kernels.cu 127 KB
Newer Older
1
2
3
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
Tim Dettmers's avatar
Tim Dettmers committed
4
5
// LICENSE file in the root directory of this source tree.

6
#include "common.cuh"
7
#include "kernels.cuh"
Tim Dettmers's avatar
Tim Dettmers committed
8
#include <cub/block/block_discontinuity.cuh>
9
10
#include <cub/block/block_load.cuh>
#include <cub/block/block_radix_sort.cuh>
Tim Dettmers's avatar
Tim Dettmers committed
11
#include <cub/block/block_reduce.cuh>
12
#include <cub/block/block_store.cuh>
Tim Dettmers's avatar
Tim Dettmers committed
13
#include <cub/cub.cuh>
14
15
#include <cub/warp/warp_reduce.cuh>
#include <cuda_fp16.h>
Tim Dettmers's avatar
Tim Dettmers committed
16
#include <math_constants.h>
Tim Dettmers's avatar
Tim Dettmers committed
17
#include <mma.h>
Tim Dettmers's avatar
Tim Dettmers committed
18

Tim Dettmers's avatar
Tim Dettmers committed
19
20
21
22
23
#define HLF_MAX 65504
#define TH 1024
#define NUM 4
#define NUM_BLOCK 4096

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
__device__ static float nf4_data[16] = {
    -1.0,
    -0.6961928009986877,
    -0.5250730514526367,
    -0.39491748809814453,
    -0.28444138169288635,
    -0.18477343022823334,
    -0.09105003625154495,
    0.0,
    0.07958029955625534,
    0.16093020141124725,
    0.24611230194568634,
    0.33791524171829224,
    0.44070982933044434,
    0.5626170039176941,
    0.7229568362236023,
    1.0
};
Tim Dettmers's avatar
Tim Dettmers committed
42

Tim Dettmers's avatar
Tim Dettmers committed
43
44
// source: https://stackoverflow.com/questions/17399119/how-do-i-use-atomicmax-on-floating-point-values-in-cuda
__device__ float atomicMax(float* address, float val) {
45
46
47
48
49
50
51
    int* address_as_i = reinterpret_cast<int*>(address);
    int old = *address_as_i, assumed;
    do {
        assumed = old;
        old = atomicCAS(reinterpret_cast<int*>(address), assumed, __float_as_int(fmaxf(val, __int_as_float(assumed))));
    } while (assumed != old);
    return __int_as_float(old);
Tim Dettmers's avatar
Tim Dettmers committed
52
53
}

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
__device__ float dDequantizeFP4Tree(unsigned char val, float absmax) {
    float sign = (val & 0b1000) == 8 ? -1.0f : 1.0f;
    if ((val & 0b0100) == 4)                        // 0
        if ((val & 0b0010) == 2)                    // 01
            if ((val & 0b0001) == 1)                // 111
                return 0.25000000f * absmax * sign; // 1111
            else
                return 0.16666667f * absmax * sign; // 1110
        else if ((val & 0b0001) == 1)               // 110
            return 0.50000000f * absmax * sign;     // 1101
        else
            return 0.33333333f * absmax * sign; // 1100
    else if ((val & 0b0010) == 2)               // 10
        if ((val & 0b0001) == 1)                // 101
            return 1.00000000f * absmax * sign; // 1011
        else
            return 0.66666667f * absmax * sign;  // 1010
    else if ((val & 0b0001) == 1)                // 100
        return 5.208333333e-03f * absmax * sign; // 1001
73
    else
74
        return 0.00000000f * absmax * sign; // 1000
Tim Dettmers's avatar
Tim Dettmers committed
75
76
}

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
__device__ unsigned char dQuantizeFP4(float x) {
    // FP4 with bias of 3
    // first bit is a sign
    // subnormals
    // 0b000 = 0
    // 0b001 = 0.0625
    // 0b110 = 2
    // 0b111 = 3
    // 0b100 = 4
    // 0b101 = 6
    // 0b010 = 8
    // 0b011 = 12

    // we do a binary search
    // the pivots are divided by 12 (the FP4 absmax)
    // since we assume input data is in [-1.0, 1.0]

    // !be careful here, its easy to make a mistake
    // that is difficult to notice if you add an extra
    // zero somewhere!

    int sign = x < 0 ? 0b1000 : 0b0000;
    x = fabsf(x);
    if (x > 0.29166667f)
        if (x > 0.583333f)
            if (x > 0.8333333f)
                return 0b0011 + sign;
            else
                return 0b0010 + sign;
        else if (x > 0.4166667f)
            return 0b101 + sign;
        else
            return 0b100 + sign;
    else if (x > 0.0859375f)
        if (x > 0.20833333f)
            return 0b0111 + sign;
        else
            return 0b0110 + sign;
    else if (x > 0.00260417f)
        return 0b0001 + sign;
Tim Dettmers's avatar
Tim Dettmers committed
117
    else
118
        return 0b0000 + sign;
Tim Dettmers's avatar
Tim Dettmers committed
119
120
}

121
__device__ __forceinline__ float dDequantizeNF4(unsigned char val) {
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    // the values for this tree was generated by test_normal_map_tree
    // in the file tests/test_functional.py
    if ((val & 0b1000) == 8)
        if ((val & 0b0100) == 4)         // 1
            if ((val & 0b0010) == 2)     // 11
                if ((val & 0b0001) == 1) // 111
                    return 1.0f;
                else
                    return 0.7229568362236023f;
            else if ((val & 0b0001) == 1) // 110
                return 0.5626170039176941f;
            else
                return 0.44070982933044434f;
        else if ((val & 0b0010) == 2) // 10
            if ((val & 0b0001) == 1)  // 101
                return 0.33791524171829224f;
            else
                return 0.24611230194568634f;
        else if ((val & 0b0001) == 1) // 100
            return 0.16093020141124725f;
Tim Dettmers's avatar
Tim Dettmers committed
143
        else
144
            return 0.07958029955625534f;
Tim Dettmers's avatar
Tim Dettmers committed
145

146
147
148
149
150
151
152
153
    else if ((val & 0b0100) == 4)    // 0
        if ((val & 0b0010) == 2)     // 01
            if ((val & 0b0001) == 1) // 011
                return 0.0f;
            else
                return -0.09105003625154495f;
        else if ((val & 0b0001) == 1) // 010
            return -0.18477343022823334f;
Tim Dettmers's avatar
Tim Dettmers committed
154
        else
155
156
157
158
            return -0.28444138169288635f;
    else if ((val & 0b0010) == 2) // 00
        if ((val & 0b0001) == 1)  // 001
            return -0.39491748809814453f;
Tim Dettmers's avatar
Tim Dettmers committed
159
        else
160
161
162
            return -0.5250730514526367f;
    else if ((val & 0b0001) == 1) // 000
        return -0.6961928009986877f;
Tim Dettmers's avatar
Tim Dettmers committed
163
    else
164
        return -1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
165
166
}

