"src/vscode:/vscode.git/clone" did not exist on "27266abc9ff8cda37a892e6ddfdd6a5caab94e66"
test_linear4bit.py 6.85 KB
Newer Older
1
import copy
Aarni Koskela's avatar
Aarni Koskela committed
2
import os
3
import pickle
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
4
5
6
7
8
9
from tempfile import TemporaryDirectory

import pytest
import torch

import bitsandbytes as bnb
10
from tests.helpers import TRUE_FALSE, torch_load_from_buffer, torch_save_to_buffer
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
11

12
storage = {
13
14
15
16
    "uint8": torch.uint8,
    "float16": torch.float16,
    "bfloat16": torch.bfloat16,
    "float32": torch.float32,
17
}
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
18

19
20

@pytest.mark.parametrize("quant_storage", ["uint8", "float16", "bfloat16", "float32"])
Aarni Koskela's avatar
Aarni Koskela committed
21
22
23
@pytest.mark.parametrize("bias", TRUE_FALSE)
@pytest.mark.parametrize("compress_statistics", TRUE_FALSE)
@pytest.mark.parametrize("quant_type", ["nf4", "fp4"])
24
25
@pytest.mark.parametrize("save_before_forward", TRUE_FALSE)
def test_linear_serialization(quant_type, compress_statistics, bias, quant_storage, save_before_forward):
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
26
27
28
29
30
    original_dtype = torch.float16
    compute_dtype = None
    device = "cuda"
    layer_shape = (300, 400)

Ruff's avatar
Ruff committed
31
    linear = torch.nn.Linear(*layer_shape, dtype=original_dtype, device="cpu")  # original layer
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
32
33
34
35
36
37
38
39
40

    # Quantizing original layer
    linear_q = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
41
        device="meta",
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
42
    )
Ruff's avatar
Ruff committed
43
    new_weight = bnb.nn.Params4bit(data=linear.weight, quant_type=quant_type, requires_grad=False)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
44
    linear_q.weight = new_weight
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
45
    if bias:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
46
47
        linear_q.bias = torch.nn.Parameter(linear.bias)
    linear_q = linear_q.to(device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
48

49
    # saving to state_dict:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
50
    sd = linear_q.state_dict()
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
51

52
53
54
55
    # restoring from state_dict:
    bias_data2 = sd.pop("bias", None)
    weight_data2 = sd.pop("weight")
    weight2 = bnb.nn.Params4bit.from_prequantized(quantized_stats=sd, data=weight_data2)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
56

57
    # creating new layer with same params:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
58
59
60
61
62
63
64
    linear_q2 = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
65
        device="meta",
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
66
    )
67
    # loading weights from state_dict:
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
68
    linear_q2.weight = weight2
69
70
    if bias:
        linear_q2.bias = torch.nn.Parameter(bias_data2)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
71
    linear_q2 = linear_q2.to(device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
72

73
    # MATCHING
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
74
75
    a, b = linear_q.weight, linear_q2.weight

76
77
78
79
80
81
82
83
84
85
86
    # Quantizing original layer with specified quant_storage type
    linear_qs = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
        quant_storage=storage[quant_storage],
        device="meta",
    )
87
88
89
90
91
92
    linear_qs.weight = bnb.nn.Params4bit(
        data=linear.weight,
        requires_grad=False,
        quant_type=quant_type,
        quant_storage=storage[quant_storage],
    )
93
94
95
96
    if bias:
        linear_qs.bias = torch.nn.Parameter(linear.bias)
    linear_qs = linear_qs.to(device)

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
97
98
99
    assert a.device == b.device
    assert a.dtype == b.dtype
    assert torch.equal(a, b)
100

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
101
102
    q0 = a.quant_state
    q1 = b.quant_state
103
    for attr in ("code", "dtype", "blocksize", "absmax"):
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
104
105
106
107
108
109
110
        c, d = getattr(q0, attr), getattr(q1, attr)
        if isinstance(c, torch.Tensor):
            assert torch.equal(c, d)
        else:
            assert c == d, f"{c} != {d}"

    if q0.state2 is not None:
111
        for attr in ("code", "dtype", "blocksize", "absmax"):
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
112
113
114
115
116
117
118
119
120
121
122
123
            c, d = getattr(q0.state2, attr), getattr(q1.state2, attr)
            if isinstance(c, torch.Tensor):
                assert torch.equal(c, d)
            else:
                assert c == d, f"{c} != {d}"

    if bias:
        a, b = linear_q.bias, linear_q2.bias
        assert a.device == b.device
        assert a.dtype == b.dtype
        assert torch.equal(a, b)

