_TH];
  float rand_vals[NUM_PER_TH];
Tim Dettmers's avatar
Tim Dettmers committed
611
  unsigned char qvals[(DATA_TYPE > 0) ? NUM_PER_TH/2 : NUM_PER_TH];
Tim Dettmers's avatar
Tim Dettmers committed
612
613
614
615
616
  //float local_abs_max = -FLT_MAX;
  float local_abs_max = 0.0f;
  int local_rand_idx = 0;

  typedef cub::BlockLoad<T, BLOCK_SIZE/NUM_PER_TH, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
Tim Dettmers's avatar
Tim Dettmers committed
617
  typedef cub::BlockStore<unsigned char, BLOCK_SIZE/NUM_PER_TH, (DATA_TYPE > 0) ? NUM_PER_TH/2 : NUM_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
Tim Dettmers's avatar
Tim Dettmers committed
618
619
620
621
622
623
624
625
626
627
  typedef cub::BlockReduce<float, BLOCK_SIZE/NUM_PER_TH> BlockReduce;
  typedef cub::BlockLoad<float, BLOCK_SIZE/NUM_PER_TH, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;

  __shared__ typename LoadT::TempStorage loadt;
  __shared__ typename LoadFloat::TempStorage loadf;
  __shared__ typename StoreChar::TempStorage storec;
  __shared__ typename BlockReduce::TempStorage reduce;
  __shared__ float smem_code[256];
  __shared__ float smem_absmax_value[1];

Tim Dettmers's avatar
Tim Dettmers committed
628
  if(DATA_TYPE == General8bit)
629
630
    for(int i = threadIdx.x; i < 256; i+=blockDim.x)
      smem_code[i] = code[i];
Tim Dettmers's avatar
Tim Dettmers committed
631

632
  for (int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
Tim Dettmers's avatar
Tim Dettmers committed
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
  {
    valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
    local_abs_max = -FLT_MAX;

    __syncthreads();
    LoadT(loadt).Load(&(A[i]), vals, valid_items, (T)0.0f);

    // 1. compute local max
    // 2. broadcast local max
    // 3. normalize inputs and quantize

    #pragma unroll NUM_PER_TH
    for(int j = 0; j < NUM_PER_TH; j++)
       local_abs_max = fmaxf(local_abs_max, fabsf((float)vals[j]));

    local_abs_max = BlockReduce(reduce).Reduce(local_abs_max, cub::Max(), valid_items);

650
651
652
653
    if (threadIdx.x == 0) {
      smem_absmax_value[0] = 1.0f / local_abs_max;
      absmax[i / BLOCK_SIZE] = local_abs_max;
    }
Tim Dettmers's avatar
Tim Dettmers committed
654
655
    __syncthreads();

656
    local_abs_max = smem_absmax_value[0];
Tim Dettmers's avatar
Tim Dettmers committed
657
658
659
660
661
662
663

    if(STOCHASTIC)
    {
      local_rand_idx = ((blockIdx.x*NUM_BLOCK) + (threadIdx.x*NUM) + rand_offset) % (1024-4);
      LoadFloat(loadf).Load(&rand[local_rand_idx], rand_vals, BLOCK_SIZE, 0);
    }

Tim Dettmers's avatar
Tim Dettmers committed
664
665
    unsigned char packed_4bit = 0;
    switch(DATA_TYPE)
Tim Dettmers's avatar
Tim Dettmers committed
666
    {
Tim Dettmers's avatar
Tim Dettmers committed
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
        case General8bit:
            #pragma unroll NUM_PER_TH
            for(int j = 0; j < NUM_PER_TH; j++)
            {
                if(!STOCHASTIC)
                 qvals[j] = dQuantize<0>(smem_code, 0.0f, ((float)vals[j])*local_abs_max);
                else
                 qvals[j] = dQuantize<1>(smem_code, rand_vals[j], ((float)vals[j])*local_abs_max);
            }
            break;
        case FP4:
            #pragma unroll NUM_PER_TH
            for(int j = 0; j < NUM_PER_TH/2; j++)
            {
              packed_4bit |= dQuantizeFP4(((float)vals[2*j])*local_abs_max) << 4;
              packed_4bit |= dQuantizeFP4(((float)vals[2*j+1])*local_abs_max);
              qvals[j] = packed_4bit;
            }
            break;
        case NF4:
            #pragma unroll NUM_PER_TH
            for(int j = 0; j < NUM_PER_TH/2; j++)
            {
690
691
              packed_4bit |= dQuantizeNF4(((float)vals[2*j])*local_abs_max) << 4;
              packed_4bit |= dQuantizeNF4(((float)vals[2*j+1])*local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
692
693
694
              qvals[j] = packed_4bit;
            }
            break;
Tim Dettmers's avatar
Tim Dettmers committed
695
696
697
    }

    __syncthreads();
Tim Dettmers's avatar
Tim Dettmers committed
698
    StoreChar(storec).Store(&(out[(DATA_TYPE > 0) ? i/2 : i]), qvals, (DATA_TYPE > 0) ? (valid_items+1)/2 : valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
699
700
701
  }
}

702
template<typename T, int TILE_SIZE, int THREADS, int NUM_PER_TH, int DATA_TYPE>
703
__global__ void kDequantizeBlockwise(float *code, unsigned char * A, float * absmax, T *out, const int blocksize, const int n)
Tim Dettmers's avatar
Tim Dettmers committed
704
705
{

706
707
708
709
  const int n_load = (gridDim.x * TILE_SIZE);
  int valid_items_load = 0;
  int valid_items_store = 0;
  const int base_idx = (blockIdx.x * TILE_SIZE);
Tim Dettmers's avatar
Tim Dettmers committed
710

711
  T vals[NUM_PER_TH*((DATA_TYPE > 0) ? 2 : 1)];
712
  unsigned char qvals[NUM_PER_TH];
Tim Dettmers's avatar
Tim Dettmers committed
713
714
715
  float local_abs_max = -FLT_MAX;

  typedef cub::BlockLoad<unsigned char, THREADS, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
716
  typedef cub::BlockStore<T, THREADS, NUM_PER_TH*((DATA_TYPE > 0) ? 2 : 1), cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;
Tim Dettmers's avatar
Tim Dettmers committed
717
718
719
720

  __shared__ typename LoadChar::TempStorage loadchar;
  __shared__ typename StoreT::TempStorage storet;

721
  for (int i = base_idx; i < n_load; i += gridDim.x*TILE_SIZE)
Tim Dettmers's avatar
Tim Dettmers committed
722
  {
723
    if (DATA_TYPE > 0)
724
    {
725
726
      valid_items_load = min(TILE_SIZE, (n + 1) / 2 - i);
      valid_items_store = min(TILE_SIZE * 2, n - i * 2);
727
728
729
    }
    else
    {
730
731
      valid_items_load = min(TILE_SIZE, n - i);
      valid_items_store = valid_items_load;
732
    }
733
734
735
736
737

    // Since blocksize will always be a power-of-2, we avoid more expensive
    // division by the blocksize and instead use a shift operation.
    // This is equivalent to (i+threadId.x*NUM_PER_TH)/blocksize.
    local_abs_max = __ldg(&absmax[(i+threadIdx.x*NUM_PER_TH) >> (31 - __clz(blocksize))]);
Tim Dettmers's avatar
Tim Dettmers committed
738

739
740
    __syncthreads();
    LoadChar(loadchar).Load(&(A[i]), qvals, valid_items_load, 128);
Tim Dettmers's avatar
Tim Dettmers committed
741

742
    switch (DATA_TYPE)
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
    {
        case General8bit:
          // load code through read-only cache via __ldg
          #pragma unroll NUM_PER_TH
          for(int j = 0; j < NUM_PER_TH; j++)
            vals[j] = __ldg(&code[qvals[j]])*local_abs_max;
          break;
        case FP4:
          #pragma unroll NUM_PER_TH
          for(int j = 0; j < NUM_PER_TH; j++)
          {
            vals[j*2] = dDequantizeFP4Tree(qvals[j] >> 4, local_abs_max);
            vals[j*2 + 1] = dDequantizeFP4Tree(qvals[j] & 0x0F, local_abs_max);
          }
          break;
        case NF4:
          #pragma unroll NUM_PER_TH
          for(int j = 0; j < NUM_PER_TH; j++)
          {
Tim Dettmers's avatar
Tim Dettmers committed
762
763
            vals[j*2] = dDequantizeNF4(qvals[j] >> 4)* local_abs_max;
            vals[j*2 + 1] = dDequantizeNF4(qvals[j] & 0x0F)* local_abs_max;
764
765
766
          }
          break;
    }
Tim Dettmers's avatar
Tim Dettmers committed
767

768
769
    __syncthreads();
    StoreT(storet).Store(&(out[(DATA_TYPE > 0) ? i*2 : i]), vals, valid_items_store);
Tim Dettmers's avatar
Tim Dettmers committed
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
  }
}

__global__ void kDequantize(float *code, unsigned char *A, float *out, const int n)
{
	const unsigned int numThreads = blockDim.x * gridDim.x;
	const int idx = (blockIdx.x * blockDim.x) + threadIdx.x;

	__shared__ float smem_code[256];
	if(threadIdx.x < 256)
	{
		smem_code[threadIdx.x] = code[threadIdx.x];
	}

	__syncthreads();

	for (int i = idx;i < n; i += numThreads)
	{
		out[i] = smem_code[A[i]];
	}
}



template<typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__launch_bounds__(BLOCK_SIZE/NUM_VALS, 1)
796
__global__ void kPreconditionOptimizer32bit2State(T* g, T* p,
Tim Dettmers's avatar
Tim Dettmers committed
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
                float* state1, float* state2, float *unorm,
                const float beta1, const float beta2, const float eps, const float weight_decay,
                const int step, const float lr, const float gnorm_scale, const int n)
{

  const int n_full = (BLOCK_SIZE*(n/BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
  const int base_idx = (blockIdx.x * blockDim.x * NUM_VALS);
  int valid_items = 0;

  T g_vals[NUM_VALS];

  float s1_vals[NUM_VALS];
  float s2_vals[NUM_VALS];

  const float correction1 = 1.0f/(1.0f - powf(beta1, step));
  const float correction2 = 1.0f/(1.0f - powf(beta2, step));

  typedef cub::BlockLoad<T, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
  typedef cub::BlockLoad<float, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
  typedef cub::BlockReduce<float, BLOCK_SIZE/NUM_VALS> BlockReduce;

  __shared__ union {
      typename Load::TempStorage load;
      typename LoadFloat::TempStorage loadf;
      typename BlockReduce::TempStorage reduce;
  } temp_storage;

  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
  {
      valid_items = n - i >= (BLOCK_SIZE) ? (BLOCK_SIZE) : n - i;

      __syncthreads();
      Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items, 0.0f);
      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items, 0.0f);
      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(state2[i]), s2_vals, valid_items, 0.0f);

      # pragma unroll NUM_VALS
      for(unsigned int j = 0; j < NUM_VALS; j++)
        g_vals[j] = gnorm_scale*((float)g_vals[j]);

      # pragma unroll NUM_VALS
      for(unsigned int j = 0; j < NUM_VALS; j++)
      {
          switch(OPTIMIZER)
          {
844
              case ADAM:
Tim Dettmers's avatar
Tim Dettmers committed
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
                  s1_vals[j] = s1_vals[j]*beta1 + ((1.0f -beta1)*((float)g_vals[j]));
                  s2_vals[j] = s2_vals[j]*beta2 + ((1.0f -beta2)*(((float)g_vals[j])*((float)g_vals[j])));
                  s1_vals[j] *= correction1;
                  s2_vals[j] *= correction2;
                  s1_vals[j] = s1_vals[j]/(sqrtf(s2_vals[j])+eps); // update
                  s1_vals[j] *= s1_vals[j]; // update l2 norm (update*update)
                  break;
          }
      }

      # pragma unroll NUM_VALS-1
      for(unsigned int j = 1; j < NUM_VALS; j++)
          s1_vals[0] += s1_vals[j];

      __syncthreads();
      s1_vals[0] = BlockReduce(temp_storage.reduce).Sum(s1_vals[0]);

      if(threadIdx.x == 0)
        atomicAdd(&unorm[0], s1_vals[0]);

      __syncwarp();
  }
}



#define NUM_PER_THREAD 4

template<typename T, int OPTIMIZER>
__launch_bounds__(TH, 1)
875
__global__ void kOptimizer32bit2State(T* g, T* p,
Tim Dettmers's avatar
Tim Dettmers committed
876
                float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
877
                const float beta1, const float beta2, const float beta3, const float alpha, const float eps, const float weight_decay,
878
                const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n)
Tim Dettmers's avatar
Tim Dettmers committed
879
880
881
882
883
884
885
886
887
{

  const int n_full = ((TH*NUM_PER_THREAD)*(n/(TH*NUM_PER_THREAD))) + (n % (TH*NUM_PER_THREAD) == 0 ? 0 : (TH*NUM_PER_THREAD));
  const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
  int valid_items = 0;
  float update_scale = 0.0f;
  T g_vals[NUM_PER_THREAD];
  T p_vals[NUM_PER_THREAD];

888

Tim Dettmers's avatar
Tim Dettmers committed
889
890
891
  float s1_vals[NUM_PER_THREAD];
  float s2_vals[NUM_PER_THREAD];

892
893
894
895
896
897
  // AdEMAMix has an additional state buffer, which we packed
  // into state1. We need thread-local storage here for these.
  // TODO: Mark with [[maybe_unused]] after upgrade to min compiler.
  float s3_vals[NUM_PER_THREAD];


Tim Dettmers's avatar
Tim Dettmers committed
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
  const float correction1 = 1.0f - powf(beta1, step);
  const float correction2 = sqrtf(1.0f - powf(beta2, step));
  const float step_size = -lr*correction2/correction1;

  if(max_unorm > 0.0f)
  {
    update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
    if(update_scale > max_unorm*param_norm){ update_scale = (max_unorm*param_norm)/update_scale; }
    else{ update_scale = 1.0f; }
  }
  else{ update_scale = 1.0f; }

  typedef cub::BlockLoad<T, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
  typedef cub::BlockStore<T, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> Store;

  typedef cub::BlockLoad<float, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
  typedef cub::BlockStore<float, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreFloat;

  __shared__ union {
      typename Load::TempStorage load;
      typename Store::TempStorage store;
      typename LoadFloat::TempStorage loadf;
      typename StoreFloat::TempStorage storef;
  } temp_storage;

  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*TH*NUM_PER_THREAD)
  {
      valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;

      __syncthreads();
      Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items);
      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items);
      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(state2[i]), s2_vals, valid_items);
      __syncthreads();
      Load(temp_storage.load).Load(&(p[i]), p_vals, valid_items);

936
937
938
939
940
941
942
      // Load additional state1 data for AdEMAMix
      // TODO: Make constexpr after updating min compiler
      if (OPTIMIZER == ADEMAMIX) {
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[n + i]), s3_vals, valid_items);
      }

Tim Dettmers's avatar
Tim Dettmers committed
943
944
945
946
947
948
949
950
951
      # pragma unroll 4
      for(unsigned int j = 0; j < NUM_PER_THREAD; j++)
        g_vals[j] = gnorm_scale*((float)g_vals[j]);

      # pragma unroll 4
      for(unsigned int j = 0; j < NUM_PER_THREAD; j++)
      {
          switch(OPTIMIZER)
          {
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
              case ADEMAMIX:
                // m1 update: m1 = beta1 * m1 + (1-beta1) * g
                s1_vals[j] = (s1_vals[j] * beta1) + ((1.0f - beta1) * (float)g_vals[j]);

                // m2 update: m2 = m2 * beta3 + (1-beta3) * g
                s3_vals[j] = (s3_vals[j] * beta3) + ((1.0f - beta3) * (float)g_vals[j]);

                // nu update: nu = beta2 * nu + (1-beta2) * g^2
                s2_vals[j] = (s2_vals[j] * beta2) + ((1.0f - beta2) * (float)g_vals[j] * (float)g_vals[j]);

                p_vals[j] = (float)p_vals[j] - lr * (
                  ((s1_vals[j] / correction1) + (alpha * s3_vals[j])) / (
                    (sqrtf(s2_vals[j]) / correction2) + eps
                  )
                );

                if (weight_decay > 0.0f)
                    p_vals[j] = ((float)p_vals[j]) * (1.0f - (lr * weight_decay));

              break;
972
              case ADAM:
973

974
									if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
975
976
977
978
									{
										s1_vals[j] = s1_vals[j]*beta1 + ((1.0f -beta1)*((float)g_vals[j]));
										s2_vals[j] = s2_vals[j]*beta2 + ((1.0f -beta2)*(((float)g_vals[j])*((float)g_vals[j])));
										p_vals[j] = ((float)p_vals[j]) + (update_scale*step_size*(s1_vals[j]/(sqrtf(s2_vals[j])+(eps*correction2))));
Tim Dettmers's avatar
Tim Dettmers committed
979
980
981

                    if(weight_decay > 0.0f)
                        p_vals[j] = ((float)p_vals[j])*(1.0f-(lr*weight_decay));
982
									}
Tim Dettmers's avatar
Tim Dettmers committed
983
984
985
986
987
988
989
990
991
992
                  break;
          }
      }

      __syncthreads();
      Store(temp_storage.store).Store(&(p[i]), p_vals, valid_items);
      __syncthreads();
      StoreFloat(temp_storage.storef).Store(&(state1[i]), s1_vals, valid_items);
      __syncthreads();
      StoreFloat(temp_storage.storef).Store(&(state2[i]), s2_vals, valid_items);
993
994
995
996
997

      if (OPTIMIZER == ADEMAMIX) {
        __syncthreads();
        StoreFloat(temp_storage.storef).Store(&(state1[n + i]), s3_vals, valid_items);
      }
Tim Dettmers's avatar
Tim Dettmers committed
998
999
1000
1001
1002
  }
}

template<typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__launch_bounds__(BLOCK_SIZE/NUM_VALS, 1)
1003
__global__ void kPreconditionOptimizer32bit1State(T* g, T* p,
Tim Dettmers's avatar
Tim Dettmers committed
1004
                float* state1, float *unorm,
1005
                const float beta1, const float beta2, const float eps, const float weight_decay,
Tim Dettmers's avatar
Tim Dettmers committed
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
                const int step, const float lr, const float gnorm_scale, const int n)
{

  const int n_full = (BLOCK_SIZE*(n/BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
  const int base_idx = (blockIdx.x * blockDim.x * NUM_VALS);
  int valid_items = 0;

  T g_vals[NUM_VALS];

  float s1_vals[NUM_VALS];

  typedef cub::BlockLoad<T, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
  typedef cub::BlockLoad<float, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
  typedef cub::BlockReduce<float, BLOCK_SIZE/NUM_VALS> BlockReduce;

  __shared__ union {
      typename Load::TempStorage load;
      typename LoadFloat::TempStorage loadf;
      typename BlockReduce::TempStorage reduce;
  } temp_storage;

  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
  {
      valid_items = n - i >= (BLOCK_SIZE) ? (BLOCK_SIZE) : n - i;

      __syncthreads();
      Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items, 0.0f);
      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items, 0.0f);