167
__device__ unsigned char dQuantizeNF4(float x) {
Tim Dettmers's avatar
Tim Dettmers committed
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    // the values for this tree was generated by test_normal_map_tree
    // in the file tests/test_functional.py
    if (x > 0.03979014977812767f)
        if (x > 0.3893125355243683f)         // 1
            if (x > 0.6427869200706482f)     // 11
                if (x > 0.8614784181118011f) // 111
                    return 0b1111;
                else
                    return 0b1110;
            else if (x > 0.5016634166240692f) // 110
                return 0b1101;
            else
                return 0b1100;
        else if (x > 0.2035212516784668f) // 10
            if (x > 0.2920137718319893f)  // 101
                return 0b1011;
            else
                return 0b1010;
        else if (x > 0.1202552504837513f) // 100
            return 0b1001;
Tim Dettmers's avatar
Tim Dettmers committed
189
        else
190
191
192
193
194
195
196
197
198
            return 0b1000;
    else if (x > -0.33967943489551544f)     // 0
        if (x > -0.13791173323988914f)      // 01
            if (x > -0.045525018125772476f) // 011
                return 0b0111;
            else
                return 0b0110;
        else if (x > -0.23460740596055984f) // 010
            return 0b0101;
Tim Dettmers's avatar
Tim Dettmers committed
199
        else
200
201
202
203
            return 0b0100;
    else if (x > -0.6106329262256622f) // 00
        if (x > -0.4599952697753906f)  // 001
            return 0b0011;
Tim Dettmers's avatar
Tim Dettmers committed
204
        else
205
206
207
            return 0b0010;
    else if (x > -0.8480964004993439f) // 000
        return 0b0001;
208
    else
209
        return 0b0000;
210
}
211

212
213
214
// sign function for lion
// taken from https://stackoverflow.com/a/4609795, but not sure if there's a proper way to do this in CUDA

215
template <typename T> __device__ int sgn(T val) { return (T(0) < val) - (val < T(0)); }
216

217
template <int STOCHASTIC> __device__ unsigned char dQuantize(float* smem_code, const float rand, float x) {
Tim Dettmers's avatar
Tim Dettmers committed
218
219
220
221
222
223
224
225
226
    int pivot = 127;
    int upper_pivot = 255;
    int lower_pivot = 0;

    float lower = -1.0f;
    float upper = 1.0f;

    float val = smem_code[pivot];
    // i>>=1 = {32, 16, 8, 4, 2, 1}
227
228
    for (int i = 64; i > 0; i >>= 1) {
        if (x > val) {
Tim Dettmers's avatar
Tim Dettmers committed
229
230
            lower_pivot = pivot;
            lower = val;
231
232
            pivot += i;
        } else {
Tim Dettmers's avatar
Tim Dettmers committed
233
234
            upper_pivot = pivot;
            upper = val;
235
            pivot -= i;
Tim Dettmers's avatar
Tim Dettmers committed
236
237
238
239
        }
        val = smem_code[pivot];
    }

240
    if (upper_pivot == 255)
Tim Dettmers's avatar
Tim Dettmers committed
241
        upper = smem_code[upper_pivot];
242
    if (lower_pivot == 0)
Tim Dettmers's avatar
Tim Dettmers committed
243
244
        lower = smem_code[lower_pivot];

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    if (!STOCHASTIC) {
        if (x > val) {
            float midpoint = (upper + val) * 0.5f;
            if (x > midpoint) {
                return upper_pivot;
            } else
                return pivot;
        } else {
            float midpoint = (lower + val) * 0.5f;
            if (x < midpoint)
                return lower_pivot;
            else
                return pivot;
        }
    } else {
        if (x > val) {
            float dist_to_upper = fabsf(upper - x);
            float dist_full = upper - val;
            if (rand >= dist_to_upper / dist_full)
                return upper_pivot;
            else
                return pivot;
        } else {
            float dist_to_lower = fabsf(lower - x);
            float dist_full = val - lower;
            if (rand >= dist_to_lower / dist_full)
                return lower_pivot;
            else
                return pivot;
Tim Dettmers's avatar
Tim Dettmers committed
274
275
276
277
278
        }
    }
}

template <int SIGNED>
279
280
__device__ __forceinline__ unsigned char
    quantize_2D(float* __restrict__ quadrants, float* __restrict__ const smem_code, float x) {
Tim Dettmers's avatar
Tim Dettmers committed
281
282
283
284
285
286
287
288
289
290
291
292
    int pivot = 127;
    int upper_pivot = 255;
    int lower_pivot = 0;

    float lower = SIGNED ? -1.0f : 0.0f;
    float upper = 1.0f;
    float midpoint;
    float val = quadrants[1];
    int local_pivot = 1;
    int offset = 1;

    // i>>=1 = {32, 16, 8, 4, 2, 1}
293
294
    for (int i = 64; i > 0; i >>= 1) {
        if (x > val) {
Tim Dettmers's avatar
Tim Dettmers committed
295
296
            lower_pivot = pivot;
            lower = val;
297
298
            pivot += i;
            // val = i == 64 ? quadrants[2] : smem_code[pivot];
Tim Dettmers's avatar
Tim Dettmers committed
299
            local_pivot += offset;
300
        } else {
Tim Dettmers's avatar
Tim Dettmers committed
301
302
            upper_pivot = pivot;
            upper = val;
303
304
            pivot -= i;
            // val = i == 64 ? quadrants[0] : smem_code[pivot];
Tim Dettmers's avatar
Tim Dettmers committed
305
306
307
308
309
310
            local_pivot -= offset;
        }
        val = i >= 64 ? quadrants[local_pivot] : smem_code[pivot];
        offset -= 1;
    }

311
312
313
314
315
316
317
318
319
320
321
322
    if (x > val) {
        midpoint = (upper + val) * 0.5f;
        if (x > midpoint)
            return upper_pivot;
        else
            return pivot;
    } else {
        midpoint = (lower + val) * 0.5f;
        if (x < midpoint)
            return lower_pivot;
        else
            return pivot;
Tim Dettmers's avatar
Tim Dettmers committed
323
324
325
    }
}