124
125
126
    if save_before_forward:
        bytes_4bit = torch_save_to_buffer(linear_q)

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
127
    # Forward test
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
128
    x = torch.rand(42, layer_shape[0], device=device)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
129
130
    a = linear_q(x)
    b = linear_q2(x)
131
    c = linear_qs(x)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
132
133
    assert a.device == b.device
    assert a.dtype == b.dtype
134
135
    assert a.device == c.device
    assert a.dtype == c.dtype
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
136
    assert torch.equal(a, b)
137
138
    assert torch.equal(a, c)

139
140
141
142
    if not save_before_forward:
        bytes_4bit = torch_save_to_buffer(linear_q)
    linear_q3 = torch_load_from_buffer(bytes_4bit)

143
    # Test moving to CPU and back to GPU
144
    linear_q2.to("cpu")
145
146
147
148
149
    linear_q2.to(device)
    d = linear_qs(x)
    assert c.dtype == d.dtype
    assert c.device == d.device
    assert torch.equal(c, d)
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
150

151
152
153
154
155
    d = linear_q3(x)
    assert c.dtype == d.dtype
    assert c.device == d.device
    assert torch.equal(c, d)

Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
156
157
158
159
160
161
162
    # Saved size ratio test. Target set for layer_shape == (300, 400) w/ bias
    with TemporaryDirectory() as tmpdir:
        state_path_4bit = os.path.join(tmpdir, "state_4bit.pth")
        state_path = os.path.join(tmpdir, "state.pth")
        torch.save(linear.state_dict(), state_path)
        torch.save(linear_q.state_dict(), state_path_4bit)

163
164
165
        size_orig, size_4 = (
            os.path.getsize(state_path),
            os.path.getsize(state_path_4bit),
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
166
167
        )
        size_ratio = size_4 / size_orig
168
169
170
        target_compression = (
            0.143 if original_dtype == torch.float32 else 0.29
        )  # these numbers get lower as weight shape increases
Ruff's avatar
Ruff committed
171
172
173
        ratio_error_msg = (
            f"quantized_size {size_4:,} is larger on disk than {target_compression:.2%} of original size {size_orig:,}"
        )
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
174
        assert size_ratio < target_compression, ratio_error_msg
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208


def test_copy_param():
    tensor = torch.tensor([1.0, 2.0, 3.0, 4.0])
    param = bnb.nn.Params4bit(data=tensor, requires_grad=False).cuda(0)

    shallow_copy_param = copy.copy(param)
    assert param.quant_state is shallow_copy_param.quant_state
    assert param.data.data_ptr() == shallow_copy_param.data.data_ptr()


def test_deepcopy_param():
    tensor = torch.tensor([1.0, 2.0, 3.0, 4.0])
    param = bnb.nn.Params4bit(data=tensor, requires_grad=False).cuda(0)
    copy_param = copy.deepcopy(param)
    assert param.quant_state is not copy_param.quant_state
    assert param.data.data_ptr() != copy_param.data.data_ptr()


def test_params4bit_real_serialization():
    original_tensor = torch.tensor([1.0, 2.0, 3.0, 4.0], dtype=torch.float32)
    original_param = bnb.nn.Params4bit(data=original_tensor, quant_type="fp4")

    original_param.cuda(0)  # move to CUDA to trigger quantization

    serialized_param = pickle.dumps(original_param)
    deserialized_param = pickle.loads(serialized_param)

    assert torch.equal(original_param.data, deserialized_param.data)
    assert original_param.requires_grad == deserialized_param.requires_grad == False
    assert original_param.quant_type == deserialized_param.quant_type
    assert original_param.blocksize == deserialized_param.blocksize
    assert original_param.compress_statistics == deserialized_param.compress_statistics
    assert original_param.quant_state == deserialized_param.quant_state