      # pragma unroll NUM_VALS
      for(unsigned int j = 0; j < NUM_VALS; j++)
        g_vals[j] = gnorm_scale*((float)g_vals[j]);

      # pragma unroll NUM_VALS
      for(unsigned int j = 0; j < NUM_VALS; j++)
      {
          switch(OPTIMIZER)
          {
1045
              case MOMENTUM:
Tim Dettmers's avatar
Tim Dettmers committed
1046
1047
1048
1049
1050
1051
                  if(step == 1)
                    s1_vals[j] = (float)g_vals[j]; // state update
                  else
                    s1_vals[j] = s1_vals[j]*beta1 + ((float)g_vals[j]); // state update
                  s1_vals[j] = s1_vals[j]*s1_vals[j]; // update norm
                  break;
1052
              case LION:
Phil Wang's avatar
Phil Wang committed
1053
                  s1_vals[j] = s1_vals[j]*beta2 + ((1.0f-beta2)*(float)g_vals[j]); // state update
1054
                  break;
1055
              case RMSPROP:
Tim Dettmers's avatar
Tim Dettmers committed
1056
1057
1058
1059
                  s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*((float)g_vals[j])*((float)g_vals[j])); // state update
                  s1_vals[j] = __fdividef((float)g_vals[j],sqrtf(s1_vals[j])+eps); // update value
                  s1_vals[j] = s1_vals[j]*s1_vals[j]; // update norm
                  break;
1060
              case ADAGRAD:
1061
1062
1063
1064
                  s1_vals[j] = s1_vals[j] + ((float)g_vals[j])*((float)g_vals[j]); // state update
                  s1_vals[j] = __fdividef((float)g_vals[j],sqrtf(s1_vals[j])+eps); // update value
                  s1_vals[j] = s1_vals[j]*s1_vals[j]; // update norm
                  break;
Tim Dettmers's avatar
Tim Dettmers committed
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
          }
      }

      # pragma unroll
      for(unsigned int j = 1; j < NUM_VALS; j++)
        s1_vals[0] += s1_vals[j];

      __syncthreads();
      s1_vals[0] = BlockReduce(temp_storage.reduce).Sum(s1_vals[0], valid_items);

      if(threadIdx.x == 0)
        atomicAdd(&unorm[0], s1_vals[0]);

      __syncwarp();
  }
}

template<typename T, int OPTIMIZER>
__launch_bounds__(TH, 1)
1084
__global__ void kOptimizer32bit1State(T *g, T *p,
Tim Dettmers's avatar
Tim Dettmers committed
1085
                float *state1, float *unorm, const float max_unorm, const float param_norm,
1086
                const float beta1, const float beta2, const float eps, const float weight_decay,
1087
                const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n)
Tim Dettmers's avatar
Tim Dettmers committed
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
{

  const int n_full = ((TH*NUM_PER_THREAD)*(n/(TH*NUM_PER_THREAD))) + (n % (TH*NUM_PER_THREAD) == 0 ? 0 : (TH*NUM_PER_THREAD));
  const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
  int valid_items = 0;
  float update_scale = 0.0f;

  if(max_unorm > 0.0f)
  {
    update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
    if(update_scale > max_unorm*param_norm+eps){ update_scale = (max_unorm*param_norm+eps)/update_scale; }
    else{ update_scale = 1.0f; }
  }
  else{ update_scale = 1.0f; }

  T g_vals[NUM_PER_THREAD];
  T p_vals[NUM_PER_THREAD];

  float s1_vals[NUM_PER_THREAD];

  typedef cub::BlockLoad<T, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
  typedef cub::BlockStore<T, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> Store;

  typedef cub::BlockLoad<float, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
  typedef cub::BlockStore<float, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreFloat;

  __shared__ union {
      typename Load::TempStorage load;
      typename Store::TempStorage store;
      typename LoadFloat::TempStorage loadf;
      typename StoreFloat::TempStorage storef;
  } temp_storage;

  for (unsigned int i = base_idx; i < n_full; i += gridDim.x*TH*NUM_PER_THREAD)
  {
      valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;

      __syncthreads();
      Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items);
      __syncthreads();
      LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items);
      __syncthreads();
      Load(temp_storage.load).Load(&(p[i]), p_vals, valid_items);

      # pragma unroll 4
      for(unsigned int j = 0; j < NUM_PER_THREAD; j++)
      {
        g_vals[j] = gnorm_scale*((float)g_vals[j]);
        if(weight_decay > 0.0f)
          g_vals[j] = (float)g_vals[j] + (((float)p_vals[j])*weight_decay);
      }

      # pragma unroll 4
      for(unsigned int j = 0; j < NUM_PER_THREAD; j++)
      {
1143
					if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
1144
1145
1146
					{
						switch(OPTIMIZER)
						{
1147
								case MOMENTUM:
1148
1149
1150
1151
1152
1153
1154
										if(step == 1)
											s1_vals[j] = (float)g_vals[j];
										else
											s1_vals[j] = s1_vals[j]*beta1 + ((float)g_vals[j]);

										p_vals[j] = ((float)p_vals[j]) + update_scale*(-lr*(s1_vals[j]));
										break;
1155
1156
								case LION:
										p_vals[j] = ((float)p_vals[j]) - update_scale*(lr*sgn(((float)s1_vals[j])*beta1 + ((1.0f-beta1)*((float)g_vals[j]))));
Phil Wang's avatar
Phil Wang committed
1157
										s1_vals[j] = s1_vals[j]*beta2 + ((1.0f-beta2)*((float)g_vals[j]));
1158
										break;
1159
								case RMSPROP:
1160
1161
1162
										s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*((float)g_vals[j])*((float)g_vals[j]));
										p_vals[j] = ((float)p_vals[j]) - update_scale*(lr*__fdividef((float)g_vals[j],sqrtf((float)s1_vals[j])+eps));
										break;
1163
								case ADAGRAD:
1164
1165
1166
										s1_vals[j] = s1_vals[j] + ((float)g_vals[j])*((float)g_vals[j]);
										p_vals[j] = ((float)p_vals[j]) - lr*__fdividef((float)g_vals[j],sqrtf((float)s1_vals[j])+eps);
										break;
1167
1168
						}
					}
Tim Dettmers's avatar
Tim Dettmers committed
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
      }

      __syncthreads();
      Store(temp_storage.store).Store(&(p[i]), p_vals, valid_items);
      __syncthreads();
      StoreFloat(temp_storage.storef).Store(&(state1[i]), s1_vals, valid_items);
  }
}


#define NUM8BIT 16
#define NUM_THREADS 256
#define NUM_PER_BLOCK 4096

template<typename T, int OPTIMIZER>
__global__ void
__launch_bounds__(NUM_THREADS, 2)
kPreconditionOptimizerStatic8bit2State(T* p, T* __restrict__ const g, unsigned char*__restrict__  const state1, unsigned char* __restrict__ const state2,
                float *unorm,
                const float beta1, const float beta2,
                const float eps, const int step,
                float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,
                float* max1, float* max2, float* new_max1, float* new_max2,
                const float gnorm_scale, const int n)
{
    const int n_full = gridDim.x * NUM_PER_BLOCK;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
    int valid_items = n - (blockIdx.x*NUM_PER_BLOCK) > NUM_PER_BLOCK ? NUM_PER_BLOCK : n - (blockIdx.x*NUM_PER_BLOCK);
    float g_val = 0.0f;
    float local_max_s1 = -FLT_MAX;
    float local_max_s2 = -FLT_MAX;
    float local_unorm = 0.0f;

    float s2_vals[NUM8BIT];
    float s1_vals[NUM8BIT];
    T g_vals[NUM8BIT];
    unsigned char m_c1[NUM8BIT];
    unsigned char r_c2[NUM8BIT];

    typedef cub::BlockLoad<T, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadUInt8;
    typedef cub::BlockReduce<float, NUM_THREADS> BlockReduce;


    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadUInt8::TempStorage loadc;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    __shared__ float smem_quantiles1[256];
    __shared__ float smem_quantiles2[256];

    if(threadIdx.x < 256)
    {
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
        smem_quantiles2[threadIdx.x] = quantiles2[threadIdx.x];
    }

    __syncthreads();

    for (unsigned int i = base_idx; i < n_full; i += NUM_THREADS*gridDim.x*NUM8BIT)
    {
        valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;

        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state1[i]), m_c1, valid_items, 128);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state2[i]), r_c2, valid_items, 128);
        __syncthreads();

        #pragma unroll 16
        for(int j = 0; j < NUM8BIT; j++)
        {
            g_val = g_vals[j];
            g_val *= gnorm_scale;
            s1_vals[j] = smem_quantiles1[m_c1[j]]*max1[0]*beta1;
            s1_vals[j] += (1.0f-beta1)*g_val;
            local_max_s1 = fmaxf(local_max_s1, fabsf(s1_vals[j]));
        }

        #pragma unroll 16
        for(int j = 0; j < NUM8BIT; j++)
        {
            g_val = g_vals[j];
            g_val *= gnorm_scale;
            s2_vals[j] = smem_quantiles2[r_c2[j]]*max2[0]*beta2;
            s2_vals[j] += (1.0f-beta2)*g_val*g_val;
            local_max_s2 = fmaxf(local_max_s2, fabsf(s2_vals[j]));
        }

        if(unorm != NULL)
        {
          #pragma unroll 16
          for(int j = 0; j < NUM8BIT; j++)
          {
            float correction1 = __fdividef(1.0f, 1.0f - powf(beta1, step));
            float correction2 = __fdividef(1.0f, 1.0f - powf(beta2, step));
            s1_vals[j] *= correction1;
            s2_vals[j] *= correction2;
            float update_val = s1_vals[j]/(sqrtf(s2_vals[j])+eps); // update
            local_unorm += update_val*update_val;
          }
        }
    }

    __syncthreads();
    local_max_s1 = BlockReduce(temp_storage.reduce).Reduce(local_max_s1, cub::Max(), valid_items);
    __syncthreads();
    local_max_s2 = BlockReduce(temp_storage.reduce).Reduce(local_max_s2, cub::Max(), valid_items);
    if(unorm != NULL)
    {
      __syncthreads();
      local_unorm = BlockReduce(temp_storage.reduce).Reduce(local_unorm, cub::Sum(), valid_items);
    }

    if(threadIdx.x == 0)
    {
        atomicMax(&new_max1[0], local_max_s1);
        atomicMax(&new_max2[0], local_max_s2);
        if(unorm != NULL){ atomicAdd(&unorm[0], local_unorm); }
    }
}

#define NUM_PER_THREAD2 4
#define NUM_THREADS2 1024
#define NUM_PER_BLOCK2 4096

template<typename T, int OPTIMIZER>
__global__ void
__launch_bounds__(NUM_THREADS2, 1)
kOptimizerStatic8bit2State(T* p, T* const g, unsigned char* state1, unsigned char* state2,
                const float *unorm, const float max_unorm, const float param_norm, \
                const float beta1, const float beta2,
                const float eps, const int step, const float lr,
                float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,
                float* max1, float* max2, float* new_max1, float* new_max2,
                float weight_decay,
                const float gnorm_scale, const int n)
{

    const int n_full = (blockDim.x * gridDim.x)*NUM_PER_THREAD2;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD2);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[NUM_PER_THREAD2];
    float s2_vals[NUM_PER_THREAD2];
    const float correction1 = 1.0f - powf(beta1, step);
    const float correction2 = sqrtf(1.0f - powf(beta2, step));
    const float step_size = -lr*correction2/correction1;
    //const float step_size = -lr*correction2/correction1;
    float new_max_val1 = 1.0f/new_max1[0];
    float new_max_val2 = 1.0f/new_max2[0];
    float update_scale = 1.0f;

    if(max_unorm > 0.0f)
    {
      update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
      if(update_scale > max_unorm*param_norm){ update_scale = (max_unorm*param_norm)/update_scale; }
      else{ update_scale = 1.0f; }
    }
    else{ update_scale = 1.0f; }

    unsigned char c1s[NUM_PER_THREAD2];
    unsigned char c2s[NUM_PER_THREAD2];
    T p_vals[NUM_PER_THREAD2];
    T g_vals[NUM_PER_THREAD2];
    typedef cub::BlockLoad<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[256];
    __shared__ float smem_quantiles2[256];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;

    if(threadIdx.x < 512)
    {
        if(threadIdx.x < 256)
            smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
        else
            smem_quantiles2[threadIdx.x-256] = quantiles2[threadIdx.x-256];
    }

    __syncthreads();

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x*NUM_THREADS2*NUM_PER_THREAD2)
    {
        valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state2[i]), c2s, valid_items, 0);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items);

        if((i + (threadIdx.x*NUM_PER_THREAD2) + NUM_PER_THREAD2) > n){ continue; }

        # pragma unroll 4
        for(unsigned int j = 0; j < NUM_PER_THREAD2; j++)
        {
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
            s1_vals[j] = smem_quantiles1[c1s[j]];
            s1_vals[j] = s1_vals[j]*max1[0];

            s1_vals[j] = (s1_vals[j]*beta1) + (((1.0f-beta1)*g_val));

            c1s[j] = dQuantize<0>(smem_quantiles1, 0.0f, s1_vals[j]*new_max_val1);

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
            if(signbit(smem_quantiles1[c1s[j]]) != signbit(s1_vals[j]))
            {
              if(s1_vals[j] > 0.0f)
                  c1s[j] += 1;
              else
                  c1s[j] -= 1;
            }

            s2_vals[j] = smem_quantiles2[c2s[j]];
            s2_vals[j] = s2_vals[j]*max2[0];
            s2_vals[j] = (s2_vals[j]*beta2) + (((1.0f-beta2)*g_val*g_val));
            c2s[j] = dQuantize<0>(smem_quantiles2, 0.0f, s2_vals[j]*new_max_val2);
        }

        # pragma unroll 4
        for(unsigned int j = 0; j < NUM_PER_THREAD2; j++)
        {
            p_vals[j] = (T)(((float)p_vals[j]) + ((update_scale*step_size*(s1_vals[j]/(sqrtf(s2_vals[j])+(correction2*eps))))));
            if(weight_decay > 0.0f)
                p_vals[j] = update_scale*((float)p_vals[j])*(1.0f-(lr*weight_decay));
        }

        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state2[i]), c2s, valid_items);
        __syncthreads();
    }
}


template<typename T, int OPTIMIZER>
__global__ void
__launch_bounds__(NUM_THREADS, 2)
1425
kPreconditionOptimizerStatic8bit1State(T* p, T* __restrict__ const g, unsigned char*__restrict__  const state1,
Tim Dettmers's avatar
Tim Dettmers committed
1426
                float *unorm,
1427
                const float beta1, const float beta2,
Tim Dettmers's avatar
Tim Dettmers committed
1428
                const float eps, const int step,
1429
1430
                float* __restrict__ const quantiles1,
                float* max1, float* new_max1,
Tim Dettmers's avatar
Tim Dettmers committed
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
                const float weight_decay,
                const float gnorm_scale, const int n)
{
    const int n_full = gridDim.x * NUM_PER_BLOCK;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
    int valid_items = n - (blockIdx.x*NUM_PER_BLOCK) > NUM_PER_BLOCK ? NUM_PER_BLOCK : n - (blockIdx.x*NUM_PER_BLOCK);
    float g_val = 0.0f;
    float local_max_s1 = -FLT_MAX;
    float local_unorm = 0.0f;

    float s1_vals[NUM8BIT];
    T g_vals[NUM8BIT];
    unsigned char m_c1[NUM8BIT];

    typedef cub::BlockLoad<T, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadUInt8;
    typedef cub::BlockReduce<float, NUM_THREADS> BlockReduce;


    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadUInt8::TempStorage loadc;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    __shared__ float smem_quantiles1[256];

    if(threadIdx.x < 256)
      smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];

    __syncthreads();

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x*NUM_THREADS*NUM8BIT)
    {
        valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;

        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state1[i]), m_c1, valid_items, 128);

        #pragma unroll 16
        for(int j = 0; j < NUM8BIT; j++)
        {
            g_val = g_vals[j];
            g_val *= gnorm_scale;
            s1_vals[j] = smem_quantiles1[m_c1[j]]*max1[0];
            switch(OPTIMIZER)
            {
1480
1481
                case ADAGRAD:
		case MOMENTUM:
Tim Dettmers's avatar
Tim Dettmers committed
1482
1483
1484
1485
1486
1487
1488
                    if(step == 1)
                      s1_vals[j] = (float)g_vals[j];
                    else
                      s1_vals[j] = s1_vals[j]*beta1 + ((float)g_vals[j]);
                    if(unorm != NULL)
                      local_unorm += s1_vals[j]*s1_vals[j];
                    break;
1489
              case LION:
1490
                  s1_vals[j] = s1_vals[j]*beta2 + ((1.0f-beta2)*g_val);
1491
                  break;
1492
              case RMSPROP:
Tim Dettmers's avatar
Tim Dettmers committed
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
                    s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*(g_val*g_val));
                  break;
            }

            local_max_s1 = fmaxf(local_max_s1, fabsf(s1_vals[j]));
        }
    }

    __syncthreads();
    local_max_s1 = BlockReduce(temp_storage.reduce).Reduce(local_max_s1, cub::Max(), valid_items);
    if(threadIdx.x == 0){ atomicMax(&new_max1[0], local_max_s1); }
    if(unorm != NULL)
    {
      __syncthreads();
      local_unorm = BlockReduce(temp_storage.reduce).Reduce(local_unorm, cub::Sum(), valid_items);
      if(threadIdx.x == 0){ atomicAdd(&unorm[0], local_unorm); }
    }

}

template<typename T, int OPTIMIZER>
__global__ void
1515
__launch_bounds__(1024, 1)
Tim Dettmers's avatar
Tim Dettmers committed
1516
1517
kOptimizerStatic8bit1State(T* p, T* const g, unsigned char* state1,
                const float *unorm, const float max_unorm, const float param_norm,
1518
                const float beta1, const float beta2,
Tim Dettmers's avatar
Tim Dettmers committed
1519
                const float eps, const int step, const float lr,
1520
1521
                float* __restrict__ const quantiles1,
                float* max1, float* new_max1,
Tim Dettmers's avatar
Tim Dettmers committed
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
                float weight_decay,
                const float gnorm_scale, const int n)
{

    const int n_full = (blockDim.x * gridDim.x)*NUM_PER_THREAD2;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD2);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[NUM_PER_THREAD2];
    float new_max_val1 = 1.0f/new_max1[0];
    float update_scale = 1.0f;

    if(max_unorm > 0.0f)
    {
      update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
      if(update_scale > max_unorm*param_norm){ update_scale = (max_unorm*param_norm)/update_scale; }
      else{ update_scale = 1.0f; }
    }
    else{ update_scale = 1.0f; }

    unsigned char c1s[NUM_PER_THREAD2];
    T p_vals[NUM_PER_THREAD2];
    T g_vals[NUM_PER_THREAD2];
    typedef cub::BlockLoad<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[256];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;

    if(threadIdx.x < 256)
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];