326
327
328
329
330
__launch_bounds__(TH, 4) __global__
    void kQuantize(float* code, float* __restrict__ const A, unsigned char* out, const int n) {
    const int n_full = (NUM_BLOCK * (n / NUM_BLOCK)) + (n % NUM_BLOCK == 0 ? 0 : NUM_BLOCK);
    int valid_items = (blockIdx.x + 1 == gridDim.x) ? n - (blockIdx.x * NUM_BLOCK) : NUM_BLOCK;
    const int base_idx = (blockIdx.x * NUM_BLOCK);
Tim Dettmers's avatar
Tim Dettmers committed
331

332
333
334
    float vals[NUM];
    unsigned char qvals[NUM];
    // const int lane_id = threadIdx.x % 2;
Tim Dettmers's avatar
Tim Dettmers committed
335

336
337
    typedef cub::BlockLoad<float, TH, NUM, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockStore<unsigned char, TH, NUM, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
Tim Dettmers's avatar
Tim Dettmers committed
338

339
340
341
342
    __shared__ typename LoadFloat::TempStorage loadf;
    __shared__ typename StoreChar::TempStorage storec;
    __shared__ float smem_code[256];
    //__shared__ float smem_code[2][257];
Tim Dettmers's avatar
Tim Dettmers committed
343

344
345
346
347
348
    if (threadIdx.x < 256) {
        smem_code[threadIdx.x] = code[threadIdx.x];
        // smem_code[0][threadIdx.x] = code[threadIdx.x];
        // smem_code[1][threadIdx.x] = smem_code[0][threadIdx.x];
    }
Tim Dettmers's avatar
Tim Dettmers committed
349

350
351
352
353
354
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_BLOCK) {
        // number of values already processed in blocks +
        // number of values already processed in this block +
        // rand_offset % mod value
        valid_items = n - i > NUM_BLOCK ? NUM_BLOCK : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
355

356
357
        __syncthreads();
        LoadFloat(loadf).Load(&(A[i]), vals, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
358

359
360
361
#pragma unroll 4
        for (int j = 0; j < NUM; j++)
            qvals[j] = dQuantize<0>(smem_code, 0.0f, vals[j]);
Tim Dettmers's avatar
Tim Dettmers committed
362

363
364
365
        __syncthreads();
        StoreChar(storec).Store(&(out[i]), qvals, valid_items);
    }
Tim Dettmers's avatar
Tim Dettmers committed
366
367
}

368
template <typename T, int BLOCK_SIZE, int NUM_PER_TH, int STOCHASTIC, int DATA_TYPE>
369
//__launch_bounds__(TH, 4)
370
371
372
373
374
375
376
__global__ void kQuantizeBlockwise(
    float* code, T* __restrict__ const A, float* absmax, unsigned char* out, float* __restrict__ const rand,
    const int rand_offset, const int n
) {
    const int n_full = gridDim.x * BLOCK_SIZE;
    int valid_items = 0;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
Tim Dettmers's avatar
Tim Dettmers committed
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
    T vals[NUM_PER_TH];
    float rand_vals[NUM_PER_TH];
    unsigned char qvals[(DATA_TYPE > 0) ? NUM_PER_TH / 2 : NUM_PER_TH];
    // float local_abs_max = -FLT_MAX;
    float local_abs_max = 0.0f;
    int local_rand_idx = 0;

    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_PER_TH, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockStore<
        unsigned char, BLOCK_SIZE / NUM_PER_TH, (DATA_TYPE > 0) ? NUM_PER_TH / 2 : NUM_PER_TH,
        cub::BLOCK_STORE_WARP_TRANSPOSE>
        StoreChar;
    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_PER_TH> BlockReduce;
    typedef cub::BlockLoad<float, BLOCK_SIZE / NUM_PER_TH, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;

    __shared__ typename LoadT::TempStorage loadt;
    __shared__ typename LoadFloat::TempStorage loadf;
    __shared__ typename StoreChar::TempStorage storec;
    __shared__ typename BlockReduce::TempStorage reduce;
    __shared__ float smem_code[256];
    __shared__ float smem_absmax_value[1];

    if (DATA_TYPE == General8bit)
        for (int i = threadIdx.x; i < 256; i += blockDim.x)
            smem_code[i] = code[i];

    for (int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
        local_abs_max = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
407

408
409
        __syncthreads();
        LoadT(loadt).Load(&(A[i]), vals, valid_items, (T)0.0f);
Tim Dettmers's avatar
Tim Dettmers committed
410

411
412
413
        // 1. compute local max
        // 2. broadcast local max
        // 3. normalize inputs and quantize
Tim Dettmers's avatar
Tim Dettmers committed
414

415
416
417
#pragma unroll NUM_PER_TH
        for (int j = 0; j < NUM_PER_TH; j++)
            local_abs_max = fmaxf(local_abs_max, fabsf((float)vals[j]));
Tim Dettmers's avatar
Tim Dettmers committed
418

419
        local_abs_max = BlockReduce(reduce).Reduce(local_abs_max, cub::Max(), valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
420

421
422
423
424
425
        if (threadIdx.x == 0) {
            smem_absmax_value[0] = 1.0f / local_abs_max;
            absmax[i / BLOCK_SIZE] = local_abs_max;
        }
        __syncthreads();
Tim Dettmers's avatar
Tim Dettmers committed
426

427
        local_abs_max = smem_absmax_value[0];
Tim Dettmers's avatar
Tim Dettmers committed
428

429
430
431
432
433
434
435
        if (STOCHASTIC) {
            local_rand_idx = ((blockIdx.x * NUM_BLOCK) + (threadIdx.x * NUM) + rand_offset) % (1024 - 4);
            LoadFloat(loadf).Load(&rand[local_rand_idx], rand_vals, BLOCK_SIZE, 0);
        }

        unsigned char packed_4bit = 0;
        switch (DATA_TYPE) {
Tim Dettmers's avatar
Tim Dettmers committed
436
        case General8bit:
437
438
439
440
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++) {
                if (!STOCHASTIC)
                    qvals[j] = dQuantize<0>(smem_code, 0.0f, ((float)vals[j]) * local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
441
                else
442
                    qvals[j] = dQuantize<1>(smem_code, rand_vals[j], ((float)vals[j]) * local_abs_max);
Tim Dettmers's avatar
Tim Dettmers committed
443
444
445
            }
            break;
        case FP4:
446
447
448
449
450
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH / 2; j++) {
                packed_4bit |= dQuantizeFP4(((float)vals[2 * j]) * local_abs_max) << 4;
                packed_4bit |= dQuantizeFP4(((float)vals[2 * j + 1]) * local_abs_max);
                qvals[j] = packed_4bit;
Tim Dettmers's avatar
Tim Dettmers committed
451
452
453
            }
            break;
        case NF4:
454
455
456
457
458
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH / 2; j++) {
                packed_4bit |= dQuantizeNF4(((float)vals[2 * j]) * local_abs_max) << 4;
                packed_4bit |= dQuantizeNF4(((float)vals[2 * j + 1]) * local_abs_max);
                qvals[j] = packed_4bit;
Tim Dettmers's avatar
Tim Dettmers committed
459
460
            }
            break;
461
        }
Tim Dettmers's avatar
Tim Dettmers committed
462

463
464
465
466
467
        __syncthreads();
        StoreChar(storec).Store(
            &(out[(DATA_TYPE > 0) ? i / 2 : i]), qvals, (DATA_TYPE > 0) ? (valid_items + 1) / 2 : valid_items
        );
    }
Tim Dettmers's avatar
Tim Dettmers committed
468
469
}

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
template <typename T, int TILE_SIZE, int THREADS, int NUM_PER_TH, int DATA_TYPE>
__global__ void
    kDequantizeBlockwise(float* code, unsigned char* A, float* absmax, T* out, const int blocksize, const int n) {

    const int n_load = (gridDim.x * TILE_SIZE);
    int valid_items_load = 0;
    int valid_items_store = 0;
    const int base_idx = (blockIdx.x * TILE_SIZE);

    T vals[NUM_PER_TH * ((DATA_TYPE > 0) ? 2 : 1)];
    unsigned char qvals[NUM_PER_TH];
    float local_abs_max = -FLT_MAX;

    typedef cub::BlockLoad<unsigned char, THREADS, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
    typedef cub::BlockStore<T, THREADS, NUM_PER_TH*((DATA_TYPE > 0) ? 2 : 1), cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ typename LoadChar::TempStorage loadchar;
    __shared__ typename StoreT::TempStorage storet;

    for (int i = base_idx; i < n_load; i += gridDim.x * TILE_SIZE) {
        if (DATA_TYPE > 0) {
            valid_items_load = min(TILE_SIZE, (n + 1) / 2 - i);
            valid_items_store = min(TILE_SIZE * 2, n - i * 2);
        } else {
            valid_items_load = min(TILE_SIZE, n - i);
            valid_items_store = valid_items_load;
        }
Tim Dettmers's avatar
Tim Dettmers committed
497

498
499
500
501
        // Since blocksize will always be a power-of-2, we avoid more expensive
        // division by the blocksize and instead use a shift operation.
        // This is equivalent to (i+threadId.x*NUM_PER_TH)/blocksize.
        local_abs_max = __ldg(&absmax[(i + threadIdx.x * NUM_PER_TH) >> (31 - __clz(blocksize))]);
Tim Dettmers's avatar
Tim Dettmers committed
502

503
504
        __syncthreads();
        LoadChar(loadchar).Load(&(A[i]), qvals, valid_items_load, 128);
Tim Dettmers's avatar
Tim Dettmers committed
505

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
        switch (DATA_TYPE) {
        case General8bit:
// load code through read-only cache via __ldg
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++)
                vals[j] = __ldg(&code[qvals[j]]) * local_abs_max;
            break;
        case FP4:
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++) {
                vals[j * 2] = dDequantizeFP4Tree(qvals[j] >> 4, local_abs_max);
                vals[j * 2 + 1] = dDequantizeFP4Tree(qvals[j] & 0x0F, local_abs_max);
            }
            break;
        case NF4:
#pragma unroll NUM_PER_TH
            for (int j = 0; j < NUM_PER_TH; j++) {
                vals[j * 2] = dDequantizeNF4(qvals[j] >> 4) * local_abs_max;
                vals[j * 2 + 1] = dDequantizeNF4(qvals[j] & 0x0F) * local_abs_max;
            }
            break;
        }
Tim Dettmers's avatar
Tim Dettmers committed
528

529
530
        __syncthreads();
        StoreT(storet).Store(&(out[(DATA_TYPE > 0) ? i * 2 : i]), vals, valid_items_store);
531
    }
532
}
533

534
535
536
__global__ void kDequantize(float* code, unsigned char* A, float* out, const int n) {
    const unsigned int numThreads = blockDim.x * gridDim.x;
    const int idx = (blockIdx.x * blockDim.x) + threadIdx.x;
Tim Dettmers's avatar
Tim Dettmers committed
537

538
539
540
    __shared__ float smem_code[256];
    if (threadIdx.x < 256) {
        smem_code[threadIdx.x] = code[threadIdx.x];
541
    }
Tim Dettmers's avatar
Tim Dettmers committed
542

543
    __syncthreads();
544
545
546
547

    for (int i = idx; i < n; i += numThreads) {
        out[i] = smem_code[A[i]];
    }
Tim Dettmers's avatar
Tim Dettmers committed
548
549
}

550
551
552
553
554
555
556
557
558
559
560
template <typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__launch_bounds__(BLOCK_SIZE / NUM_VALS, 1) __global__ void kPreconditionOptimizer32bit2State(
    T* g, T* p, float* state1, float* state2, float* unorm, const float beta1, const float beta2, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const int n
) {

    const int n_full = (BLOCK_SIZE * (n / BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
    const int base_idx = (blockIdx.x * blockDim.x * NUM_VALS);
    int valid_items = 0;

    T g_vals[NUM_VALS];
Tim Dettmers's avatar
Tim Dettmers committed
561

562
563
    float s1_vals[NUM_VALS];
    float s2_vals[NUM_VALS];
Tim Dettmers's avatar
Tim Dettmers committed
564

565
566
    const float correction1 = 1.0f / (1.0f - powf(beta1, step));
    const float correction2 = 1.0f / (1.0f - powf(beta2, step));
Tim Dettmers's avatar
Tim Dettmers committed
567

568
569
570
    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockLoad<float, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_VALS> BlockReduce;
Tim Dettmers's avatar
Tim Dettmers committed
571

572
573
574
575
576
    __shared__ union {
        typename Load::TempStorage load;
        typename LoadFloat::TempStorage loadf;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;
Tim Dettmers's avatar
Tim Dettmers committed
577

578
579
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i >= (BLOCK_SIZE) ? (BLOCK_SIZE) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
580