    __syncthreads();

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x*NUM_THREADS2*NUM_PER_THREAD2)
    {
        valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items);

        if((i + (threadIdx.x*NUM_PER_THREAD2) + NUM_PER_THREAD2) > n){ continue; }

        # pragma unroll 4
        for(unsigned int j = 0; j < NUM_PER_THREAD2; j++)
        {
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
1581
1582
1583

            if(weight_decay > 0.0f) {
              switch(OPTIMIZER) {
1584
		case ADAGRAD:
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
                case MOMENTUM:
                case RMSPROP:
                  g_val += ((float)p_vals[j])*weight_decay;
                  break;
                case LION:
                  p_vals[j] = ((float)p_vals[j])*(1.0f-lr*weight_decay);
                  break;
              }
            }

Tim Dettmers's avatar
Tim Dettmers committed
1595
1596
            s1_vals[j] = smem_quantiles1[c1s[j]]*max1[0];

1597
1598
            switch(OPTIMIZER){
		case ADAGRAD:
1599
                case MOMENTUM:
Tim Dettmers's avatar
Tim Dettmers committed
1600
1601
1602
1603
1604
1605
1606
                  if(step == 1)
                    s1_vals[j] = g_vals[j];
                  else
                    s1_vals[j] = s1_vals[j]*beta1 + ((float)g_vals[j]);

                  p_vals[j] = ((float)p_vals[j]) + (-lr*update_scale*(s1_vals[j]));
                  break;
1607
              case LION:
1608
                  p_vals[j] = ((float)p_vals[j]) - (lr*sgn(((float)s1_vals[j])*beta1 + ((1.0f-beta1)*((float)g_val))));
1609
                  s1_vals[j] = s1_vals[j]*beta2 + ((1.0f-beta2)*g_val);
1610
                  break;
1611
              case RMSPROP:
Tim Dettmers's avatar
Tim Dettmers committed
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
                  s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*(g_val*g_val));
                  p_vals[j] = ((float)p_vals[j]) - (lr*__fdividef(g_val,sqrtf(s1_vals[j])+eps));
                  break;
            }

            c1s[j] = dQuantize<0>(smem_quantiles1, 0.0f, s1_vals[j]*new_max_val1);

            // make sure state1 term has still the same sign after quantization
            if(signbit(smem_quantiles1[c1s[j]]) != signbit(s1_vals[j]))
            {
              if(s1_vals[j] > 0.0f)
                  c1s[j] += 1;
              else
                  c1s[j] -= 1;
            }
        }

        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
    }
}


template<typename T, int BLOCK_SIZE, int NUM_VALS>
__global__ void kPercentileClipping(T * __restrict__ g, float *gnorm_vec, int step, const int n)
{
  const int n_full = (BLOCK_SIZE*(n/BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
  int valid_items = 0;

  typedef cub::BlockReduce<float, BLOCK_SIZE/NUM_VALS> BlockReduce;
  typedef cub::BlockLoad<T, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;

  __shared__ typename BlockReduce::TempStorage reduce;

  __shared__ typename LoadT::TempStorage loadT;
  T vals[NUM_VALS];
  float local_sum = 0.0f;

  for (unsigned int i = (blockIdx.x * BLOCK_SIZE); i < n_full; i += gridDim.x*BLOCK_SIZE)
  {
      valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
      local_sum = 0.0f;

      __syncthreads();
      LoadT(loadT).Load(&(g[i]), vals, valid_items, (T)0.0f);

     #pragma unroll NUM_VALS
     for(int j = 0; j < NUM_VALS; j++)
       local_sum += ((float)vals[j])*((float)vals[j]);

    local_sum = BlockReduce(reduce).Sum(local_sum, valid_items);
    if(threadIdx.x == 0)
    {
      if(step == 1)
      {
        // initialize with the same norm for all positions
        //#pragma unroll 10
        for(int j = 0; j < 100; j++)
          atomicAdd(&gnorm_vec[j], local_sum);
      }
      else
          atomicAdd(&gnorm_vec[step % 100], local_sum);
    }

  }
}


#define LANES 2
#define QUAD 3
template<typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH>
__launch_bounds__(256, 3)
__global__ void
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
kOptimizerStatic8bit2StateBlockwise(
    T* p,
    T* __restrict__ const g,
    unsigned char* state1,
    unsigned char* state2,
    const float beta1,
    const float beta2,
    const float beta3,
    const float alpha,
    const float eps,
    const int step,
    const float lr,
    float* __restrict__ const quantiles1,
    float* __restrict__ const quantiles2,
    float* absmax1,
    float* absmax2,
    float weight_decay,
    const float gnorm_scale,
    const bool skip_zeros,
    const int n
) {
Tim Dettmers's avatar
Tim Dettmers committed
1708
1709
1710
1711
1712
1713
1714
1715

    //const int n_full = n + (n%BLOCK_SIZE);
    const int n_full = gridDim.x * BLOCK_SIZE;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[N_PER_TH];
    float s2_vals[N_PER_TH];
1716
1717
    float s3_vals[N_PER_TH];

Tim Dettmers's avatar
Tim Dettmers committed
1718
1719
1720
1721
1722
1723
1724
    // 2-5%
    const float correction1 = 1.0f - __powf(beta1, step);
    const float correction2 = sqrtf(1.0f -__powf(beta2, step));
    const float step_size = __fdividef(-lr*correction2,correction1);
    const int lane_id = threadIdx.x % LANES;
    float new_local_abs_max1 = -FLT_MAX;
    float new_local_abs_max2 = -FLT_MAX;
1725
    float new_local_abs_max3 = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
1726
1727
1728
1729
1730
    float quadrants1[QUAD];
    float quadrants2[QUAD];

    unsigned char c1s[N_PER_TH];
    unsigned char c2s[N_PER_TH];
1731
1732
    unsigned char c3s[N_PER_TH];

Tim Dettmers's avatar
Tim Dettmers committed
1733
    T g_vals[N_PER_TH];
1734
    T p_vals[N_PER_TH];
Tim Dettmers's avatar
Tim Dettmers committed
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
    typedef cub::BlockLoad<T, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[LANES][257];
    __shared__ float smem_quantiles2[LANES][257];
    typedef cub::BlockReduce<float, BLOCK_SIZE/N_PER_TH> BlockReduce1;
    typedef cub::BlockReduce<float, BLOCK_SIZE/N_PER_TH> BlockReduce2;
1745
    typedef cub::BlockReduce<float, BLOCK_SIZE/N_PER_TH> BlockReduce3;
Tim Dettmers's avatar
Tim Dettmers committed
1746
1747
    __shared__ typename BlockReduce1::TempStorage reduce1;
    __shared__ typename BlockReduce2::TempStorage reduce2;
1748
    __shared__ typename BlockReduce2::TempStorage reduce3;
Tim Dettmers's avatar
Tim Dettmers committed
1749
1750
    __shared__ float smem_exchange1[1];
    __shared__ float smem_exchange2[1];
1751
    __shared__ float smem_exchange3[1];   // [[maybe_unused]]
Tim Dettmers's avatar
Tim Dettmers committed
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;
    // init: 0.2 -> 0.23

    // 0.23 -> 0.23
      smem_quantiles1[0][threadIdx.x] = quantiles1[threadIdx.x];
      smem_quantiles2[0][threadIdx.x] = quantiles2[threadIdx.x];
      # pragma unroll
      for(unsigned int j = 1; j < LANES; j++)
      {
        smem_quantiles1[j][threadIdx.x] = smem_quantiles1[0][threadIdx.x];
        smem_quantiles2[j][threadIdx.x] = smem_quantiles2[0][threadIdx.x];
      }

    __syncthreads();

    #pragma unroll
    for(int k = 0; k < QUAD; k++)
    {
      quadrants1[k] = smem_quantiles1[lane_id][(k*256/(QUAD+1)) + (256/(QUAD+1)-1)];
      quadrants2[k] = smem_quantiles2[lane_id][(k*256/(QUAD+1)) + (256/(QUAD+1)-1)];
    }


    for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
    {
        // loads: 0.23 -> 0.85/1.44
        valid_items = n - i >= BLOCK_SIZE ? BLOCK_SIZE : n - i;
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state2[i]), c2s, valid_items, 0);

1792
1793
1794
1795
1796
1797
        // AdEMAMix has an additional state packed into state1.
        if (OPTIMIZER == ADEMAMIX) {
          __syncthreads();
          LoadChar(temp_storage.loadc).Load(&(state1[n + i]), c3s, valid_items, 128);
        }

Tim Dettmers's avatar
Tim Dettmers committed
1798
1799
        new_local_abs_max1 = -FLT_MAX;
        new_local_abs_max2 = -FLT_MAX;
1800
        new_local_abs_max3 = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
1801
1802
1803
1804
1805

        //  update: 2.48/1.57 -> 2.51/1.60
        # pragma unroll N_PER_TH
        for(unsigned int j = 0; j < N_PER_TH; j++)
        {
1806
            if(!isnan((float)g_vals[j]) && !isinf((float)g_vals[j]))
1807
1808
						{
							s2_vals[j] = smem_quantiles2[lane_id][c2s[j]]*absmax2[i/BLOCK_SIZE];
1809
1810
1811
1812
              g_val = g_vals[j];
              //float ratio = (g_val*g_val)/fmaxf(s2_vals[j], eps*eps);
              //g_val = ratio > 2.0f ? 2.0f*g_val/ratio : g_val;
              g_val *= gnorm_scale;
1813

1814
							s2_vals[j] = (s2_vals[j]*beta2) + (((1.0f-beta2)*g_val*g_val));
1815
1816
1817

							s1_vals[j] = smem_quantiles1[lane_id][c1s[j]]*absmax1[i/BLOCK_SIZE];
							s1_vals[j] = (s1_vals[j]*beta1) + (((1.0f-beta1)*g_val));
1818
1819
1820
1821
1822
1823

              if (OPTIMIZER == ADEMAMIX) {
                // The absmax for the third state is appended to absmax1
                s3_vals[j] = smem_quantiles1[lane_id][c3s[j]] * absmax1[(n + i)/BLOCK_SIZE];
                s3_vals[j] = (s3_vals[j] * beta3) + (((1.0f - beta3) * g_val));
              }
1824
						}
1825
1826
1827
1828
            else
            {
              s1_vals[j] = 0.0f;
              s2_vals[j] = 0.0f;
1829
1830
1831
1832

              if (OPTIMIZER == ADEMAMIX) {
                s3_vals[j] = 0.0f;
              }
1833
            }
Tim Dettmers's avatar
Tim Dettmers committed
1834
1835
1836

            new_local_abs_max1 = fmaxf(new_local_abs_max1, fabsf(s1_vals[j]));
            new_local_abs_max2 = fmaxf(new_local_abs_max2, fabsf(s2_vals[j]));
1837
1838
1839
1840

            if (OPTIMIZER == ADEMAMIX) {
              new_local_abs_max3 = fmaxf(new_local_abs_max3, fabsf(s3_vals[j]));
            }
Tim Dettmers's avatar
Tim Dettmers committed
1841
1842
1843
1844
1845
1846
1847
        }


        //  reduce: 2.51/1.60 -> 2.67/1.69
        new_local_abs_max1 = BlockReduce1(reduce1).Reduce(new_local_abs_max1, cub::Max());
        new_local_abs_max2 = BlockReduce2(reduce2).Reduce(new_local_abs_max2, cub::Max());

1848
1849
1850
1851
        if (OPTIMIZER == ADEMAMIX) {
          new_local_abs_max3 = BlockReduce3(reduce3).Reduce(new_local_abs_max3, cub::Max());
        }

Tim Dettmers's avatar
Tim Dettmers committed
1852
1853
1854
1855
        if(threadIdx.x == 0)
        {
          smem_exchange1[0] = new_local_abs_max1;
          smem_exchange2[0] = new_local_abs_max2;
1856
1857
1858
1859

          if (OPTIMIZER == ADEMAMIX) {
            smem_exchange3[0] = new_local_abs_max3;
          }
Tim Dettmers's avatar
Tim Dettmers committed
1860
1861
1862
1863
1864
1865
1866
1867
        }

        __syncthreads();

        if(threadIdx.x == 0)
        {
          absmax1[i/BLOCK_SIZE] = new_local_abs_max1;
          absmax2[i/BLOCK_SIZE] = new_local_abs_max2;
1868
1869
1870
1871

          if (OPTIMIZER == ADEMAMIX) {
            absmax1[(n + i)/BLOCK_SIZE] = new_local_abs_max3;
          }
Tim Dettmers's avatar
Tim Dettmers committed
1872
1873
1874
1875
1876
        }
        else
        {
          new_local_abs_max1 = smem_exchange1[0];
          new_local_abs_max2 = smem_exchange2[0];
1877
1878
1879
1880

          if (OPTIMIZER == ADEMAMIX) {
            new_local_abs_max3 = smem_exchange3[0];
          }
Tim Dettmers's avatar
Tim Dettmers committed
1881
1882
1883
        }

        __syncthreads();
1884
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items, (T)0.0f);
Tim Dettmers's avatar
Tim Dettmers committed
1885
1886
1887
1888
        //  reduce: 2.67/1.69 -> 2.67/1.70
        # pragma unroll N_PER_TH
        for(unsigned int j = 0; j < N_PER_TH; j++)
        {
1889
1890
						//if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
            if(!isnan((float)g_vals[j]) && !isinf((float)g_vals[j]))
1891
						{
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
              if (OPTIMIZER == ADEMAMIX) {
                p_vals[j] = T((float)p_vals[j] - lr * (
                  ((s1_vals[j] / correction1) + (alpha * s3_vals[j])) / (
                    (sqrtf(s2_vals[j]) / correction2) + eps
                  )
                ));
              } else {
                p_vals[j] = (T)(((float)p_vals[j]) + ((step_size*(__fdividef(s1_vals[j],(sqrtf(s2_vals[j])+(correction2*eps)))))));
              }

              if(weight_decay > 0.0f)
1903
									p_vals[j] = ((float)p_vals[j])*(1.0f-(lr*weight_decay));
1904
						}
Tim Dettmers's avatar
Tim Dettmers committed
1905
1906
1907
1908
        }

        //  store: 0.85/1.44 -> 2.48/1.57
        __syncthreads();
1909
        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
1910
1911

        //  quantizaztion: 2.67/1.70  -> 3.4/3.3
1912
        # pragma unroll N_PER_TH
Tim Dettmers's avatar
Tim Dettmers committed
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
        for(unsigned int j = 0; j < N_PER_TH; j++)
        {
            c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j],new_local_abs_max1));
            c2s[j] = quantize_2D<0>(quadrants2, smem_quantiles2[lane_id], __fdividef(s2_vals[j],new_local_abs_max2));

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
            if(signbit(smem_quantiles1[lane_id][c1s[j]]) != signbit(s1_vals[j]))
            {
              if(s1_vals[j] > 0.0f)
                  c1s[j] += 1;
              else
                  c1s[j] -= 1;
            }
1927
1928
1929
1930
1931
1932
1933
1934

            if (OPTIMIZER == ADEMAMIX) {
              c3s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s3_vals[j],new_local_abs_max3));

              if (signbit(smem_quantiles1[lane_id][c3s[j]]) != signbit(s3_vals[j])) {
                c3s[j] += (s3_vals[j] > 0.0f) ? 1 : -1;
              }
            }
Tim Dettmers's avatar
Tim Dettmers committed
1935
1936
1937
1938
1939
1940
        }

        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state2[i]), c2s, valid_items);
1941
1942
1943
1944
1945

        if (OPTIMIZER == ADEMAMIX) {
          __syncthreads();
          StoreChar(temp_storage.storec).Store(&(state1[n + i]), c3s, valid_items);
        }
Tim Dettmers's avatar
Tim Dettmers committed
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
    }
}


#define LANES 2
#define QUAD 3
template<typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH>
__launch_bounds__(256, 3)
__global__ void
kOptimizerStatic8bit1StateBlockwise(T* p, T* __restrict__ const g, unsigned char* state1,
                const float beta1, const float beta2,
                const float eps, const int step, const float lr,
                float* __restrict__ const quantiles1,
                float* absmax1,
                float weight_decay,
1961
                const float gnorm_scale, const bool skip_zeros, const int n)
Tim Dettmers's avatar
Tim Dettmers committed
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
{

    //const int n_full = n + (n%BLOCK_SIZE);
    const int n_full = gridDim.x * BLOCK_SIZE;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[N_PER_TH];
    // 2-5%
    const int lane_id = threadIdx.x % LANES;
    float new_local_abs_max1 = -FLT_MAX;
    float quadrants1[QUAD];

    unsigned char c1s[N_PER_TH];
    T g_vals[N_PER_TH];
		T p_vals[N_PER_TH];

    typedef cub::BlockLoad<T, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[LANES][257];
    typedef cub::BlockReduce<float, BLOCK_SIZE/N_PER_TH> BlockReduce1;
    __shared__ typename BlockReduce1::TempStorage reduce1;
    __shared__ float smem_exchange1[1];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;
    // init: 0.2 -> 0.23

    // 0.23 -> 0.23
		smem_quantiles1[0][threadIdx.x] = quantiles1[threadIdx.x];
		# pragma unroll
		for(unsigned int j = 1; j < LANES; j++)
			smem_quantiles1[j][threadIdx.x] = smem_quantiles1[0][threadIdx.x];

    __syncthreads();

    #pragma unroll
    for(int k = 0; k < QUAD; k++)
      quadrants1[k] = smem_quantiles1[lane_id][(k*256/(QUAD+1)) + (256/(QUAD+1)-1)];

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
    {
        // loads: 0.23 -> 0.85/1.44
        valid_items = n - i >= BLOCK_SIZE ? BLOCK_SIZE : n - i;
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items, (T)0.0f);

        new_local_abs_max1 = -FLT_MAX;

        //  update: 2.48/1.57 -> 2.51/1.60
        # pragma unroll N_PER_TH
        for(unsigned int j = 0; j < N_PER_TH; j++)
        {
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
Phil Wang's avatar
Phil Wang committed
2029
2030
2031
2032
            if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
            {
              if(weight_decay > 0.0f) {
                switch(OPTIMIZER) {
2033
                  case MOMENTUM:
Phil Wang's avatar
Phil Wang committed
2034
                  case ADAGRAD:
2035
2036
2037
2038
2039
2040
2041
2042
                  case RMSPROP:
                    g_val += ((float)p_vals[j])*weight_decay;
                    break;
                  case LION:
                    p_vals[j] = ((float)p_vals[j])*(1.0f-lr*weight_decay);
                    break;
                }
              }
2043
2044
2045
2046
2047

							s1_vals[j] = smem_quantiles1[lane_id][c1s[j]]*absmax1[i/BLOCK_SIZE];

							switch(OPTIMIZER)
							{
2048
									case MOMENTUM:
2049
2050
2051
2052
2053
										if(step == 1)
											s1_vals[j] = g_val;
										else
											s1_vals[j] = (s1_vals[j]*beta1) + g_val;
										break;
2054
									case LION:
Phil Wang's avatar
Phil Wang committed
2055
										// here, using gvals[j] to store the gradient smoothed by beta1 for the following parameter update, before the momentum is updated by beta2
Phil Wang's avatar
Phil Wang committed
2056
										g_vals[j] = lr*sgn(((float)s1_vals[j])*beta1 + ((1.0f-beta1)*g_val));
2057
										s1_vals[j] = s1_vals[j]*beta2 + ((1.0f-beta2)*g_val);
2058
										break;
2059
									case RMSPROP:
2060
2061
										s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*(g_val*g_val));
										break;
2062
									case ADAGRAD:
2063
2064
										s1_vals[j] = s1_vals[j] + (g_val*g_val);
										break;
2065
2066
							}
						}
Tim Dettmers's avatar
Tim Dettmers committed
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088

            new_local_abs_max1 = fmaxf(new_local_abs_max1, fabsf(s1_vals[j]));
        }


        //  reduce: 2.51/1.60 -> 2.67/1.69
        new_local_abs_max1 = BlockReduce1(reduce1).Reduce(new_local_abs_max1, cub::Max());

        if(threadIdx.x == 0)
          smem_exchange1[0] = new_local_abs_max1;

        __syncthreads();

        if(threadIdx.x == 0)
          absmax1[i/BLOCK_SIZE] = new_local_abs_max1;
        else
          new_local_abs_max1 = smem_exchange1[0];

        //  reduce: 2.67/1.69 -> 2.67/1.70
        # pragma unroll N_PER_TH
        for(unsigned int j = 0; j < N_PER_TH; j++)
				{
2089
						if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
2090
2091
2092
						{
							switch(OPTIMIZER)
							{
2093
									case MOMENTUM:
2094
2095
										p_vals[j] = ((float)p_vals[j]) - lr*(s1_vals[j]);
										break;
2096
									case LION:
2097
										p_vals[j] = ((float)p_vals[j]) - ((float)g_vals[j]);
2098
										break;
2099
									case RMSPROP:
2100
2101
2102
										g_val = g_vals[j];
										p_vals[j] = ((float)p_vals[j]) - lr*(__fdividef(g_val, sqrtf(s1_vals[j])+eps));
										break;
2103
									case ADAGRAD:
2104
2105
2106
										g_val = g_vals[j];
										p_vals[j] = ((float)p_vals[j]) - lr*(__fdividef(g_val, sqrtf(s1_vals[j])+eps));
										break;
2107
2108
							}
						}
Tim Dettmers's avatar
Tim Dettmers committed
2109
2110
2111
2112
2113
2114
2115
				}

        //  store: 0.85/1.44 -> 2.48/1.57
        __syncthreads();
        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);

        //  quantizaztion: 2.67/1.70  -> 3.4/3.3
2116
        # pragma unroll N_PER_TH
Tim Dettmers's avatar
Tim Dettmers committed
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
        for(unsigned int j = 0; j < N_PER_TH; j++)
        {
            c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j],new_local_abs_max1));

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
            if(signbit(smem_quantiles1[lane_id][c1s[j]]) != signbit(s1_vals[j]))
            {
              if(s1_vals[j] > 0.0f)
                  c1s[j] += 1;
              else
                  c1s[j] -= 1;
            }
        }

        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
    }
}

2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
// Inputs:
//  A [rows, cols]
// Outputs:
//  rowStats [rows]
//  out [rows, cols]
template<typename T, int THREADS, int SPARSE_DECOMP>
__launch_bounds__(1024, BNB_MAX_THREADS_PER_SM / 1024)
__global__ void kInt8VectorQuant(T * __restrict__ A, int8_t* out, float* rowStats, float threshold, int rows, int cols) {

  // For sm50/sm52 and CUDA < 12.2 we need to do the reduction in fp32.
  // Otherwise `T` is `fp16`. This can be removed when Maxwell is dropped.
#if (__CUDACC_VER_MAJOR__ >= 12 && __CUDACC_VER_MINOR >= 2) || BNB_FP16_AVAILABLE
  using TReduction = T;
#else
  using TReduction = float;
#endif
Tim Dettmers's avatar
Tim Dettmers committed
2153

2154
  using BlockReduceT = cub::BlockReduce<TReduction, THREADS>;
Tim Dettmers's avatar
Tim Dettmers committed
2155

2156
2157
2158
2159
2160
2161
  // One block per row.
  // Threads load column values in a striped arrangement.
  // e.g. t0 reads row[0], row[0+nthreads], ..
  // and  t1 reads row[1], row[1+nthreads], ..
  // Each thread will determine its local absmax.
  // We then do a blockwise reduction to determine the row's absmax.
Tim Dettmers's avatar
Tim Dettmers committed
2162

2163
2164
  __shared__ typename BlockReduceT::TempStorage temp_storage;
  __shared__ TReduction smem_row_absmax;
Tim Dettmers's avatar
Tim Dettmers committed
2165

2166
2167
  const int row_id = blockIdx.x;
  const T* row_data = A + (row_id * cols);
Tim Dettmers's avatar
Tim Dettmers committed
2168

2169
2170
2171
2172
  // Threads will read the row values in a striped access pattern and find a local absmax.
  TReduction row_local_absmax = -FLT_MIN;
  for (int i = threadIdx.x; i < cols; i += THREADS) {
    const TReduction absval = fabsf(__ldcs(&(row_data[i])));
Tim Dettmers's avatar
Tim Dettmers committed
2173

2174
2175
2176
2177
2178
2179
2180
    // For sparse decomposition, values outside of the threshold are not to be
    // included when calculating the row's absmax.
    if constexpr (SPARSE_DECOMP) {
      row_local_absmax = fmaxf(row_local_absmax, absval < TReduction(threshold) ? absval : row_local_absmax);
    } else {
      row_local_absmax = fmaxf(row_local_absmax, absval);
    }
2181
2182
  }

2183
2184
2185
2186
2187
  // Reduce thread-local absmax across the block.
  const TReduction row_absmax = BlockReduceT(temp_storage).Reduce(row_local_absmax, cub::Max(), cols);
  if (threadIdx.x == 0) {
    // Save our block's absmax to shared memory for the quantization step.
    rowStats[row_id] = smem_row_absmax = row_absmax;
Tim Dettmers's avatar
Tim Dettmers committed
2188
2189
2190
  }
  __syncthreads();

2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
  // Quantize row-wise.
  const float scale = __fdividef(127.0f, smem_row_absmax);
  for (int i = threadIdx.x; i < cols; i += THREADS) {
    float val = row_data[i];

    if constexpr (SPARSE_DECOMP) {
      // For sparse decomposition, we do not want to quantize the outliers.
      // Instead they're zeroed out.
      out[row_id * cols + i] = fabs(val) < threshold ? __float2int_rn(val * scale) : 0;
    } else {
      out[row_id * cols + i] = __float2int_rn(val * scale);
Tim Dettmers's avatar
Tim Dettmers committed
2202
2203
    }
  }
2204
}
Tim Dettmers's avatar
Tim Dettmers committed
2205

2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
template<typename T, int THREADS, int SPARSE_DECOMP>
__launch_bounds__(1024, BNB_MAX_THREADS_PER_SM / 1024)
__global__ void kgetRowStats(T * __restrict__ A, float *rowStats, float threshold, int rows, int cols) {
  using BlockReduceT = cub::BlockReduce<float, THREADS>;

  // One block per row.
  // Threads load column values in a striped arrangement.
  // e.g. t0 reads row[0], row[0+nthreads], ..
  // and  t1 reads row[1], row[1+nthreads], ..
  // Each thread will determine its local absmax.
  // We then do a blockwise reduction to determine the row's absmax.

  __shared__ typename BlockReduceT::TempStorage temp_storage;

  const int row_id = blockIdx.x;
  const T* __restrict__ row_data = A + (row_id * cols);

  // Threads will read the row values in a striped access pattern and find a local absmax.
  float row_local_absmax = -FLT_MIN;
  for (int i = threadIdx.x; i < cols; i += THREADS) {
    const float absval = fabsf(row_data[i]);

    // For sparse decomposition, values outside of the threshold are not to be
    // included when calculating the row's absmax.
    if constexpr (SPARSE_DECOMP) {
      row_local_absmax = fmaxf(row_local_absmax, absval < threshold ? absval : row_local_absmax);
    } else {
      row_local_absmax = fmaxf(row_local_absmax, absval);
Tim Dettmers's avatar
Tim Dettmers committed
2234
    }
2235
  }
Tim Dettmers's avatar
Tim Dettmers committed
2236

2237
2238
2239
2240
2241
2242
2243
2244
  // Reduce thread-local absmax across the block.
  // TODO: Consider algorithm BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY
  const float row_absmax = BlockReduceT(temp_storage).Reduce(row_local_absmax, cub::Max(), cols);
  if (threadIdx.x == 0) {
    // Save our block's absmax to shared memory for the quantization step.
    rowStats[row_id] = row_absmax;
  }
}
Tim Dettmers's avatar
Tim Dettmers committed
2245

2246
2247
template __global__ void kgetRowStats<half, 1024, 0>(half * __restrict__ A, float *rowStats, float threshold, int rows, int cols);
template __global__ void kgetRowStats<half, 1024, 1>(half * __restrict__ A, float *rowStats, float threshold, int rows, int cols);
Tim Dettmers's avatar
Tim Dettmers committed
2248

2249
2250
template __global__ void kInt8VectorQuant<half, 1024, 0>(half * __restrict__ A, int8_t *out, float *rowStats, float threshold, int rows, int cols);
template __global__ void kInt8VectorQuant<half, 1024, 1>(half * __restrict__ A, int8_t *out, float *rowStats, float threshold, int rows, int cols);
Tim Dettmers's avatar
Tim Dettmers committed
2251
2252
2253
2254


#define MM_DEQUANT_CONST 6.200012e-05f //1.0f/(127.0f*127.0f)

2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
template <int ITEMS_PER_THREAD, int THREADS>
__global__ void kdequant_mm_int32_fp16(
  int* __restrict__ const A,
  float *__restrict__ const rowStats,
  float *__restrict__ const colStats,
  half *out,
  half *__restrict__ const bias,
  const int numRows,
  const int numCols,
  const int n
) {
  const int n_out = numRows * numCols;
Tim Dettmers's avatar
Tim Dettmers committed
2267

2268
2269
  int block_offset = blockIdx.x * THREADS * ITEMS_PER_THREAD;
  int thread_offset = threadIdx.x * ITEMS_PER_THREAD;
Tim Dettmers's avatar
Tim Dettmers committed
2270
2271
2272

  int local_values[ITEMS_PER_THREAD];
  half local_output[ITEMS_PER_THREAD];
2273

Tim Dettmers's avatar
Tim Dettmers committed
2274
  float local_rowStats[ITEMS_PER_THREAD];
2275
2276
  float local_colStats[ITEMS_PER_THREAD];
  float local_biasValue[ITEMS_PER_THREAD];
Tim Dettmers's avatar
Tim Dettmers committed
2277

2278
  typedef cub::BlockLoad<int, THREADS, ITEMS_PER_THREAD, cub::BLOCK_LOAD_VECTORIZE> LoadInt32;
Tim Dettmers's avatar
Tim Dettmers committed
2279
2280
  __shared__ typename LoadInt32::TempStorage loadint32;

2281
  int row_idx, col_idx;
Tim Dettmers's avatar
Tim Dettmers committed
2282

2283
2284
  #pragma unroll ITEMS_PER_THREAD
  for (int j = 0; j < ITEMS_PER_THREAD; ++j) {
Tim Dettmers's avatar
Tim Dettmers committed
2285

2286
2287
    row_idx = (block_offset + thread_offset + j) / numCols;
    col_idx = (block_offset + thread_offset + j) % numCols;
Tim Dettmers's avatar
Tim Dettmers committed
2288

2289
2290
2291
    local_colStats[j] = col_idx >= numCols ? 0.0f : __ldg(&colStats[col_idx]);
    local_rowStats[j] = row_idx >= numRows ? 0.0f : __ldg(&rowStats[row_idx]);
    local_biasValue[j] = ((bias == nullptr) || col_idx >= numCols) ? 0.0f : __half2float(bias[col_idx]);
Tim Dettmers's avatar
Tim Dettmers committed
2292
2293
  }

2294
2295
2296
2297
2298
  // Each block loads THREADS * ITEMS_PER_THREAD values from A
  int valid_items = block_offset + THREADS * ITEMS_PER_THREAD < n_out
    ? THREADS * ITEMS_PER_THREAD
    : n_out - block_offset;
  LoadInt32(loadint32).Load(&(A[block_offset]), local_values, valid_items, 0);
Tim Dettmers's avatar
Tim Dettmers committed
2299
2300

  #pragma unroll ITEMS_PER_THREAD
2301
2302
2303
2304
  for (int j = 0; j < ITEMS_PER_THREAD; ++j) {
    local_output[j] = __float2half(
      fmaf(local_values[j] * local_rowStats[j] * local_colStats[j], MM_DEQUANT_CONST, local_biasValue[j])
    );
Tim Dettmers's avatar
Tim Dettmers committed
2305
2306
  }

2307
2308
2309
2310
2311
  #pragma unroll ITEMS_PER_THREAD
  for (int j = 0; j < ITEMS_PER_THREAD; j++) {
    int outIdx = block_offset + thread_offset + j;
    if (outIdx < n_out) {
      out[outIdx] = local_output[j];
Tim Dettmers's avatar
Tim Dettmers committed
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
    }
  }
}

template <int THREADS, int ITEMS_PER_THREAD, int TILE_ROWS, int TILE_COLS, int TRANSPOSE, int FORMAT> __global__ void kTransformRowToFormat(char *__restrict__ const A, char *out, int rows, int cols, int tiledCols, int outRows, int outCols)
{

  // 0. Load data into 32*32 shared memory tiles
  // 1. transpose / reorder in shared memory
  // 2. store

  // COL32 FORMAT:
  // rows*32 tiles

  // TURING FORMAT:
  // 8*32 tiles with 4*4 subtiles
  // the 8*32 subtile has first all 4*4 subtiles of even rows (max 4*4*4 = 64 elements)
  // the subsequent 4*4 subtiles are for all odd rows if some rows columns are empty the values are zero
  // the tile repeats again after the 8*32 tile in a major column order, meaning: (next 8 rows are A[8:16, 0:32])
  // the next tile is the next 8 rows for the same 32 columns. Once all rows are finished, the column
  // index increases by 32

  // AMPERE FORMAT:
  // 32*32 tiles with 8*32 subtiles. The rows are interleaved in pairs of two rows with offset of 8 between pairs of two rows:
	// row idx (each number stands for 32 values): [0 1 8 9 16 17 24 25] [2 3 10 11 18 19 26 27]...
  // the tiles are column-major ordered, so after 1024*1024 values we process: A[32:64, 0:32]


  // To have efficient loads and stores if we transpose we need 128 consequitive bytes which at 1 byte are 128 values
2341
  // As such we need:
Tim Dettmers's avatar
Tim Dettmers committed
2342
2343
2344
2345
2346
2347
2348
2349
2350
  // at least 32*4 shared memory tiles for col32; preferably 32*32
  // at least 32*6 shared memory tiles for col32_ampere: preferably 32*32
  // at least 32*8 shared memory tiles for col4_turing: preferably 32*32
  // for efficient loading of row major we need to load 128 elements and repeat this 32 items
  // this would imply a 32x128 shared memory tile -> 4kb
  // It is more efficient to have more than 1 warp, so with 64 threads we need 32x128 -> 8 kb
  // we have 64k sharded mem per SM in Turing which is 8 blocks per SM which is 2*8 = 32 warps = 100% occupancy
  // for turing and 50% for A100 and 75% for RTX 30s / A40 which is probably good enough
  // register pressure should be low with: 8 registers from local memoryh per block and 64 registers per SM
2351
  //
Tim Dettmers's avatar
Tim Dettmers committed
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
  // to make the shared memory work with that occupancy we might need to union the block loads/stores

  // each block loads TILE_COLs columns and TILE_ROW rows
  // after reading a tile the row counter increase by TILE_ROWS
  // the col counter reset after reading TILE_COL elements
  const int base_row = ((blockIdx.x*TILE_COLS)/tiledCols)*TILE_ROWS;
  // col increases by TILE_SIZE for each block and wraps back to 0 after tiledCols is reached
  const int base_col = (blockIdx.x*TILE_COLS) % tiledCols;
  const int base_idx = (base_row*cols) + base_col;

  // we load 128 bytes per warp with
  // 32 rows for transposes that fill col32 types
  // so that we can have contiguous stores
  __shared__ char smem_data[32*33*ITEMS_PER_THREAD];
  char local_data[ITEMS_PER_THREAD];
  typedef cub::BlockExchange<char, THREADS, ITEMS_PER_THREAD> BlockExchange;

  // we load row after row from the base_position
  // Load data row by row
  int warps = blockDim.x/32;
  int warp_id = threadIdx.x/32;
  int warp_lane = threadIdx.x % 32;
  int offset = 0;

  int smem_row = 0;
  // each warp loads one row of 128 bytes
  for(int row = warp_id; row < TILE_ROWS; row+=warps)
  {
    int i = base_idx + (row*cols);
    // we load up to 128 bytes/items per load
    int valid_items = cols - base_col > 32*ITEMS_PER_THREAD ? 32*ITEMS_PER_THREAD : cols - base_col;

    // 0. Load data into 32*32 shared memory tiles
    if(base_row + row < rows)
    {
      #pragma unroll ITEMS_PER_THREAD
      for(int j = 0; j < ITEMS_PER_THREAD; j++)
      {
        int col_idx = warp_lane+(j*32);
        if(col_idx < valid_items)
          local_data[j] = A[i+col_idx];
        else
          local_data[j] = 0;
      }
    }
    else
    {
      #pragma unroll ITEMS_PER_THREAD
      for(int j = 0; j < ITEMS_PER_THREAD; j++)
        local_data[j] = 0;
    }

    if(TRANSPOSE)
    {
      #pragma unroll ITEMS_PER_THREAD
      for(int j = 0; j < ITEMS_PER_THREAD; j++)
      {
        int local_col = (32*j)+warp_lane;
        //int local_row = row;
        // store as 256x32
        smem_data[(local_col*33) + row] = local_data[j];
      }
    }
    else
    {
      // treat smem as 32x256, that is 32 rows and 256 columns
      #pragma unroll ITEMS_PER_THREAD
      for(int j = 0; j < ITEMS_PER_THREAD; j++)
        smem_data[row*32*ITEMS_PER_THREAD + (warp_lane) + (j*32)] = local_data[j];
    }



    smem_row += warps;

    // 1. transpose / reorder in shared memory
    if(smem_row % 32 == 0)
    {
      smem_row = 0;
      __syncthreads();

      for(int subrow = warp_id; subrow < 32; subrow+=warps)
      {
        for(int j = 0; j < ITEMS_PER_THREAD; j++)
        {

          switch(FORMAT)
          {
2440
              case COL32:
Tim Dettmers's avatar
Tim Dettmers committed
2441
2442
2443
2444
2445
2446
2447
                if(TRANSPOSE)
                {
                  // data lies in shared memory in the following way:
                  // row0 [col0 col1 ... col31]
                  // row1 [col0 col1 ... col31]
                  // ...
                  //
2448
                  // As such we read consecutive entries with 256 threads (8rows x 32 columns)
Tim Dettmers's avatar
Tim Dettmers committed
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
                  // as j increase, the row increase by a factor of 8
                  // We load 8 rows per subrow loop, and subrow increase by 8 per loop
                  // so we have an offset of 8 rows every loop or (subrow/warps)*8 = (subrow/8)*8
                  const int jrow = j*ITEMS_PER_THREAD; // 8 rows per j
                  const int subrow_loop_row = (subrow/warps)*ITEMS_PER_THREAD*ITEMS_PER_THREAD; // 8 rows per j; 8j per subrow loop (subrow/warps)
                  //const int local_row =  warp_id; // each warp_id is one row
                  //const int block_row = base_col; // block offset for row
                  //const int local_col = warp_lane
                  //const int global_col = base_row; // block offset for col
                  if((base_col + subrow_loop_row + jrow + warp_id < outRows) && (base_row+warp_lane < rows))
                  {
2460
                    // each row has 32 columns and is offset by 1 to prevent bank conflict during storage into smem
Tim Dettmers's avatar
Tim Dettmers committed
2461
2462
2463
2464
                    char data = smem_data[(subrow_loop_row + jrow + warp_id)*33 + warp_lane];