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items, 0.0f);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items, 0.0f);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state2[i]), s2_vals, valid_items, 0.0f);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++)
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++) {
            switch (OPTIMIZER) {
            case ADAM:
                s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]));
                s2_vals[j] = s2_vals[j] * beta2 + ((1.0f - beta2) * (((float)g_vals[j]) * ((float)g_vals[j])));
                s1_vals[j] *= correction1;
                s2_vals[j] *= correction2;
                s1_vals[j] = s1_vals[j] / (sqrtf(s2_vals[j]) + eps); // update
                s1_vals[j] *= s1_vals[j];                            // update l2 norm (update*update)
                break;
            }
        }

#pragma unroll NUM_VALS - 1
        for (unsigned int j = 1; j < NUM_VALS; j++)
            s1_vals[0] += s1_vals[j];
Tim Dettmers's avatar
Tim Dettmers committed
609

610
611
        __syncthreads();
        s1_vals[0] = BlockReduce(temp_storage.reduce).Sum(s1_vals[0]);
Tim Dettmers's avatar
Tim Dettmers committed
612

613
614
615
616
617
618
        if (threadIdx.x == 0)
            atomicAdd(&unorm[0], s1_vals[0]);

        __syncwarp();
    }
}
Tim Dettmers's avatar
Tim Dettmers committed
619
620
621

#define NUM_PER_THREAD 4

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
template <typename T, int OPTIMIZER>
__launch_bounds__(TH, 1) __global__ void kOptimizer32bit2State(
    T* g, T* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
) {

    const int n_full = ((TH * NUM_PER_THREAD) * (n / (TH * NUM_PER_THREAD))) +
                       (n % (TH * NUM_PER_THREAD) == 0 ? 0 : (TH * NUM_PER_THREAD));
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
    int valid_items = 0;
    float update_scale = 0.0f;
    T g_vals[NUM_PER_THREAD];
    T p_vals[NUM_PER_THREAD];

    float s1_vals[NUM_PER_THREAD];
    float s2_vals[NUM_PER_THREAD];

    // AdEMAMix has an additional state buffer, which we packed
    // into state1. We need thread-local storage here for these.
    // TODO: Mark with [[maybe_unused]] after upgrade to min compiler.
    float s3_vals[NUM_PER_THREAD];

    const float correction1 = 1.0f - powf(beta1, step);
    const float correction2 = sqrtf(1.0f - powf(beta2, step));
    const float step_size = -lr * correction2 / correction1;

    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm) {
            update_scale = (max_unorm * param_norm) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
    }

    typedef cub::BlockLoad<T, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockStore<T, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> Store;

    typedef cub::BlockLoad<float, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockStore<float, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreFloat;

    __shared__ union {
        typename Load::TempStorage load;
        typename Store::TempStorage store;
        typename LoadFloat::TempStorage loadf;
        typename StoreFloat::TempStorage storef;
    } temp_storage;

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * TH * NUM_PER_THREAD) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;

        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items);
681
        __syncthreads();
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
        LoadFloat(temp_storage.loadf).Load(&(state2[i]), s2_vals, valid_items);
        __syncthreads();
        Load(temp_storage.load).Load(&(p[i]), p_vals, valid_items);

        // Load additional state1 data for AdEMAMix
        // TODO: Make constexpr after updating min compiler
        if (OPTIMIZER == ADEMAMIX) {
            __syncthreads();
            LoadFloat(temp_storage.loadf).Load(&(state1[n + i]), s3_vals, valid_items);
        }

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++)
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++) {
            switch (OPTIMIZER) {
            case ADEMAMIX:
701
702
703
704
705
706
707
708
709
                // m1 update: m1 = beta1 * m1 + (1-beta1) * g
                s1_vals[j] = (s1_vals[j] * beta1) + ((1.0f - beta1) * (float)g_vals[j]);

                // m2 update: m2 = m2 * beta3 + (1-beta3) * g
                s3_vals[j] = (s3_vals[j] * beta3) + ((1.0f - beta3) * (float)g_vals[j]);

                // nu update: nu = beta2 * nu + (1-beta2) * g^2
                s2_vals[j] = (s2_vals[j] * beta2) + ((1.0f - beta2) * (float)g_vals[j] * (float)g_vals[j]);

710
711
                p_vals[j] = (float)p_vals[j] - lr * (((s1_vals[j] / correction1) + (alpha * s3_vals[j])) /
                                                     ((sqrtf(s2_vals[j]) / correction2) + eps));
712
713
714
715

                if (weight_decay > 0.0f)
                    p_vals[j] = ((float)p_vals[j]) * (1.0f - (lr * weight_decay));

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
                break;
            case ADAM:

                if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                    s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]));
                    s2_vals[j] = s2_vals[j] * beta2 + ((1.0f - beta2) * (((float)g_vals[j]) * ((float)g_vals[j])));
                    p_vals[j] = ((float)p_vals[j]) +
                                (update_scale * step_size * (s1_vals[j] / (sqrtf(s2_vals[j]) + (eps * correction2))));

                    if (weight_decay > 0.0f)
                        p_vals[j] = ((float)p_vals[j]) * (1.0f - (lr * weight_decay));
                }
                break;
            }
        }

732
        __syncthreads();
733
734
735
736
737
738
739
740
741
742
743
        Store(temp_storage.store).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreFloat(temp_storage.storef).Store(&(state1[i]), s1_vals, valid_items);
        __syncthreads();
        StoreFloat(temp_storage.storef).Store(&(state2[i]), s2_vals, valid_items);

        if (OPTIMIZER == ADEMAMIX) {
            __syncthreads();
            StoreFloat(temp_storage.storef).Store(&(state1[n + i]), s3_vals, valid_items);
        }
    }
Tim Dettmers's avatar
Tim Dettmers committed
744
745
}

746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
template <typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__launch_bounds__(BLOCK_SIZE / NUM_VALS, 1) __global__ void kPreconditionOptimizer32bit1State(
    T* g, T* p, float* state1, float* unorm, const float beta1, const float beta2, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const int n
) {

    const int n_full = (BLOCK_SIZE * (n / BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
    const int base_idx = (blockIdx.x * blockDim.x * NUM_VALS);
    int valid_items = 0;

    T g_vals[NUM_VALS];

    float s1_vals[NUM_VALS];

    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockLoad<float, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_VALS> BlockReduce;

    __shared__ union {
        typename Load::TempStorage load;
        typename LoadFloat::TempStorage loadf;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i >= (BLOCK_SIZE) ? (BLOCK_SIZE) : n - i;

        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items, 0.0f);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items, 0.0f);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++)
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);