                    // each 32 columns we have new tile
                    // each tile has size outRows*32 and base_row is done in increments of 32
2465
                    offset = base_row*outRows;
Tim Dettmers's avatar
Tim Dettmers committed
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
                    out[offset + (base_col + jrow + subrow_loop_row)*32 + threadIdx.x] = data;
                  }
                }
                else
                {
                  if(((base_row+subrow) < rows) && (base_col+(j*32)+warp_lane < outCols))
                  {
                    offset = (base_col/32)*(32*rows);
                    char data = smem_data[(subrow*32*ITEMS_PER_THREAD) + (j*32) + warp_lane];
                    out[offset+(base_row+subrow)*32 + ((j)*rows*32)+warp_lane] = data;
                  }
                }
                break;
              case COL_TURING:
                // TURING FORMAT:
                // 8*32 tiles with 4*4 subtiles
                // the 8*32 subtile has first all 4*4 subtiles of even rows (max 4*4*4 = 64 elements)
                // the subsequent 4*4 subtiles are for all odd rows if some rows columns are empty the values are zero
                // the tile repeats again after the 8*32 tile in a major column order, meaning: (next 8 rows are A[8:16, 0:32])
                // the next tile is the next 8 rows for the same 32 columns. Once all rows are finished, the column
                // index increases by 32
                //
                // [0 0 0 0, 2 2 2 2, 4 4 4 4, 6 6 6 6, 0 0 0 0 ...]
                if(TRANSPOSE)
                {
                  const int jrow = j*ITEMS_PER_THREAD; // 8 rows per j
                  const int subrow_loop_row = (subrow/warps)*ITEMS_PER_THREAD*ITEMS_PER_THREAD; // 8 rows per j; 8j per subrow loop (subrow/warps)
                  //const int local_row =  warp_id; // each warp_id is one row
                  //const int block_row = base_col; // block offset for row
                  //const int local_col = warp_lane
                  //const int global_col = base_row; // block offset for col
                  if((base_col + subrow_loop_row + jrow + warp_id < outRows) && (base_row+warp_lane < rows))
                  {
2499
                    // each row has 32 columns and is offset by 1 to prevent bank conflict during storage into smem
Tim Dettmers's avatar
Tim Dettmers committed
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
                    char data = smem_data[(subrow_loop_row + jrow + warp_id)*33 + warp_lane];

                    // each 32 columns we have new tile
                    // each tile has size 8*32 = 256 elements offset
                    // for each row offset of 8 we increaes the tile first
                    // after all rows are exhausted, we increase the col
                    int row_offset = ((base_col+jrow+subrow_loop_row+warp_id)/8)*256; // global_row+jrow+subrow_loop_row+local_row, increase tile(=256) every 8 rows

                    // we increase by row_tile_column every 32 columns
                    // base_row increase in increments of 32
                    //int row_tile_column = 256*outRows/8; // there are outRows/8 row tiles, and each tile is 256 elements
2511
                    //int col_offset = (base_row/32)*row_tile_column;
Tim Dettmers's avatar
Tim Dettmers committed
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
                    // -> we can remove the divisions to speed up compute since outRows is always a multiple of 8
                    // 256*outRows/8*base_row/32 = outRows*base_row
                    int col_offset = outRows*base_row;

                    offset = row_offset+col_offset;

                    // since we process even number of rows with each j (8) and with each subrow (8j) we can determine
                    // odd or even rows with the warp_id (each warp processes one row)
                    // the col is warp_lane (max 32 columns per row) and the row warp_id
                    if(warp_id % 2 == 1)
                      // odd
                      offset += 128 + (warp_lane/4)*16 + (warp_lane%4) + (((warp_id%8)-1)*2);
                    else
                      // even
                      offset += 0   + (warp_lane/4)*16 + (warp_lane%4) + ((warp_id%8)*2);

                    out[offset] = data;
                  }
                }
                else
                {
                  if(((base_row+subrow) < rows) && (base_col+(j*32)+warp_lane < outCols))
                  {
                    char data = smem_data[(subrow*32*ITEMS_PER_THREAD) + (j*32) + warp_lane];
                    // set offset designates the tile offset among the 8*32 tiles
                    // we first increase rows and then columns. Since we load 128 columns at once
                    // we increase the offset by outRows*32 every 32 columns
                    // additionally, we increase the offset by 8*32=256 every 8 rows
                    offset = ((base_col+(j*32))/32)*outRows*32 + (((base_row+subrow)/8)*256); // global offset (8x32 tile)
                    // first 4 rows are reserved for even rows, [0, 2, 4, 6], the next 4 for odd
                    // each of these has 32 values in total for 32*4 = 128 as offset if odd
                    // every set of 4 columns increases the total offset by 16
                    // each even row increase the offset by 4, for example row 2 is offset by 4, 4 by 6 etc so: subrow/2*4 = subrow*2
2545
                    // this happens every 8 rows anew (subrow % 8)
Tim Dettmers's avatar
Tim Dettmers committed
2546
2547
                    // one writes 4 columns at once that is (col % 4) for the particular index in the subtile
                    int subcol = warp_lane;
2548

Tim Dettmers's avatar
Tim Dettmers committed
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
                    // add local offset (4x4 sub-tile)
                    if(subrow % 2 == 1)
                      // odd
                      offset += 128 + (subcol/4)*16 + (subcol%4) + (((subrow%8)-1)*2);
                    else
                      // even
                      offset += 0   + (subcol/4)*16 + (subcol%4) + ((subrow%8)*2);

                    out[offset] = data;
                  }
                }
                break;
								case COL_AMPERE:
									// AMPERE FORMAT:
									// 32*32 tiles with 8*32 subtiles. The rows are interleaved in pairs of two rows with offset of 8 between pairs of two rows:
									// row idx (each number stands for 32 values): [0 1 8 9 16 17 24 25] [2 3 10 11 18 19 26 27]...
									// the tiles are column-major ordered, so after 1024*1024 values we process: A[32:64, 0:32]
									if(TRANSPOSE)
									{
										const int jrow = j*ITEMS_PER_THREAD; // 8 rows per j
										const int subrow_loop_row = (subrow/warps)*ITEMS_PER_THREAD*ITEMS_PER_THREAD; // 8 rows per j; 8j per subrow loop (subrow/warps)
										//const int local_row =  warp_id; // each warp_id is one row
										//const int block_row = base_col; // block offset for row
										//const int local_col = warp_lane
										//const int global_col = base_row; // block offset for col
										if((base_col + subrow_loop_row + jrow + warp_id < outRows) && (base_row+warp_lane < rows))
										{
2576
											// each row has 32 columns and is offset by 1 to prevent bank conflict during storage into smem
Tim Dettmers's avatar
Tim Dettmers committed
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
											char data = smem_data[(subrow_loop_row + jrow + warp_id)*33 + warp_lane];

											// each 32 columns we have new tile
											// each tile has size 32*32 = 1024 elements offset
											// for each row offset of 32 we increaes the tile first
											// after all rows are exhausted, we increase the col
											int row_offset = ((base_col+jrow+subrow_loop_row+warp_id)/32)*1024; // global_row+jrow+subrow_loop_row+local_row, increase tile(=256) every 8 rows

											// we increase by row_tile_column every 32 columns
											// base_row increase in increments of 32
											//int row_tile_column = 1024*outRows/32; // there are outRows/32 row tiles, and each tile is 1024 elements
2588
											//int col_offset = (base_row/32)*row_tile_column;
Tim Dettmers's avatar
Tim Dettmers committed
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
											// -> we can remove the divisions to speed up compute since outRows is always a multiple of 8
											// 1024*outRows/32*base_row/32 = outRows*base_row
											int col_offset = outRows*base_row;

											offset = row_offset+col_offset;


											// same as in the non-transpose case (see below)
											// the difference is that now rows = cols
											// in this case warp_id = subrow

											// [0 1 8 9 16 17 24 25] [2 3 10 11 18 19 26 27]...
											// subrow % 8 -> [0,1] in tile0, [2, 3] in tile 1 etc
											// subrow % 2 -> 0 for 1st row in the pair, 1 for the 2nd row
											// every 2 rows, the offset increases by two [0, 1, 8, 9...]
											// every 2 rows, the row index increase by 8 [0, 1, 8, 9...]
											int local_row = (jrow + warp_id) % 32; // offset for row > 32 is already calculated into row_offset
											int ampere_row = ((local_row % 8)/2)*8 + (local_row/8)*2 + (local_row % 2);

											// global offset + row with 32 cols each + 32 cols per j + col_idx=warp_lane
											out[offset + (ampere_row*32) + warp_lane] = data;
										}
									}
									else
									{
										if(((base_row+subrow) < rows) && (base_col+(j*32)+warp_lane < outCols))
										{
											char data = smem_data[(subrow*32*ITEMS_PER_THREAD) + (j*32) + warp_lane];

											// set offset designates the tile offset among the 32*32 tiles
											// we first increase rows and then columns. Since we load 128 columns at once
											// we increase the offset by outRows*32 every 32 columns
											// additionally, we increase the offset by 32*32=1024 every 32 rows
											offset = ((base_col+(j*32))/32)*outRows*32 + (((base_row+subrow)/32)*1024); // global offset (32x32 tile)

											// [0 1 8 9 16 17 24 25] [2 3 10 11 18 19 26 27]...
											// subrow % 8 -> [0,1] in tile0, [2, 3] in tile 1 etc
											// subrow % 2 -> 0 for 1st row in the pair, 1 for the 2nd row
											// every 2 rows, the offset increases by two [0, 1, 8, 9...]
											// every 2 rows, the row index increase by 8 [0, 1, 8, 9...]
											int local_row = ((subrow % 8)/2)*8 + (subrow/8)*2 + (subrow % 2);

											// global offset + row with 32 cols each + 32 cols per j + col_idx
											out[offset + (local_row*32) + warp_lane] = data;
										}
									}
								break;
          }
        }
      }
    }
  }
}

Tim Dettmers's avatar
Tim Dettmers committed
2643
#define DENORM 1.0f/127.0f
Tim Dettmers's avatar
Tim Dettmers committed
2644
2645
#define MAX_SPARSE_COUNT 32
#define SMEM_SIZE 8*256
2646
template <typename T, int SPMM_ITEMS, int BITS>
2647
__global__ void kspmm_coo_very_sparse_naive(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, T *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB)
Tim Dettmers's avatar
Tim Dettmers committed
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
{

  // 0. load balancing: We process rows with most columns first (count_vec)and we process one row per block
  //    If a block finishes, the next one is scheduled. Since the last blocks like have fewer
  //    elements they finish faster "fillin up" the gaps left by larger blocks

  // without tensor cores
  // 1. use rowidx_length to find what to load (as many blocks as there are rows)
  // 2. Load A into registers
  // 3. each warp loads all required rows of B but each warp is offset by k
  // 4. Do mma operations that accumulate into registers
  // 5. Each warp stores its output row into matrix C

  const int count = max_count[blockIdx.x];
  const int local_max_idx = max_idx[blockIdx.x];
  const int offset = local_max_idx == 0 ? 0 : offset_rowidx[local_max_idx-1];
  const int local_row_idx = rowidx[offset];

  const int warp_id = threadIdx.x / 32;
  const int warp_idx = threadIdx.x % 32;
  const int warp_offset = (warp_id*32)*SPMM_ITEMS;
  const int num_items = BITS == 8 ? 8 : 8;
  int idx_col_B = warp_offset;
  int local_idx_col_B_offset = 0;

  half local_valA[MAX_SPARSE_COUNT];
  int local_colidxA[MAX_SPARSE_COUNT];
  half local_valC[SPMM_ITEMS];
  T local_valsB[num_items];
  half local_valOut[num_items];
  // 128 byte loads per warp == 4 bytes per thread

  // 2. Load A into registers
  for(int j = 0; j < MAX_SPARSE_COUNT; j++)
  {
    local_valA[j] = j < count ? values[offset+j] : __float2half(0.0f);
    local_colidxA[j] = j < count ? colidx[offset+j] : 0;
  }

  // each thread processes SPMM_ITEMS=32 per iteration. We have 256 threads. 32*256=x192
  // we expect each warp to be SPMM_ITEMS*32 apart
  // we have a total of 128 bytes for the bank with a bank size of 4 bytes
  // added 3 bytes = 6 values between warps should reduce bank conflicts
  __shared__ half smem_dequant_stats[SMEM_SIZE];


  while(idx_col_B <  colsB)
  {

    if(dequant_stats != NULL)
    {
      for(int i = threadIdx.x; i < SMEM_SIZE; i+=blockDim.x)
        if((idx_col_B+i-local_idx_col_B_offset) < colsB)
2701
          smem_dequant_stats[i] = dequant_stats[idx_col_B+i-local_idx_col_B_offset];
Tim Dettmers's avatar
Tim Dettmers committed
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746

      __syncthreads();
    }

    #pragma unroll SPMM_ITEMS
    for(int j = 0; j < SPMM_ITEMS; j++)
      local_valC[j] = 0.0f;

    #pragma unroll
    for(int i = 0; i < count; i++)
    {
        // 3. each warp loads all required rows of B but each warp is offset by k
        int row_offset = colsB*local_colidxA[i];

        #pragma unroll SPMM_ITEMS
        for(int j = 0; j < SPMM_ITEMS; j+=num_items)
        {
          // 4. Multiply the tile -> accumulate outputs in shared memory until 128 bytes it reached
          int idx = idx_col_B + (warp_idx*SPMM_ITEMS) + j;
          if(idx >= colsB){ break; }
          if((idx+num_items < colsB))
          {
            if(BITS == 8)
              reinterpret_cast<float2(&)[num_items]>(local_valsB)[0] = reinterpret_cast<float2*>(B)[(row_offset+ idx)/num_items];
            else
              reinterpret_cast<float4(&)[num_items]>(local_valsB)[0] = reinterpret_cast<float4*>(B)[(row_offset+ idx)/num_items];
          }
          else
          {
            #pragma unroll num_items
            for(int k = 0; k < num_items; k++)
              if(idx+k < colsB)
                local_valsB[k] = B[row_offset+idx+k];
              else
                local_valsB[k] = 0.0f;
          }
          #pragma unroll num_items
          for(int k = 0; k < num_items; k++)
          {
            if(BITS == 8 && dequant_stats != NULL)
              // we do texture cache reads (__ldg) on dequant_stats which should be super fast
            {
              float valB = local_valsB[k];
              float valA = local_valA[i];
              if(valB != 0.0 && valA != 0.0)
Tim Dettmers's avatar
Tim Dettmers committed
2747
                local_valC[j+k] = (float)local_valC[j+k] + ((float)smem_dequant_stats[idx+k-local_idx_col_B_offset])*DENORM*valB*valA;
Tim Dettmers's avatar
Tim Dettmers committed
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
            }
            else
              local_valC[j+k] = (float)local_valC[j+k] + (float)local_valsB[k]*(float)local_valA[i];
          }
        }
    }

    int idx_row_C = (colsB*local_row_idx);

    #pragma unroll SPMM_ITEMS
    for(int j = 0; j < SPMM_ITEMS; j+=num_items)
    {
      //int idx_col_C =  idx_col_B + (32*j) + warp_idx;
      int idx_col_C =  idx_col_B + warp_idx*SPMM_ITEMS + j;
      int idx_val = idx_col_C + idx_row_C;

      if(idx_col_C +num_items < colsB)
      {

          // load outputs to do inplace addition
          reinterpret_cast<float4(&)[num_items/4]>(local_valOut)[0] = reinterpret_cast<float4*>(out)[idx_val/num_items];

          #pragma unroll num_items
          for(int k = 0; k < num_items; k++)
            local_valC[(j/num_items) + k] = (float)local_valC[(j/num_items) + k] + (float)local_valOut[k];
2773

Tim Dettmers's avatar
Tim Dettmers committed
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
          reinterpret_cast<float4*>(out)[idx_val/num_items] = reinterpret_cast<float4(&)[num_items]>(local_valC)[j/num_items];
      }
      else
      {
        #pragma unroll num_items
        for(int k = 0; k < num_items; k++)
         if(idx_col_C + k < colsB)
           out[idx_val+k] = (float)out[idx_val+k]+(float)local_valC[j+k];
      }
    }

    idx_col_B += blockDim.x*SPMM_ITEMS;
    local_idx_col_B_offset += blockDim.x*SPMM_ITEMS;
2787
  }
Tim Dettmers's avatar
Tim Dettmers committed
2788
2789
}

2790
template <int FORMAT> __global__ void kExtractOutliers(char *A, int *idx, char *out, int idx_size, int rowsA, int colsA, int tiledRowsA, int tiledColsA)
2791
{
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
	int local_colidx = idx[blockIdx.x];

	if(FORMAT==COL_TURING)
	{
		// TURING FORMAT:
		// 8*32 tiles with 4*4 subtiles
		// the 8*32 subtile has first all 4*4 subtiles of even rows (max 4*4*8 = 128 elements)
		// the subsequent 4*4 subtiles are for all odd rows if some rows columns are empty the values are zero
		// the tile repeats again after the 8*32 tile in a major column order, meaning: (next 8 rows are A[8:16, 0:32])
		// the next tile is the next 8 rows for the same 32 columns. Once all rows are finished, the column
		// index increases by 32
		// columns are grouped in increments of 4, meaning that one has the following rows and columns
		// rows: [0 0 0 0, 2 2 2 2, 4 4 4 4, 6 6 6 6, 0 0 0 0 ...]
		// cols: [0 1 2 3, 0 1 2 4, 0 1 2 3, 0 1 2 3, 4 5 6 7 ...]