#pragma unroll NUM_VALS
        for (unsigned int j = 0; j < NUM_VALS; j++) {
            switch (OPTIMIZER) {
            case MOMENTUM:
                if (step == 1)
Tim Dettmers's avatar
Tim Dettmers committed
787
                    s1_vals[j] = (float)g_vals[j]; // state update
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
                else
                    s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]); // state update
                s1_vals[j] = s1_vals[j] * s1_vals[j];                     // update norm
                break;
            case LION:
                s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * (float)g_vals[j]); // state update
                break;
            case RMSPROP:
                s1_vals[j] =
                    s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]) * ((float)g_vals[j])); // state update
                s1_vals[j] = __fdividef((float)g_vals[j], sqrtf(s1_vals[j]) + eps);                  // update value
                s1_vals[j] = s1_vals[j] * s1_vals[j];                                                // update norm
                break;
            case ADAGRAD:
                s1_vals[j] = s1_vals[j] + ((float)g_vals[j]) * ((float)g_vals[j]);  // state update
                s1_vals[j] = __fdividef((float)g_vals[j], sqrtf(s1_vals[j]) + eps); // update value
                s1_vals[j] = s1_vals[j] * s1_vals[j];                               // update norm
                break;
            }
        }
Tim Dettmers's avatar
Tim Dettmers committed
808

809
810
811
812
813
814
815
816
817
818
819
820
#pragma unroll
        for (unsigned int j = 1; j < NUM_VALS; j++)
            s1_vals[0] += s1_vals[j];

        __syncthreads();
        s1_vals[0] = BlockReduce(temp_storage.reduce).Sum(s1_vals[0], valid_items);

        if (threadIdx.x == 0)
            atomicAdd(&unorm[0], s1_vals[0]);

        __syncwarp();
    }
Tim Dettmers's avatar
Tim Dettmers committed
821
822
}

823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
template <typename T, int OPTIMIZER>
__launch_bounds__(TH, 1) __global__ void kOptimizer32bit1State(
    T* g, T* p, float* state1, float* unorm, const float max_unorm, const float param_norm, const float beta1,
    const float beta2, const float eps, const float weight_decay, const int step, const float lr,
    const float gnorm_scale, const bool skip_zeros, const int n
) {

    const int n_full = ((TH * NUM_PER_THREAD) * (n / (TH * NUM_PER_THREAD))) +
                       (n % (TH * NUM_PER_THREAD) == 0 ? 0 : (TH * NUM_PER_THREAD));
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
    int valid_items = 0;
    float update_scale = 0.0f;

    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm + eps) {
            update_scale = (max_unorm * param_norm + eps) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
    }

    T g_vals[NUM_PER_THREAD];
    T p_vals[NUM_PER_THREAD];

    float s1_vals[NUM_PER_THREAD];

    typedef cub::BlockLoad<T, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
    typedef cub::BlockStore<T, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> Store;

    typedef cub::BlockLoad<float, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
    typedef cub::BlockStore<float, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreFloat;

    __shared__ union {
        typename Load::TempStorage load;
        typename Store::TempStorage store;
        typename LoadFloat::TempStorage loadf;
        typename StoreFloat::TempStorage storef;
    } temp_storage;

    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * TH * NUM_PER_THREAD) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;

        __syncthreads();
        Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items);
        __syncthreads();
        LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items);
        __syncthreads();
        Load(temp_storage.load).Load(&(p[i]), p_vals, valid_items);

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++) {
            g_vals[j] = gnorm_scale * ((float)g_vals[j]);
            if (weight_decay > 0.0f)
                g_vals[j] = (float)g_vals[j] + (((float)p_vals[j]) * weight_decay);
        }

#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD; j++) {
            if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                switch (OPTIMIZER) {
                case MOMENTUM:
                    if (step == 1)
                        s1_vals[j] = (float)g_vals[j];
                    else
                        s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]);

                    p_vals[j] = ((float)p_vals[j]) + update_scale * (-lr * (s1_vals[j]));
                    break;
                case LION:
                    p_vals[j] =
                        ((float)p_vals[j]) -
                        update_scale * (lr * sgn(((float)s1_vals[j]) * beta1 + ((1.0f - beta1) * ((float)g_vals[j]))));
                    s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * ((float)g_vals[j]));
                    break;
                case RMSPROP:
                    s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * ((float)g_vals[j]) * ((float)g_vals[j]));
                    p_vals[j] = ((float)p_vals[j]) -
                                update_scale * (lr * __fdividef((float)g_vals[j], sqrtf((float)s1_vals[j]) + eps));
                    break;
                case ADAGRAD:
                    s1_vals[j] = s1_vals[j] + ((float)g_vals[j]) * ((float)g_vals[j]);
                    p_vals[j] = ((float)p_vals[j]) - lr * __fdividef((float)g_vals[j], sqrtf((float)s1_vals[j]) + eps);
                    break;
                }
            }
        }

        __syncthreads();
        Store(temp_storage.store).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreFloat(temp_storage.storef).Store(&(state1[i]), s1_vals, valid_items);
    }
}
Tim Dettmers's avatar
Tim Dettmers committed
919
920
921
922
923

#define NUM8BIT 16
#define NUM_THREADS 256
#define NUM_PER_BLOCK 4096

924
925
926
927
928
929
930
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(NUM_THREADS, 2) kPreconditionOptimizerStatic8bit2State(
    T* p, T* __restrict__ const g, unsigned char* __restrict__ const state1, unsigned char* __restrict__ const state2,
    float* unorm, const float beta1, const float beta2, const float eps, const int step,
    float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* max1, float* max2,
    float* new_max1, float* new_max2, const float gnorm_scale, const int n
) {
Tim Dettmers's avatar
Tim Dettmers committed
931
932
    const int n_full = gridDim.x * NUM_PER_BLOCK;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
933
934
    int valid_items =
        n - (blockIdx.x * NUM_PER_BLOCK) > NUM_PER_BLOCK ? NUM_PER_BLOCK : n - (blockIdx.x * NUM_PER_BLOCK);
Tim Dettmers's avatar
Tim Dettmers committed
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
    float g_val = 0.0f;
    float local_max_s1 = -FLT_MAX;
    float local_max_s2 = -FLT_MAX;
    float local_unorm = 0.0f;

    float s2_vals[NUM8BIT];
    float s1_vals[NUM8BIT];
    T g_vals[NUM8BIT];
    unsigned char m_c1[NUM8BIT];
    unsigned char r_c2[NUM8BIT];

    typedef cub::BlockLoad<T, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadUInt8;
    typedef cub::BlockReduce<float, NUM_THREADS> BlockReduce;

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadUInt8::TempStorage loadc;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    __shared__ float smem_quantiles1[256];
    __shared__ float smem_quantiles2[256];

959
    if (threadIdx.x < 256) {
Tim Dettmers's avatar
Tim Dettmers committed
960
961
962
963
964
965
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
        smem_quantiles2[threadIdx.x] = quantiles2[threadIdx.x];
    }

    __syncthreads();

966
967
    for (unsigned int i = base_idx; i < n_full; i += NUM_THREADS * gridDim.x * NUM8BIT) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
968
969
970
971
972
973
974
975

        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state1[i]), m_c1, valid_items, 128);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state2[i]), r_c2, valid_items, 128);
        __syncthreads();

976
977
#pragma unroll 16
        for (int j = 0; j < NUM8BIT; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
978
979
            g_val = g_vals[j];
            g_val *= gnorm_scale;
980
981
            s1_vals[j] = smem_quantiles1[m_c1[j]] * max1[0] * beta1;
            s1_vals[j] += (1.0f - beta1) * g_val;
Tim Dettmers's avatar
Tim Dettmers committed
982
983
984
            local_max_s1 = fmaxf(local_max_s1, fabsf(s1_vals[j]));
        }

985
986
#pragma unroll 16
        for (int j = 0; j < NUM8BIT; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
987
988
            g_val = g_vals[j];
            g_val *= gnorm_scale;
989
990
            s2_vals[j] = smem_quantiles2[r_c2[j]] * max2[0] * beta2;
            s2_vals[j] += (1.0f - beta2) * g_val * g_val;
Tim Dettmers's avatar
Tim Dettmers committed
991
992
993
            local_max_s2 = fmaxf(local_max_s2, fabsf(s2_vals[j]));
        }

994
995
996
997
998
999
1000
1001
1002
1003
        if (unorm != NULL) {
#pragma unroll 16
            for (int j = 0; j < NUM8BIT; j++) {
                float correction1 = __fdividef(1.0f, 1.0f - powf(beta1, step));
                float correction2 = __fdividef(1.0f, 1.0f - powf(beta2, step));
                s1_vals[j] *= correction1;
                s2_vals[j] *= correction2;
                float update_val = s1_vals[j] / (sqrtf(s2_vals[j]) + eps); // update
                local_unorm += update_val * update_val;
            }
Tim Dettmers's avatar
Tim Dettmers committed
1004
1005
1006
1007
1008
1009
1010
        }
    }

    __syncthreads();
    local_max_s1 = BlockReduce(temp_storage.reduce).Reduce(local_max_s1, cub::Max(), valid_items);
    __syncthreads();
    local_max_s2 = BlockReduce(temp_storage.reduce).Reduce(local_max_s2, cub::Max(), valid_items);
1011
1012
1013
    if (unorm != NULL) {
        __syncthreads();
        local_unorm = BlockReduce(temp_storage.reduce).Reduce(local_unorm, cub::Sum(), valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
1014
1015
    }

1016
    if (threadIdx.x == 0) {
Tim Dettmers's avatar
Tim Dettmers committed
1017
1018
        atomicMax(&new_max1[0], local_max_s1);
        atomicMax(&new_max2[0], local_max_s2);
1019
1020
1021
        if (unorm != NULL) {
            atomicAdd(&unorm[0], local_unorm);
        }
Tim Dettmers's avatar
Tim Dettmers committed
1022
1023
1024
1025
1026
1027
1028
    }
}

#define NUM_PER_THREAD2 4
#define NUM_THREADS2 1024
#define NUM_PER_BLOCK2 4096

1029
1030
1031
1032
1033
1034
1035
1036
1037
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(NUM_THREADS2, 1) kOptimizerStatic8bit2State(
    T* p, T* const g, unsigned char* state1, unsigned char* state2, const float* unorm, const float max_unorm,
    const float param_norm, const float beta1, const float beta2, const float eps, const int step, const float lr,
    float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* max1, float* max2,
    float* new_max1, float* new_max2, float weight_decay, const float gnorm_scale, const int n
) {

    const int n_full = (blockDim.x * gridDim.x) * NUM_PER_THREAD2;
Tim Dettmers's avatar
Tim Dettmers committed
1038
1039
1040
1041
1042
1043
1044
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD2);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[NUM_PER_THREAD2];
    float s2_vals[NUM_PER_THREAD2];
    const float correction1 = 1.0f - powf(beta1, step);
    const float correction2 = sqrtf(1.0f - powf(beta2, step));
1045
1046
1047
1048
    const float step_size = -lr * correction2 / correction1;
    // const float step_size = -lr*correction2/correction1;
    float new_max_val1 = 1.0f / new_max1[0];
    float new_max_val2 = 1.0f / new_max2[0];
Tim Dettmers's avatar
Tim Dettmers committed
1049
1050
    float update_scale = 1.0f;

1051
1052
1053
1054
1055
1056
1057
1058
1059
    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm) {
            update_scale = (max_unorm * param_norm) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
    }

    unsigned char c1s[NUM_PER_THREAD2];
    unsigned char c2s[NUM_PER_THREAD2];
    T p_vals[NUM_PER_THREAD2];
    T g_vals[NUM_PER_THREAD2];
    typedef cub::BlockLoad<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[256];
    __shared__ float smem_quantiles2[256];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;

1082
1083
    if (threadIdx.x < 512) {
        if (threadIdx.x < 256)
Tim Dettmers's avatar
Tim Dettmers committed
1084
1085
            smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
        else
1086
            smem_quantiles2[threadIdx.x - 256] = quantiles2[threadIdx.x - 256];
Tim Dettmers's avatar
Tim Dettmers committed
1087
1088
1089
1090
    }

    __syncthreads();

1091
1092
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_THREADS2 * NUM_PER_THREAD2) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
1093
1094
1095
1096
1097
1098
1099
1100
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state2[i]), c2s, valid_items, 0);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items);

1101
1102
1103
        if ((i + (threadIdx.x * NUM_PER_THREAD2) + NUM_PER_THREAD2) > n) {
            continue;
        }
Tim Dettmers's avatar
Tim Dettmers committed
1104

1105
1106
#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD2; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1107
1108
1109
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
            s1_vals[j] = smem_quantiles1[c1s[j]];
1110
            s1_vals[j] = s1_vals[j] * max1[0];
Tim Dettmers's avatar
Tim Dettmers committed
1111

1112
            s1_vals[j] = (s1_vals[j] * beta1) + (((1.0f - beta1) * g_val));
Tim Dettmers's avatar
Tim Dettmers committed
1113