		// each thread reads 1 element = 1 row
		for(int row = threadIdx.x; row < rowsA; row+= blockDim.x)
		{
			int offset_per_col_tile = ((rowsA+7)/8)*32*8;
			int tile_offset_rows = (row/8)*32*8;
			int tile_offset_cols = (local_colidx/32)*offset_per_col_tile;
			int offset = 0;
			int subtile_col_idx = local_colidx%32;
			int subtile_row_idx = row % 8;
			if(row % 2 == 1)
				offset += 128 + (subtile_col_idx/4)*16 + (subtile_col_idx%4) + ((subtile_row_idx-1)*2);
			else
				// even
				offset += 0   + (subtile_col_idx/4)*16 + (subtile_col_idx%4) + (subtile_row_idx*2);

			offset += tile_offset_rows + tile_offset_cols;

2824
			char val = A[offset];
2825
2826

			int out_idx = (row*idx_size) + blockIdx.x;
2827
			out[out_idx] = val;
2828
		}
2829
2830
2831
	}
	else if(FORMAT == COL_AMPERE)
	{
2832

2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
		for(int row = threadIdx.x; row < rowsA; row+= blockDim.x)
		{
			// we got 32x32 tiles and we use the magic equation from the cublasLt doc to get the element
			// within each tile.
			int offset_per_col_tile = ((rowsA+31)/32)*32*32;
			int tile_offset_rows = (row/32)*32*32;
			int tile_offset_cols = (local_colidx/32)*offset_per_col_tile;
			int subtile_col_idx = local_colidx%32;
			int subtile_row_idx = row % 32;
			// this magic is taken from the cublasLt doc (search for COL32)
			int offset = (((subtile_row_idx%8)/2*4+subtile_row_idx/8)*2+subtile_row_idx%2)*32+subtile_col_idx;
			offset += tile_offset_cols + tile_offset_rows;

			char val = A[offset];
			int out_idx = (row*idx_size) + blockIdx.x;
			out[out_idx] = val;
		}
2850
	}
2851
}
2852

2853
#define WARPS 3
Tim Dettmers's avatar
Tim Dettmers committed
2854
template <typename T, int BITS, int THREADS> __global__ void gemm_device(int M, int N, int K, T * __restrict__ const A,  T* B,  T * out,  int lda, int ldb, int ldc)
Tim Dettmers's avatar
Tim Dettmers committed
2855
{
Tim Dettmers's avatar
Tim Dettmers committed
2856
2857
2858

#if __CUDA_ARCH__ >= 750
	using namespace nvcuda;
Tim Dettmers's avatar
Tim Dettmers committed
2859
  int col_offset = blockIdx.x *32;
Tim Dettmers's avatar
Tim Dettmers committed
2860
  const int warp_id = threadIdx.x / 32;
Tim Dettmers's avatar
Tim Dettmers committed
2861
2862
  const int half_warp_id = threadIdx.x / 16;
  const int half_warp_lane = threadIdx.x % 16;
Tim Dettmers's avatar
Tim Dettmers committed
2863
  const int batch_size_warps = (WARPS-1)*2;
2864
  const int val_per_iter = blockDim.x-32;
Tim Dettmers's avatar
Tim Dettmers committed
2865

2866
2867
  T local_A[4];
  T local_B[128];
Tim Dettmers's avatar
Tim Dettmers committed
2868

Tim Dettmers's avatar
Tim Dettmers committed
2869
  const int a_tile_offset = 16;
Tim Dettmers's avatar
Tim Dettmers committed
2870
  const int b_tile_offset = (16*32 + 16);
Tim Dettmers's avatar
Tim Dettmers committed
2871

Tim Dettmers's avatar
Tim Dettmers committed
2872
  __shared__ T smem_A[8*16 + (2*16*(batch_size_warps-1))];
Tim Dettmers's avatar
Tim Dettmers committed
2873
  __shared__ T smem_B[2*batch_size_warps*16*32 + (2*16*(batch_size_warps-1))];
Tim Dettmers's avatar
Tim Dettmers committed
2874
  //__shared__ T smem_C[8*32];
Tim Dettmers's avatar
Tim Dettmers committed
2875

Tim Dettmers's avatar
Tim Dettmers committed
2876
2877
2878
   wmma::fragment<wmma::matrix_a, 8, 32, 16, half, wmma::row_major> a_frag;
   wmma::fragment<wmma::matrix_b, 8, 32, 16, half, wmma::col_major> b_frag;
   wmma::fragment<wmma::accumulator, 8, 32, 16, half> c_frag;
Tim Dettmers's avatar
Tim Dettmers committed
2879
2880
   wmma::fill_fragment(c_frag, 0.0f);

Tim Dettmers's avatar
Tim Dettmers committed
2881
2882
  int ticktock = 0;
  int idx = 0 + threadIdx.x;
Tim Dettmers's avatar
Tim Dettmers committed
2883
  int loaded_values = 0;
Tim Dettmers's avatar
Tim Dettmers committed
2884
2885
  // prefetch
  if(idx < K && warp_id < (WARPS-1))
2886
  {
Tim Dettmers's avatar
Tim Dettmers committed
2887
2888
2889
    if(loaded_values == 0)
    {
      local_A[0] = A[idx];
2890
2891
2892
      local_A[1] = A[idx+(1*val_per_iter)];
      local_A[2] = A[idx+(2*val_per_iter)];
      local_A[3] = A[idx+(3*val_per_iter)];
Tim Dettmers's avatar
Tim Dettmers committed
2893

Tim Dettmers's avatar
Tim Dettmers committed
2894
2895
2896
2897
      #pragma unroll 32
      for(int col = 0; col < 32; col++)
      {
        local_B[col] = B[(col_offset+col)*ldb+idx];
2898
2899
2900
        local_B[col+32] = B[(col_offset+col)*ldb+idx+(1*val_per_iter)];
        local_B[col+64] = B[(col_offset+col)*ldb+idx+(2*val_per_iter)];
        local_B[col+96] = B[(col_offset+col)*ldb+idx+(3*val_per_iter)];
Tim Dettmers's avatar
Tim Dettmers committed
2901
      }
2902
      loaded_values = 3;
Tim Dettmers's avatar
Tim Dettmers committed
2903
2904
2905
2906
    }
    else
    {

2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
      if(loaded_values == 3)
      {
        local_A[0] = local_A[1];
        #pragma unroll 32
        for(int col = 0; col < 32; col++)
          local_B[col] = local_B[col+(32)];
      }
      else if(loaded_values == 2)
      {
        local_A[0] = local_A[2];
        #pragma unroll 32
        for(int col = 0; col < 32; col++)
          local_B[col] = local_B[col+(64)];
      }
      else
      {
        local_A[0] = local_A[3];
        #pragma unroll 32
        for(int col = 0; col < 32; col++)
          local_B[col] = local_B[col+(96)];
      }
      loaded_values--;
Tim Dettmers's avatar
Tim Dettmers committed
2929
    }
Tim Dettmers's avatar
Tim Dettmers committed
2930

Tim Dettmers's avatar
Tim Dettmers committed
2931
    smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] = local_A[0];
Tim Dettmers's avatar
Tim Dettmers committed
2932

Tim Dettmers's avatar
Tim Dettmers committed
2933
2934
    #pragma unroll 32
    for(int col = 0; col < 32; col++)
Tim Dettmers's avatar
Tim Dettmers committed
2935
        smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = local_B[col];
Tim Dettmers's avatar
Tim Dettmers committed
2936
  }
Tim Dettmers's avatar
Tim Dettmers committed
2937
2938
2939
  else if(warp_id < (WARPS-1))
  {
    local_A[0] = T(0.0);
Tim Dettmers's avatar
Tim Dettmers committed
2940
    smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] =  0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2941
2942
2943

    #pragma unroll 32
    for(int col = 0; col < 32; col++)
Tim Dettmers's avatar
Tim Dettmers committed
2944
      local_B[col] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2945
2946
2947

    #pragma unroll 32
    for(int col = 0; col < 32; col++)
Tim Dettmers's avatar
Tim Dettmers committed
2948
      smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2949
  }
Tim Dettmers's avatar
Tim Dettmers committed
2950
  ticktock = ticktock == 0 ? 1 : 0;
Tim Dettmers's avatar
Tim Dettmers committed
2951

2952
  //for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
Tim Dettmers's avatar
Tim Dettmers committed
2953
  for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
Tim Dettmers's avatar
Tim Dettmers committed
2954
2955
  {
    idx = base_idx + threadIdx.x;
Tim Dettmers's avatar
Tim Dettmers committed
2956

Tim Dettmers's avatar
Tim Dettmers committed
2957
2958
2959
    __syncthreads();
    if(idx < K && warp_id < (WARPS-1))
    {
Tim Dettmers's avatar
Tim Dettmers committed
2960
      //local_A[0] = A[idx];
Tim Dettmers's avatar
Tim Dettmers committed
2961

Tim Dettmers's avatar
Tim Dettmers committed
2962
2963
2964
2965
2966
2967
      //#pragma unroll 32
      //for(int col = 0; col < 32; col++)
      //  local_B[col] = B[(col_offset+col)*ldb+idx];
      if(loaded_values == 0)
      {
        local_A[0] = A[idx];
2968
2969
2970
        local_A[1] = A[idx+(1*val_per_iter)];
        local_A[2] = A[idx+(2*val_per_iter)];
        local_A[3] = A[idx+(3*val_per_iter)];
Tim Dettmers's avatar
Tim Dettmers committed
2971
2972
2973
2974
2975

        #pragma unroll 32
        for(int col = 0; col < 32; col++)
        {
          local_B[col] = B[(col_offset+col)*ldb+idx];
2976
2977
2978
          local_B[col+32] = B[(col_offset+col)*ldb+idx+(1*val_per_iter)];
          local_B[col+64] = B[(col_offset+col)*ldb+idx+(2*val_per_iter)];
          local_B[col+96] = B[(col_offset+col)*ldb+idx+(3*val_per_iter)];
Tim Dettmers's avatar
Tim Dettmers committed
2979
        }
2980
2981
        loaded_values = 3;

Tim Dettmers's avatar
Tim Dettmers committed
2982
2983
2984
2985
      }
      else
      {

2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
        if(loaded_values == 3)
        {
          local_A[0] = local_A[1];
          #pragma unroll 32
          for(int col = 0; col < 32; col++)
            local_B[col] = local_B[col+(32)];
        }
        else if(loaded_values == 2)
        {
          local_A[0] = local_A[2];
          #pragma unroll 32
          for(int col = 0; col < 32; col++)
            local_B[col] = local_B[col+(64)];
        }
        else
        {
          local_A[0] = local_A[3];
          #pragma unroll 32
          for(int col = 0; col < 32; col++)
            local_B[col] = local_B[col+(96)];
        }
        loaded_values--;
Tim Dettmers's avatar
Tim Dettmers committed
3008
      }
Tim Dettmers's avatar
Tim Dettmers committed
3009
3010
3011

      smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] = local_A[0];

Tim Dettmers's avatar
Tim Dettmers committed
3012
3013
      #pragma unroll 32
      for(int col = 0; col < 32; col++)
Tim Dettmers's avatar
Tim Dettmers committed
3014
          smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = local_B[col];
Tim Dettmers's avatar
Tim Dettmers committed
3015
    }
Tim Dettmers's avatar
Tim Dettmers committed
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
    else if(warp_id < (WARPS-1))
    {
      local_A[0] = T(0.0);
      smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] =  0.0f;

      #pragma unroll 32
      for(int col = 0; col < 32; col++)
        local_B[col] = 0.0f;

      #pragma unroll 32
      for(int col = 0; col < 32; col++)
        smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = 0.0f;
    }
Tim Dettmers's avatar
Tim Dettmers committed
3029
    ticktock = ticktock == 0 ? 1 : 0;
Tim Dettmers's avatar
Tim Dettmers committed
3030
3031
3032
3033
3034
3035
3036
3037

    if(warp_id == (WARPS-1))
      for(int k = 0; k < batch_size_warps; k++)
      {
        wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock*batch_size_warps + k)*a_tile_offset]), 16); //  111 mu
        wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock*batch_size_warps + k)*b_tile_offset]), 16); // 35 mu
        wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
      }
Tim Dettmers's avatar
Tim Dettmers committed
3038
  }
Tim Dettmers's avatar
Tim Dettmers committed
3039

Tim Dettmers's avatar
Tim Dettmers committed
3040
  __syncthreads();
Tim Dettmers's avatar
Tim Dettmers committed
3041
3042
3043
3044
  if(warp_id != (WARPS-1)){ return; }
  // only warp_id == (WARPS-1) from here
  int warp_lane = threadIdx.x % 32;

Tim Dettmers's avatar
Tim Dettmers committed
3045
  ticktock = ticktock == 0 ? 1 : 0;
Tim Dettmers's avatar
Tim Dettmers committed
3046
3047
3048
3049
3050
3051
  for(int k = 0; k < batch_size_warps; k++)
  {
    wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock*batch_size_warps + k)*a_tile_offset]), 16); //  111 mu
    wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock*batch_size_warps + k)*b_tile_offset]), 16); // 35 mu
    wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
  }
3052

Tim Dettmers's avatar
Tim Dettmers committed
3053
  // 129 mu
Tim Dettmers's avatar
Tim Dettmers committed
3054
  if(warp_id == (WARPS-1))
Tim Dettmers's avatar
Tim Dettmers committed
3055
    wmma::store_matrix_sync(&(smem_A[0]), c_frag, 32, wmma::mem_row_major);
3056

Tim Dettmers's avatar
Tim Dettmers committed
3057
3058
  if(col_offset + warp_lane < M)
    out[col_offset + warp_lane] = smem_A[warp_lane];
Tim Dettmers's avatar
Tim Dettmers committed
3059
#endif
Tim Dettmers's avatar
Tim Dettmers committed
3060
3061
}

Tim Dettmers's avatar
Tim Dettmers committed
3062

3063
template <typename T> __device__ void printnonzero(T *A, int num_values, const char * strval)
Tim Dettmers's avatar
Tim Dettmers committed
3064
3065
3066
{
  for(int i = 0; i < num_values; i++)
    if((float)A[i] != 0.0)
3067
      printf("%s %i %f\n", strval, i, (float)A[i]);
Tim Dettmers's avatar
Tim Dettmers committed
3068
3069
3070
}


Tim Dettmers's avatar
Tim Dettmers committed
3071
3072
3073
template <typename T, int THREADS> __global__ void kgemm_4bit_inference(int M, int N, int K, T * __restrict__ const A, unsigned char *B,  float *absmax, T * out,  int lda, int ldb, int ldc, int blocksize)
{

3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
  //// element-wise kernel
  //// 1. Load batch x k into registers
  //// 2. Load k x k into registers
  //// 3. dequantize and store in second pair of k x k
  //// 4. matmul
  //// 5. sum with cub
  //// 6. store outputs
  //// TC kernel
  //// use k warps per thread block
  //// 1. threadblock use read-only cache to read in register tile for A into shared memory
  //// 2. each warp loops over shared memory tiles of A of size 8x16 and loads them into fragments
  //// 3. each warp reads a segment of values 16x32 from B
  //// 4. do dequantization from register of B into second pair of registers
  //// 5. store (4) into fragment
  //// 6. matmul aggregate into fragment C
  //// 7. aggregate files of C into shared memory block C
  //// 8. sum (7)
  //// 9. write outputs to matmul output matrix
3092
#if __CUDA_ARCH__ >= 750
Tim Dettmers's avatar
Tim Dettmers committed
3093
	using namespace nvcuda;
3094
3095
  int col_offset = blockIdx.x *32;
  const int warp_id = threadIdx.x / 32;
3096
  const int warp_idx = threadIdx.x % 32;
3097
3098
3099
  const int half_warp_id = threadIdx.x / 16;
  const int half_warp_lane = threadIdx.x % 16;
  const int batch_size_warps = (WARPS-1)*2;
Tim Dettmers's avatar
Tim Dettmers committed
3100

Tim Dettmers's avatar
Tim Dettmers committed
3101
3102
3103
3104
3105
  T quant_map[16];

  #pragma unroll 16
  for(int i = 0; i < 16; i++)
    quant_map[i] = nf4_data[i];
3106
  //__shared__ T quant_map[16*160];
Tim Dettmers's avatar
Tim Dettmers committed
3107

3108
3109
3110
  T local_A[2];
  T local_B[64];
  unsigned char local_B_4bit[32];
Tim Dettmers's avatar
Tim Dettmers committed
3111

3112

3113
3114
  const int a_tile_offset = 16;
  const int b_tile_offset = (16*32 + 16);
Tim Dettmers's avatar
Tim Dettmers committed
3115

3116
  __shared__ T smem_A[8*16 + (16*(batch_size_warps-1))];
3117
  __shared__ T smem_B[2*batch_size_warps*16*32 + (2*16*(batch_size_warps-1))];
3118
  __shared__ T smem_C[8*32];
Tim Dettmers's avatar
Tim Dettmers committed
3119

3120
3121
3122
3123
   wmma::fragment<wmma::matrix_a, 8, 32, 16, half, wmma::row_major> a_frag;
   wmma::fragment<wmma::matrix_b, 8, 32, 16, half, wmma::col_major> b_frag;
   wmma::fragment<wmma::accumulator, 8, 32, 16, half> c_frag;
   wmma::fill_fragment(c_frag, 0.0f);
Tim Dettmers's avatar
Tim Dettmers committed
3124

3125
3126
3127
3128
3129
  for(int i = threadIdx.x; i < (8*32); i+=blockDim.x)
    smem_C[i] = 0.0f;

  __syncthreads();

3130
3131
3132
3133
3134
  int ticktock = 0;
  int idx = 0 + threadIdx.x;
  int loaded_values = 0;
  // prefetch
  if(idx < K && warp_id < (WARPS-1))
Tim Dettmers's avatar
Tim Dettmers committed
3135
  {
3136
3137
3138
3139
    if(loaded_values == 0)
    {
      local_A[0] = A[idx];
      local_A[1] = A[idx+blockDim.x-32];
Tim Dettmers's avatar
Tim Dettmers committed
3140

3141
3142
3143
      #pragma unroll 32
      for(int col = 0; col < 32; col++)
        local_B_4bit[col] = B[(col_offset+col)*ldb+idx];
Tim Dettmers's avatar
Tim Dettmers committed
3144

3145
3146
3147
      loaded_values = 1;
    }
    else
Tim Dettmers's avatar
Tim Dettmers committed
3148
    {
3149
3150
      local_A[0] = local_A[1];
      loaded_values--;
Tim Dettmers's avatar
Tim Dettmers committed
3151

3152
3153
3154
      #pragma unroll 64
      for(int col = 0; col < 64; col+=2)
      {
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
        //local_B[col] = dhDequantizeNF4(local_B_4bit[col/2] >> 4)*T(1.0f);
        //local_B[col+1] = dhDequantizeNF4(local_B_4bit[col/2] & 0x0F)*T(1.0f);
        //local_B[col] = d2DequantizeFP4(local_B_4bit[col/2] >> 4)*(float)(17.0);
        //local_B[col+1] = d2DequantizeFP4(local_B_4bit[col/2] & 0x0F)*(float)(17.0);
        //local_B[col] = 127*(local_B_4bit[col/2] >> 4)*(float)(17.0);
        //local_B[col+1] = 127*(local_B_4bit[col/2] & 0x0F)*(float)(17.0);

        //local_B[col] = quant_map[(local_B_4bit[col/2] >> 4)]*T(17.0);
        //local_B[col+1] = quant_map[(local_B_4bit[col/2] & 0x0F)]*T(17.0);
        local_B[col] = quant_map[160*(local_B_4bit[col/2] >> 4)+warp_idx]*T(17.0);
        local_B[col+1] = quant_map[160*(local_B_4bit[col/2] & 0x0F)+warp_idx]*T(17.0);
3166
3167
      }
    }
Tim Dettmers's avatar
Tim Dettmers committed
3168

3169
    smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] = local_A[0];
Tim Dettmers's avatar
Tim Dettmers committed
3170

3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
    #pragma unroll 32
    for(int col = 0; col < 32; col++)
        smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = local_B[col];
  }
  else if(warp_id < (WARPS-1))
  {
    local_A[0] = T(0.0);
    smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] =  0.0f;

    #pragma unroll 32
    for(int col = 0; col < 32; col++)
      local_B[col] = 0.0f;

    #pragma unroll 32
    for(int col = 0; col < 32; col++)
      smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = 0.0f;
  }
  ticktock = ticktock == 0 ? 1 : 0;
3189
3190
    //if(threadIdx.x == 0)
      //printf("aa %i %i\n", idx, loaded_values);
Tim Dettmers's avatar
Tim Dettmers committed
3191

3192
3193
3194
3195
  //for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
  for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
  {
    idx = base_idx + threadIdx.x;
3196
3197
    //if(threadIdx.x == 0)
      //printf("%i %i\n", idx, loaded_values);
3198

3199
    //__syncthreads();
3200
3201
3202
    if(idx < K && warp_id < (WARPS-1))
    {
      if(loaded_values == 0)
Tim Dettmers's avatar
Tim Dettmers committed
3203
      {
3204
3205
        local_A[0] = A[idx];
        local_A[1] = A[idx+blockDim.x-32];
Tim Dettmers's avatar
Tim Dettmers committed
3206

3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
        #pragma unroll 32
        for(int col = 0; col < 32; col++)
        {
          local_B_4bit[col] = B[(col_offset+col)*ldb+idx];
          local_B_4bit[col+16] = B[(col_offset+col)*ldb+idx];
        }

        loaded_values = 1;
      }
      else
      {
        local_A[0] = local_A[1];
        loaded_values--;

        int absidx = (idx + col_offset)/blocksize;
        half local_absmax = __ldg(&(absmax[absidx]));

        #pragma unroll 64
        for(int col = 0; col < 64; col+=2)
        {
3227
3228
3229
3230
3231
3232
3233
3234
3235
          //local_B[col] = dhDequantizeNF4(local_B_4bit[col/2] >> 4)*T(absidx);
          //local_B[col+1] = dhDequantizeNF4(local_B_4bit[col/2] & 0x0F)*T(absidx);
          //local_B[col] = T(127)*T(local_B_4bit[col/2] >> 4)*T(absidx);
          //local_B[col+1] = T(127)*T(local_B_4bit[col/2] & 0x0F)*T(absidx);

          //local_B[col] = quant_map[160*(local_B_4bit[col/2] >> 4)+warp_idx]*T(local_absmax);
          //local_B[col+1] = quant_map[160*(local_B_4bit[col/2] & 0x0F)+warp_idx]*T(local_absmax);
          local_B[col] = quant_map[(local_B_4bit[col/2] >> 4)]*T(absidx);
          local_B[col+1] = quant_map[(local_B_4bit[col/2] & 0x0F)]*T(absidx);
3236
        }
3237
        //printnonzero<T>(local_B, 128, "");
Tim Dettmers's avatar
Tim Dettmers committed
3238
3239
      }

3240
3241
      smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] = local_A[0];

Tim Dettmers's avatar
Tim Dettmers committed
3242
      #pragma unroll 32
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
      for(int col = 0; col < 32; col++)
          smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = local_B[col];
    }
    else if(warp_id < (WARPS-1))
    {
      local_A[0] = T(0.0);
      smem_A[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*a_tile_offset)] =  0.0f;

      #pragma unroll 32
      for(int col = 0; col < 32; col++)
        local_B[col] = 0.0f;

      #pragma unroll 32
      for(int col = 0; col < 32; col++)
        smem_B[half_warp_lane + (((batch_size_warps*ticktock)+half_warp_id)*b_tile_offset) + (col*16)] = 0.0f;
    }
    ticktock = ticktock == 0 ? 1 : 0;

    if(warp_id == (WARPS-1))
      for(int k = 0; k < batch_size_warps; k++)
Tim Dettmers's avatar
Tim Dettmers committed
3263
      {
3264
3265
3266
        wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock*batch_size_warps + k)*a_tile_offset]), 16); //  111 mu
        wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock*batch_size_warps + k)*b_tile_offset]), 16); // 35 mu
        wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
Tim Dettmers's avatar
Tim Dettmers committed
3267
3268
3269
      }
  }

3270
  __syncthreads();
3271
3272
3273
3274
3275
  //if(threadIdx.x == 0)
  //{
  //  printnonzero<T>(smem_A, 8*16 + (2*16*(batch_size_warps-1)), "A: ");
  //  printnonzero<T>(smem_B, 2*batch_size_warps*16*32 + (2*16*(batch_size_warps-1)), "B: ");
  //}
3276
3277
3278
  if(warp_id != (WARPS-1)){ return; }
  // only warp_id == (WARPS-1) from here
  int warp_lane = threadIdx.x % 32;
Tim Dettmers's avatar
Tim Dettmers committed
3279

3280
3281
  ticktock = ticktock == 0 ? 1 : 0;
  for(int k = 0; k < batch_size_warps; k++)
Tim Dettmers's avatar
Tim Dettmers committed
3282
  {
3283
3284
    //if(warp_lane == 0)
      //printf("%i %i %i %i\n", (ticktock*batch_size_warps + k)*a_tile_offset, k, ticktock, threadIdx.x);
3285
3286
3287
    wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock*batch_size_warps + k)*a_tile_offset]), 16); //  111 mu
    wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock*batch_size_warps + k)*b_tile_offset]), 16); // 35 mu
    wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
Tim Dettmers's avatar
Tim Dettmers committed
3288
3289
  }

3290
3291
  // 129 mu
  if(warp_id == (WARPS-1))
3292
    wmma::store_matrix_sync(&(smem_C[0]), c_frag, 32, wmma::mem_row_major);
Tim Dettmers's avatar
Tim Dettmers committed
3293

3294
  //printnonzero<T>(smem_C, 32, "");
Tim Dettmers's avatar
Tim Dettmers committed
3295

3296
  if(col_offset + warp_lane < M)
3297
    out[col_offset + warp_lane] = smem_C[warp_lane];
3298
#endif
Tim Dettmers's avatar
Tim Dettmers committed
3299
3300
}

3301
#define num_values_4bit 32
3302
template <typename T, int THREADS, int BITS> __global__ void kgemm_4bit_inference_naive(int M, int N, int K, T * __restrict__ const A, unsigned char *B,  float *absmax, const float *datatype, T * out,  int lda, int ldb, int ldc, int blocksize)
3303
3304
{

3305
  // per threadblock:
3306
  // load step-by-step in chunks of [32,warps]: 1x32 * [32,warps] -> [1,warps]
3307
  // 4 warps -> 4 loads per iter
3308
  // 1x32 * 32x4 -> 1x4 outputs per thread block
3309
  typedef cub::WarpReduce<float> WarpReduce;
3310
  __shared__ typename WarpReduce::TempStorage temp_storage[THREADS/32];
3311
3312
3313

  const int warp_idx = threadIdx.x / 32;
  const int warp_lane = threadIdx.x % 32;
3314
  const int row_B = (THREADS/32)*blockIdx.x + warp_idx;
3315
  const int offset_B = ldb*row_B;
3316
  const int num_values_8bit = num_values_4bit/2;
3317
  float local_C = 0.0f;
3318

3319
  unsigned char local_B_4bit[num_values_8bit];
Tim Dettmers's avatar
Tim Dettmers committed
3320
3321
  T local_B[num_values_4bit/4];
  T local_A[num_values_4bit/4];
3322
3323
  __shared__ T quant_map[16];
	T local_absmax = T(0.0f);
3324

3325
3326
3327
3328
  if (threadIdx.x < 16)
    quant_map[threadIdx.x] = T(__ldg(&datatype[threadIdx.x]));
  //for(int i = threadIdx.x; i < 16; i++)
    //quant_map[i] = T(__ldg(&datatype[i]));
3329
  __syncthreads();
3330
3331
3332
3333
3334

  // A: [1, K]
  // B: [N, K]
  for(int inner_idx = warp_lane*num_values_4bit; inner_idx < K; inner_idx += 32*num_values_4bit)
  {
3335
3336
3337
3338
3339
3340
3341
3342
    const int inner_idx_halved = inner_idx/2;

    // Since blocksize will always be a power-of-2, we avoid more expensive
    // division by the blocksize and instead use a shift operation.
    // This is equivalent to (i+threadId.x*NUM_PER_TH)/blocksize.
    const int absidx = ((2*offset_B)+inner_idx) >> (31 - __clz(blocksize));

    local_absmax = __ldg(&(absmax[absidx]));
3343

3344
    if(row_B < M)
3345
    {
Tim Dettmers's avatar
Tim Dettmers committed
3346
      if((inner_idx_halved + num_values_8bit) < (K/2))
3347
      {
3348
        // this is the most important for performance considerations
3349
3350
        reinterpret_cast<int4(&)[num_values_8bit]>(local_B_4bit)[0] = reinterpret_cast<int4*>(B)[(offset_B+(inner_idx_halved))/(num_values_8bit)];
      }
3351
      else
3352
3353
3354
      {
        #pragma unroll
        for(int j = 0; j < (num_values_8bit); j++)
Tim Dettmers's avatar
Tim Dettmers committed
3355
          if((inner_idx_halved) + j < (K/2))
3356
3357
            local_B_4bit[j] = B[offset_B+inner_idx_halved + j];
          else
3358
3359
            local_B_4bit[j] = 0b01110111;
      }
3360
    }
Tim Dettmers's avatar
Tim Dettmers committed
3361
3362
3363
3364
3365
3366
    else
    {
      #pragma unroll
      for(int j = 0; j < (num_values_8bit); j++)
          local_B_4bit[j] = 0b01110111;
    }
3367

Tim Dettmers's avatar
Tim Dettmers committed
3368
    for(int i = 0; i < 4; i++)
3369
    {
Tim Dettmers's avatar
Tim Dettmers committed
3370
3371
      #pragma unroll
      for(int k = 0; k < num_values_8bit/4; k++)
3372
      {
3373
        #if BNB_BF16_AVAILABLE
Tim Dettmers's avatar
Tim Dettmers committed
3374
3375
3376
3377
3378
3379
3380
          local_B[k*2] = quant_map[local_B_4bit[(i*num_values_8bit/4) + k] >> 4]*local_absmax;
          local_B[k*2 + 1] = quant_map[local_B_4bit[(i*num_values_8bit/4) + k] & 0x0F]*local_absmax;
        #else
          // bf16 multipliation not supported
          local_B[k*2] = T((float)quant_map[local_B_4bit[(i*num_values_8bit/4) + k] >> 4]*(float)local_absmax);
          local_B[k*2 + 1] = T((float)quant_map[local_B_4bit[(i*num_values_8bit/4) + k] & 0x0F]*(float)local_absmax);
        #endif
3381
      }
3382

Tim Dettmers's avatar
Tim Dettmers committed
3383
3384
3385
3386
3387
3388
3389
      if(inner_idx+(num_values_4bit/4) + (i*num_values_4bit/4) < K)
      {
        // this is also relatively important for performance
        if(BITS==16)
        {
          reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[0] = reinterpret_cast<int4*>(A)[inner_idx/(num_values_4bit/4) + i];
        }
3390
        else
Tim Dettmers's avatar
Tim Dettmers committed
3391
3392
3393
3394
        {
          reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[0] = reinterpret_cast<int4*>(A)[inner_idx/(num_values_4bit/8) + (2*i) + 0];
          reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[1] = reinterpret_cast<int4*>(A)[inner_idx/(num_values_4bit/8) + (2*i) + 1];
        }
3395

Tim Dettmers's avatar
Tim Dettmers committed
3396
3397
3398
3399
3400
3401
3402
3403
      }
      else
        #pragma unroll
        for(int k = 0; k < num_values_4bit/4; k++)
          if(inner_idx + (i*num_values_4bit/4) + k < K)
            local_A[k] = A[inner_idx + k + (i*num_values_4bit/4)];
          else
            local_A[k] = T(0.0f);
3404

Tim Dettmers's avatar
Tim Dettmers committed
3405
3406
3407
3408
3409

      // accumulate in float; small performance hit for Ampere, but lower error for outputs
      #pragma unroll
      for(int k = 0; k < num_values_4bit/4; k++)
      {
3410
        #if BNB_BF16_AVAILABLE
Tim Dettmers's avatar
Tim Dettmers committed
3411
3412
3413
3414
3415
3416
          local_C += (float)(local_A[k]*local_B[k]);
        #else
          // bf16 multipliation not supported
          local_C += ((float)local_A[k]*(float)local_B[k]);
        #endif
      }
3417
    }
3418
3419
3420
3421
3422
  }

  local_C = WarpReduce(temp_storage[warp_idx]).Sum(local_C);

  if(row_B < M && warp_lane == 0)
3423
    out[row_B] = T(local_C);
3424
3425
3426
3427

}


3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
//#define ROWS 2
//template <typename T, int ITEMS, int THREADS> __global__ void gemm_device(int M, int N, int K, T const* A,  T* B,  T * out,  int lda, int ldb, int ldc)
//{
//// 0. We want to fill a 8x128 tile for a thread block so we have 8x16 tile for each warp
//// 1. Load dataB into register
//// 2. Dequantize B
//// 3. Fetch data from A and multiply
//
//  typedef cub::BlockLoad<T, THREADS , ITEMS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadA;
//  //__shared__ typename LoadA::TempStorage loada;
//  typedef cub::BlockLoad<T, THREADS , ITEMS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadB;
//  //__shared__ typename LoadB::TempStorage loadb;
//  typedef cub::BlockReduce<T, THREADS> BlockReduce;
//  // Allocate shared memory for BlockReduce
//  //__shared__ typename BlockReduce::TempStorage reduce;
//
//  __shared__ union {
//    typename BlockReduce::TempStorage reduce;
//    typename LoadB::TempStorage loadb;
//    typename LoadA::TempStorage loada;
//  } temp_storage;
//
//
//	T dataA[ITEMS];
//  T local_B[ITEMS];
//  T local_accC[ROWS];
//	int valid_items = 0;
//  const int col_offset = blockIdx.x * 8;
//
//	__shared__ T tileA[ROWS*THREADS*ITEMS];
//	__shared__ T accumulatorC[ROWS*8];
//
//  //#pragma unroll 8
//  //for(int i = 0; i < 8; i++)
//  //  tileA[threadIdx.x + (i*256)] = 0.0f;
//  //__syncthreads();
//  if(threadIdx.x < 64)
//    accumulatorC[threadIdx.x] = 0.0f;
//  __syncthreads();
//
//
//	for(int inner_idx = 0; inner_idx < K; inner_idx+= THREADS*ITEMS)
//	{
//		valid_items = K - inner_idx > THREADS*ITEMS ? THREADS*ITEMS : K - inner_idx;
//		int baserow = 0;
//		for(int row = baserow; row < (baserow+ROWS) && row < N; row++)
//		{
//			LoadA(temp_storage.loada).Load(&(A[(row*K) + inner_idx]), dataA, valid_items, 0.0f);
//
//      #pragma unroll ITEMS
//      for(int k = 0; k < ITEMS; k++)
//          tileA[row*THREADS*ITEMS + threadIdx.x + (k*THREADS)] = dataA[k];
//
//		__syncthreads();
//		}
//		baserow += ROWS;
//
//    // load 16 columns from B at a time. B is transposed, so its like loading rows
//    // each warp loads one row
//    // each thread loads 128 byte
//
//    // col: inner_idx + warp_lane
//    // row: ldb*(offset + warp_id)
//    for(int col = 0; col < 8 && (col_offset + col) < M; col++)
//    {
//      int colB = col_offset + col;
//
//      for(int k = 0; k < ROWS; k++)
//        local_accC[k] = 0.0f;
//
//      int base_idxB = ldb*colB;
//      valid_items = K - inner_idx > THREADS*ITEMS ? THREADS*ITEMS : K - inner_idx;
//      LoadB(temp_storage.loadb).Load(&(B[base_idxB + inner_idx]), local_B, valid_items, 0.0f);
//      __syncthreads();
//
//      for(int row = 0; row < ROWS && row < N; row++)
//      {
//        #pragma unroll ITEMS
//        for(int k = 0; k < ITEMS; k++)
//        {
//          int idxA = row*THREADS*ITEMS + threadIdx.x + (THREADS*k);
//          local_accC[row] += tileA[idxA]*local_B[k];
//        }
//
//        local_accC[row] = BlockReduce(temp_storage.reduce).Reduce(local_accC[row], cub::Sum());
//        if(threadIdx.x == 0)
//          atomicAdd(&accumulatorC[row*8 + col], local_accC[row]);
//      }
//    }
//	}
//
//  for(int row = 0; row < ROWS && row < N; row++)
//  {
//    int out_idx = ldc*row + col_offset;
//
//    //if(threadIdx.x < 8)
//    //  if(accumulatorC[row*8 + threadIdx.x] != 0.0)
//    //    printf("%i %i %i %i %f idx %i %i %i\n", row, col_offset, threadIdx.x, N, accumulatorC[row*8 + threadIdx.x], ldc, out_idx, blockIdx.x);
//
//    if(threadIdx.x < 8 && (col_offset + threadIdx.x) < M)
//    {
//      //printf("%i %i %i %i %f idx %i %i\n", row, col_offset, threadIdx.x, N, accumulatorC[row*8 + threadIdx.x], ldc, out_idx);
//      out[out_idx + threadIdx.x] = accumulatorC[row*8 + threadIdx.x];
//    }
//  }
//
//
//
//}

Tim Dettmers's avatar
Tim Dettmers committed
3538

Tim Dettmers's avatar
Tim Dettmers committed
3539
template <typename T, int FUNC> __global__ void kfunc(T *A, T *B, T value, long n)
Tim Dettmers's avatar
Tim Dettmers committed
3540
{
Tim Dettmers's avatar
Tim Dettmers committed
3541
3542
3543
3544
  for(long i = (blockDim.x*blockIdx.x) + threadIdx.x; i < n; i+=(blockDim.x*gridDim.x))
  {
    switch(FUNC)
    {
3545
      case FILL:
Tim Dettmers's avatar
Tim Dettmers committed
3546
3547
3548
3549
3550
3551
3552
3553
        A[i] = (T)value;
        break;
      case ARANGE:
        A[i] = (T)i;
        break;
      case _MUL:
        A[i] = A[i]*B[i];
        break;
Tim Dettmers's avatar
Tim Dettmers committed
3554
    }
Tim Dettmers's avatar
Tim Dettmers committed
3555
  }
Tim Dettmers's avatar
Tim Dettmers committed
3556
3557
}

Tim Dettmers's avatar
Tim Dettmers committed
3558

Tim Dettmers's avatar
Tim Dettmers committed
3559
3560
3561
3562
//==============================================================
//                   TEMPLATE DEFINITIONS
//==============================================================

Tim Dettmers's avatar
Tim Dettmers committed
3563
3564
3565
3566
template __global__ void kfunc<float, FILL>(float *A, float *B, float value, long n);
template __global__ void kfunc<unsigned char, FILL>(unsigned char *A, unsigned char *B, unsigned char value, long n);
template __global__ void kfunc<float, ARANGE>(float *A, float *B, float value, long n);
template __global__ void kfunc<float, _MUL>(float *A, float *B, float value, long n);
Tim Dettmers's avatar
Tim Dettmers committed
3567
3568

// these are not used and make no sense, but the compiler needs them
Tim Dettmers's avatar
Tim Dettmers committed
3569
//template __global__ void gemm_device<float, 16, 128>(int M, int N, int K, float * __restrict__ const A,  float* B,  float * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3570
template __global__ void gemm_device<half, 32, 256>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3571
template __global__ void gemm_device<half, 32, 192>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3572
template __global__ void gemm_device<half, 32, 160>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3573
template __global__ void gemm_device<half, 32, 128>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3574
3575
//template __global__ void gemm_device<float, 16, 32>(int M, int N, int K, float * __restrict__ const A,  float* B,  float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 32, 32>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3576
template __global__ void gemm_device<half, 32, 64>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3577
template __global__ void gemm_device<half, 32, 96>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3578
3579
// these are not used and make no sense, but the compiler needs them

Tim Dettmers's avatar
Tim Dettmers committed
3580
//template __global__ void gemm_device<float, 32, 128>(int M, int N, int K, float * __restrict__ const A,  float* B,  float * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3581
template __global__ void gemm_device<half, 16, 256>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3582
template __global__ void gemm_device<half, 16, 192>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3583
template __global__ void gemm_device<half, 16, 160>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
3584
template __global__ void gemm_device<half, 16, 128>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3585
3586
//template __global__ void gemm_device<float, 32, 32>(int M, int N, int K, float * __restrict__ const A,  float* B,  float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 16, 32>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3587
template __global__ void gemm_device<half, 16, 64>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3588
template __global__ void gemm_device<half, 16, 96>(int M, int N, int K, half * __restrict__ const A,  half* B,  half * out,  int lda, int ldb, int ldc);
Tim Dettmers's avatar
Tim Dettmers committed
3589

3590
template __global__ void kgemm_4bit_inference<half, 96>(int M, int N, int K, half * __restrict__ const A, unsigned char *B,  float *absmax, half * out,  int lda, int ldb, int ldc, int blocksize);
Tim Dettmers's avatar
Tim Dettmers committed
3591
template __global__ void kgemm_4bit_inference<half, 128>(int M, int N, int K, half * __restrict__ const A, unsigned char *B,  float *absmax, half * out,  int lda, int ldb, int ldc, int blocksize);
3592
template __global__ void kgemm_4bit_inference<half, 160>(int M, int N, int K, half * __restrict__ const A, unsigned char *B,  float *absmax, half * out,  int lda, int ldb, int ldc, int blocksize);
3593
3594
template __global__ void kgemm_4bit_inference<half, 256>(int M, int N, int K, half * __restrict__ const A, unsigned char *B,  float *absmax, half * out,  int lda, int ldb, int ldc, int blocksize);

3595
3596
3597
template __global__ void kgemm_4bit_inference_naive<half, 128, 16>(int M, int N, int K, half * __restrict__ const A, unsigned char *B,  float *absmax, const float *datatype, half * out,  int lda, int ldb, int ldc, int blocksize);
template __global__ void kgemm_4bit_inference_naive<__nv_bfloat16, 128, 16>(int M, int N, int K, __nv_bfloat16 * __restrict__ const A, unsigned char *B,  float *absmax, const float *datatype, __nv_bfloat16 * out,  int lda, int ldb, int ldc, int blocksize);
template __global__ void kgemm_4bit_inference_naive<float, 128, 32>(int M, int N, int K, float * __restrict__ const A, unsigned char *B,  float *absmax, const float *datatype, float * out,  int lda, int ldb, int ldc, int blocksize);
Tim Dettmers's avatar
Tim Dettmers committed
3598

3599
3600
template __global__ void kExtractOutliers<COL_TURING>(char *A, int *idx, char *out, int idx_size, int rowsA, int colsA, int tiledRowsA, int tiledColsA);
template __global__ void kExtractOutliers<COL_AMPERE>(char *A, int *idx, char *out, int idx_size, int rowsA, int colsA, int tiledRowsA, int tiledColsA);
3601

James Wyatt's avatar
James Wyatt committed
3602
3603
3604
3605
3606
3607
template __global__ void kspmm_coo_very_sparse_naive<half, 8, 16>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, half *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB);
template __global__ void kspmm_coo_very_sparse_naive<half, 16, 16>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, half *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB);
template __global__ void kspmm_coo_very_sparse_naive<half, 32, 16>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, half *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 8, 8>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, signed char *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 16, 8>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, signed char *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 32, 8>(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, signed char *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB);
Tim Dettmers's avatar
Tim Dettmers committed
3608
3609
3610
3611
3612
3613
3614
3615

template __global__ void kTransformRowToFormat<256, 8, 32, 32*8, 0, COL32>(char *__restrict__ const A, char *out, int rows, int cols, int tiledCols, int outRows, int outCols);
template __global__ void kTransformRowToFormat<256, 8, 32, 32*8, 1, COL32>(char *__restrict__ const A, char *out, int rows, int cols, int tiledCols, int outRows, int outCols);
template __global__ void kTransformRowToFormat<256, 8, 32, 32*8, 0, COL_TURING>(char *__restrict__ const A, char *out, int rows, int cols, int tiledCols, int outRows, int outCols);
template __global__ void kTransformRowToFormat<256, 8, 32, 32*8, 1, COL_TURING>(char *__restrict__ const A, char *out, int rows, int cols, int tiledCols, int outRows, int outCols);
template __global__ void kTransformRowToFormat<256, 8, 32, 32*8, 0, COL_AMPERE>(char *__restrict__ const A, char *out, int rows, int cols, int tiledCols, int outRows, int outCols);
template __global__ void kTransformRowToFormat<256, 8, 32, 32*8, 1, COL_AMPERE>(char *__restrict__ const A, char *out, int rows, int cols, int tiledCols, int outRows, int outCols);

3616
template __global__ void kdequant_mm_int32_fp16<4, 512>(int *__restrict__ const A, float *__restrict__ const rowStats, float *__restrict__ const colStats, half *out, half * __restrict__ const bias, const int numRows, const int numCols, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
3617

Tim Dettmers's avatar
Tim Dettmers committed
3618
3619
3620
3621
3622
3623
3624
3625
3626
template __device__ unsigned char dQuantize<0>(float* smem_code, const float rand, float x);
template __device__ unsigned char dQuantize<1>(float* smem_code, const float rand, float x);

template __global__ void kEstimateQuantiles(float *__restrict__ const A, float *code, const float offset, const float max_val, const int n);
template __global__ void kEstimateQuantiles(half *__restrict__ const A, float *code, const float offset, const half max_val, const int n);

#define MAKE_PreconditionOptimizer32bit1State(oname, gtype) \
template __global__ void kPreconditionOptimizer32bit1State<gtype, oname, 4096, 8>(gtype* g, gtype* p, \
                float* state1, float *unorm, \
3627
                const float beta1, const float beta2, const float eps, const float weight_decay, \
Tim Dettmers's avatar
Tim Dettmers committed
3628
3629
3630
3631
                const int step, const float lr, const float gnorm_scale, const int n); \

MAKE_PreconditionOptimizer32bit1State(MOMENTUM, half)
MAKE_PreconditionOptimizer32bit1State(MOMENTUM, float)
3632
MAKE_PreconditionOptimizer32bit1State(MOMENTUM, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
3633
3634
MAKE_PreconditionOptimizer32bit1State(RMSPROP, half)
MAKE_PreconditionOptimizer32bit1State(RMSPROP, float)
3635
MAKE_PreconditionOptimizer32bit1State(RMSPROP, __nv_bfloat16)
3636
3637
MAKE_PreconditionOptimizer32bit1State(LION, half)
MAKE_PreconditionOptimizer32bit1State(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
3638
MAKE_PreconditionOptimizer32bit1State(LION, __nv_bfloat16)
3639
3640
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, half)
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, float)
3641
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
3642
3643
3644

#define MAKE_Optimizer32bit1State(oname, gtype) \
template __global__ void kOptimizer32bit1State<gtype, oname>(gtype* g, gtype* p, float* state1, float *unorm, const float max_unorm, const float param_norm, \
3645
    const float beta1, const float beta2, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n); \
Tim Dettmers's avatar
Tim Dettmers committed
3646
3647
3648

MAKE_Optimizer32bit1State(MOMENTUM, half)
MAKE_Optimizer32bit1State(MOMENTUM, float)
3649
MAKE_Optimizer32bit1State(MOMENTUM, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
3650
3651
MAKE_Optimizer32bit1State(RMSPROP, half)
MAKE_Optimizer32bit1State(RMSPROP, float)
3652
MAKE_Optimizer32bit1State(RMSPROP, __nv_bfloat16)
3653
3654
MAKE_Optimizer32bit1State(LION, half)
MAKE_Optimizer32bit1State(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
3655
MAKE_Optimizer32bit1State(LION, __nv_bfloat16)
3656
3657
MAKE_Optimizer32bit1State(ADAGRAD, half)
MAKE_Optimizer32bit1State(ADAGRAD, float)
3658
MAKE_Optimizer32bit1State(ADAGRAD, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
3659
3660
3661
3662
3663
3664
3665
3666

#define MAKE_PreconditionOptimizer32bit2State(oname, gtype) \
template __global__ void kPreconditionOptimizer32bit2State<gtype, oname, 4096, 8>(gtype* g, gtype* p,  \
                float* state1, float* state2, float *unorm, \
                const float beta1, const float beta2, const float eps, const float weight_decay, \
                const int step, const float lr, const float gnorm_scale, const int n); \

MAKE_PreconditionOptimizer32bit2State(ADAM, float)
3667
3668
MAKE_PreconditionOptimizer32bit2State(ADAM, half)
MAKE_PreconditionOptimizer32bit2State(ADAM, __nv_bfloat16)
3669
3670
3671
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, float)
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, half)
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
3672

3673
template __global__ void kOptimizer32bit2State<float, ADAM>(float* g, float* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
3674
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
3675
template __global__ void kOptimizer32bit2State<half, ADAM>(half* g, half* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
3676
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
3677
template __global__ void kOptimizer32bit2State<__nv_bfloat16, ADAM>(__nv_bfloat16* g, __nv_bfloat16* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
3678
3679
3680
3681
3682
3683
3684
3685
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
template __global__ void kOptimizer32bit2State<float, ADEMAMIX>(float* g, float* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
template __global__ void kOptimizer32bit2State<half, ADEMAMIX>(half* g, half* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
template __global__ void kOptimizer32bit2State<__nv_bfloat16, ADEMAMIX>(__nv_bfloat16* g, __nv_bfloat16* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);

Tim Dettmers's avatar
Tim Dettmers committed
3686
3687
3688
3689
3690

#define MAKE_PreconditionStatic8bit1State(oname, gtype) \
template __global__ void kPreconditionOptimizerStatic8bit1State<gtype, oname>(gtype* p, gtype* __restrict__ const g, unsigned char*__restrict__  const state1,  \
                float *unorm,  \
                const float beta1,  \
3691
                const float beta2,  \
Tim Dettmers's avatar
Tim Dettmers committed
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
                const float eps, const int step,  \
                float* __restrict__ const quantiles1,  \
                float* max1, float* new_max1,  \
                const float weight_decay, \
                const float gnorm_scale,  \
                const int n); \

MAKE_PreconditionStatic8bit1State(MOMENTUM, half)
MAKE_PreconditionStatic8bit1State(MOMENTUM, float)
MAKE_PreconditionStatic8bit1State(RMSPROP, half)
MAKE_PreconditionStatic8bit1State(RMSPROP, float)
3703
3704
MAKE_PreconditionStatic8bit1State(LION, half)
MAKE_PreconditionStatic8bit1State(LION, float)
3705
3706
MAKE_PreconditionStatic8bit1State(ADAGRAD, half)
MAKE_PreconditionStatic8bit1State(ADAGRAD, float)
Tim Dettmers's avatar
Tim Dettmers committed
3707
3708
3709
3710
3711

#define MAKE_optimizerStatic8bit1State(oname, gtype) \
template __global__ void kOptimizerStatic8bit1State<gtype, oname>(gtype* p, gtype* const g, unsigned char* state1,  \
                const float *unorm, const float max_unorm, const float param_norm, \
                const float beta1,  \
3712
                const float beta2,  \
Tim Dettmers's avatar
Tim Dettmers committed
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
                const float eps, const int step, const float lr, \
                float* __restrict__ const quantiles1,  \
                float* max1, float* new_max1,  \
                float weight_decay, \
                const float gnorm_scale,  \
                const int n); \

MAKE_optimizerStatic8bit1State(MOMENTUM, half)
MAKE_optimizerStatic8bit1State(MOMENTUM, float)
MAKE_optimizerStatic8bit1State(RMSPROP, half)
MAKE_optimizerStatic8bit1State(RMSPROP, float)
3724
3725
MAKE_optimizerStatic8bit1State(LION, half)
MAKE_optimizerStatic8bit1State(LION, float)
3726
3727
3728
MAKE_optimizerStatic8bit1State(ADAGRAD, half)
MAKE_optimizerStatic8bit1State(ADAGRAD, float)

Tim Dettmers's avatar
Tim Dettmers committed
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758

#define MAKE_PreconditionStatic8bit2State(oname, gtype) \
template __global__ void kPreconditionOptimizerStatic8bit2State<gtype, oname>(gtype* p, gtype* __restrict__ const g, unsigned char*__restrict__  const state1, unsigned char* __restrict__ const state2, \
                float *unorm, \
                const float beta1, const float beta2, \
                const float eps, const int step,  \
                float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, \
                float* max1, float* max2, float* new_max1, float* new_max2, \
                const float gnorm_scale,  \
                const int n); \

MAKE_PreconditionStatic8bit2State(ADAM, half)
MAKE_PreconditionStatic8bit2State(ADAM, float)

#define MAKE_optimizerStatic8bit2State(oname, gtype) \
template __global__ void kOptimizerStatic8bit2State<gtype, oname>(gtype* p, gtype* const g, unsigned char* state1, unsigned char* state2, \
                const float *unorm, const float max_unorm, const float param_norm, \
                const float beta1, const float beta2, \
                const float eps, const int step, const float lr, \
                float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, \
                float* max1, float* max2, float* new_max1, float* new_max2, \
                float weight_decay, \
                const float gnorm_scale,  \
                const int n); \

MAKE_optimizerStatic8bit2State(ADAM, half)
MAKE_optimizerStatic8bit2State(ADAM, float)

template __global__ void kPercentileClipping<float, 2048, 4>(float * __restrict__ g, float *gnorm_vec, int step, const int n);
template __global__ void kPercentileClipping<half, 2048, 4>(half * __restrict__ g, float *gnorm_vec, int step, const int n);
3759
3760
// template __global__ void kPercentileClipping<float, 128, 4>(float * __restrict__ g, float *gnorm_vec, int step, const int n);
// template __global__ void kPercentileClipping<half, 128, 4>(half * __restrict__ g, float *gnorm_vec, int step, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
3761

Tim Dettmers's avatar
Tim Dettmers committed
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
#define MAKE_kQuantizeBlockwise(dtype, blocksize, num_per_thread, stochastic, data_type_name) \
template __global__ void kQuantizeBlockwise<dtype, blocksize, num_per_thread, stochastic, data_type_name>(float * code, dtype * __restrict__ const A, float *absmax, unsigned char *out, float * __restrict__ const rand, const int rand_offset, const int n); \

MAKE_kQuantizeBlockwise(half,  4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half,  4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(half,  2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half,  1024, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half,   512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half,   256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half,   128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half,    64, 2, 0, General8bit)
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
MAKE_kQuantizeBlockwise(half,  4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half,  2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half,  1024, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half,   512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half,   256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half,   128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half,    64, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half,  4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half,  2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half,  1024, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half,   512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half,   256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half,   128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half,    64, 2, 0, NF4)
Tim Dettmers's avatar
Tim Dettmers committed
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float,  512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float,  256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float,  128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float,   64, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float,  512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float,  256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float,  128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float,   64, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float,  512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float,  256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float,  128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float,   64, 2, 0, NF4)

3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16,   64, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,   64, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,  128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16,   64, 2, 0, NF4)

Tim Dettmers's avatar
Tim Dettmers committed
3833
3834
3835
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, FP4>(float *code, unsigned char * A, float * absmax, half *out, const int blocksize, const int n);
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, General8bit>(float *code, unsigned char * A, float * absmax, half *out, const int blocksize, const int n);
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, NF4>(float *code, unsigned char * A, float * absmax, half *out, const int blocksize, const int n);
3836
3837
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, FP4>(float *code, unsigned char * A, float * absmax, float *out, const int blocksize, const int n);
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, General8bit>(float *code, unsigned char * A, float * absmax, float *out, const int blocksize, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
3838
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, NF4>(float *code, unsigned char * A, float * absmax, float *out, const int blocksize, const int n);
3839
3840
3841
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, FP4>(float *code, unsigned char * A, float * absmax, __nv_bfloat16 *out, const int blocksize, const int n);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, General8bit>(float *code, unsigned char * A, float * absmax, __nv_bfloat16 *out, const int blocksize, const int n);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, NF4>(float *code, unsigned char * A, float * absmax, __nv_bfloat16 *out, const int blocksize, const int n);
Tim Dettmers's avatar
Tim Dettmers committed
3842
3843
3844

#define MAKE_OptimizerStatic8bit2StateBlockwise(oname, gtype, block_size, num_per_thread) \
template __global__ void kOptimizerStatic8bit2StateBlockwise<gtype, oname, block_size, num_per_thread>(gtype* p, gtype* __restrict__ const g, unsigned char* state1, unsigned char* state2, \
3845
                const float beta1, const float beta2, const float beta3, const float alpha, \
Tim Dettmers's avatar
Tim Dettmers committed
3846
3847
3848
3849
                const float eps, const int step, const float lr, \
                float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, \
                float* absmax1, float* absmax2,  \
                float weight_decay, \
3850
                const float gnorm_scale, const bool skip_zeros, const int n); \
Tim Dettmers's avatar
Tim Dettmers committed
3851

3852
3853
3854
3855
3856
3857
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, float, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, half, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, float, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, half, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, __nv_bfloat16, 256, 1)
Tim Dettmers's avatar
Tim Dettmers committed
3858
3859
3860
3861
3862
3863
3864
3865
3866

#define MAKE_OptimizerStatic8bit1StateBlockwise(oname, gtype, block_size, num_per_thread) \
template __global__ void kOptimizerStatic8bit1StateBlockwise<gtype, oname, block_size, num_per_thread>( \
		gtype* p, gtype* __restrict__ const g, unsigned char* state1, \
                const float beta1, const float beta2, \
                const float eps, const int step, const float lr, \
                float* __restrict__ const quantiles1, \
                float* absmax1, \
                float weight_decay, \
3867
                const float gnorm_scale, const bool skip_zeros, const int n); \
Tim Dettmers's avatar
Tim Dettmers committed
3868

3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, __nv_bfloat16, 256, 1)
3881
3882
3883

template __device__ void printnonzero<float>(float *A, int num_values, const char*strval);
template __device__ void printnonzero<half>(half *A, int num_values, const char*strval);