1114
            c1s[j] = dQuantize<0>(smem_quantiles1, 0.0f, s1_vals[j] * new_max_val1);
Tim Dettmers's avatar
Tim Dettmers committed
1115
1116
1117

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
1118
1119
1120
1121
1122
            if (signbit(smem_quantiles1[c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1123
1124
1125
            }

            s2_vals[j] = smem_quantiles2[c2s[j]];
1126
1127
1128
            s2_vals[j] = s2_vals[j] * max2[0];
            s2_vals[j] = (s2_vals[j] * beta2) + (((1.0f - beta2) * g_val * g_val));
            c2s[j] = dQuantize<0>(smem_quantiles2, 0.0f, s2_vals[j] * new_max_val2);
Tim Dettmers's avatar
Tim Dettmers committed
1129
1130
        }

1131
1132
1133
1134
1135
1136
#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD2; j++) {
            p_vals[j] = (T)(((float)p_vals[j]) +
                            ((update_scale * step_size * (s1_vals[j] / (sqrtf(s2_vals[j]) + (correction2 * eps))))));
            if (weight_decay > 0.0f)
                p_vals[j] = update_scale * ((float)p_vals[j]) * (1.0f - (lr * weight_decay));
Tim Dettmers's avatar
Tim Dettmers committed
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
        }

        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state2[i]), c2s, valid_items);
        __syncthreads();
    }
}

1148
1149
1150
1151
1152
1153
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(NUM_THREADS, 2) kPreconditionOptimizerStatic8bit1State(
    T* p, T* __restrict__ const g, unsigned char* __restrict__ const state1, float* unorm, const float beta1,
    const float beta2, const float eps, const int step, float* __restrict__ const quantiles1, float* max1,
    float* new_max1, const float weight_decay, const float gnorm_scale, const int n
) {
Tim Dettmers's avatar
Tim Dettmers committed
1154
1155
    const int n_full = gridDim.x * NUM_PER_BLOCK;
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
1156
1157
    int valid_items =
        n - (blockIdx.x * NUM_PER_BLOCK) > NUM_PER_BLOCK ? NUM_PER_BLOCK : n - (blockIdx.x * NUM_PER_BLOCK);
Tim Dettmers's avatar
Tim Dettmers committed
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
    float g_val = 0.0f;
    float local_max_s1 = -FLT_MAX;
    float local_unorm = 0.0f;

    float s1_vals[NUM8BIT];
    T g_vals[NUM8BIT];
    unsigned char m_c1[NUM8BIT];

    typedef cub::BlockLoad<T, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadUInt8;
    typedef cub::BlockReduce<float, NUM_THREADS> BlockReduce;

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadUInt8::TempStorage loadc;
        typename BlockReduce::TempStorage reduce;
    } temp_storage;

    __shared__ float smem_quantiles1[256];

1178
1179
    if (threadIdx.x < 256)
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
Tim Dettmers's avatar
Tim Dettmers committed
1180
1181
1182

    __syncthreads();

1183
1184
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_THREADS * NUM8BIT) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
1185
1186
1187
1188
1189
1190

        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadUInt8(temp_storage.loadc).Load(&(state1[i]), m_c1, valid_items, 128);

1191
1192
#pragma unroll 16
        for (int j = 0; j < NUM8BIT; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1193
1194
            g_val = g_vals[j];
            g_val *= gnorm_scale;
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
            s1_vals[j] = smem_quantiles1[m_c1[j]] * max1[0];
            switch (OPTIMIZER) {
            case ADAGRAD:
            case MOMENTUM:
                if (step == 1)
                    s1_vals[j] = (float)g_vals[j];
                else
                    s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]);
                if (unorm != NULL)
                    local_unorm += s1_vals[j] * s1_vals[j];
                break;
            case LION:
                s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * g_val);
                break;
            case RMSPROP:
                s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * (g_val * g_val));
                break;
Tim Dettmers's avatar
Tim Dettmers committed
1212
1213
1214
1215
1216
1217
1218
1219
            }

            local_max_s1 = fmaxf(local_max_s1, fabsf(s1_vals[j]));
        }
    }

    __syncthreads();
    local_max_s1 = BlockReduce(temp_storage.reduce).Reduce(local_max_s1, cub::Max(), valid_items);
1220
1221
1222
1223
1224
1225
1226
1227
1228
    if (threadIdx.x == 0) {
        atomicMax(&new_max1[0], local_max_s1);
    }
    if (unorm != NULL) {
        __syncthreads();
        local_unorm = BlockReduce(temp_storage.reduce).Reduce(local_unorm, cub::Sum(), valid_items);
        if (threadIdx.x == 0) {
            atomicAdd(&unorm[0], local_unorm);
        }
Tim Dettmers's avatar
Tim Dettmers committed
1229
1230
1231
    }
}

1232
1233
1234
1235
1236
1237
1238
1239
1240
template <typename T, int OPTIMIZER>
__global__ void __launch_bounds__(1024, 1) kOptimizerStatic8bit1State(
    T* p, T* const g, unsigned char* state1, const float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float eps, const int step, const float lr,
    float* __restrict__ const quantiles1, float* max1, float* new_max1, float weight_decay, const float gnorm_scale,
    const int n
) {

    const int n_full = (blockDim.x * gridDim.x) * NUM_PER_THREAD2;
Tim Dettmers's avatar
Tim Dettmers committed
1241
1242
1243
1244
    const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD2);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[NUM_PER_THREAD2];
1245
    float new_max_val1 = 1.0f / new_max1[0];
Tim Dettmers's avatar
Tim Dettmers committed
1246
1247
    float update_scale = 1.0f;

1248
1249
1250
1251
1252
1253
1254
1255
1256
    if (max_unorm > 0.0f) {
        update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
        if (update_scale > max_unorm * param_norm) {
            update_scale = (max_unorm * param_norm) / update_scale;
        } else {
            update_scale = 1.0f;
        }
    } else {
        update_scale = 1.0f;
Tim Dettmers's avatar
Tim Dettmers committed
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
    }

    unsigned char c1s[NUM_PER_THREAD2];
    T p_vals[NUM_PER_THREAD2];
    T g_vals[NUM_PER_THREAD2];
    typedef cub::BlockLoad<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;

    typedef cub::BlockStore<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;

    __shared__ float smem_quantiles1[256];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;

1277
    if (threadIdx.x < 256)
Tim Dettmers's avatar
Tim Dettmers committed
1278
1279
1280
1281
        smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];

    __syncthreads();

1282
1283
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * NUM_THREADS2 * NUM_PER_THREAD2) {
        valid_items = n - i >= (TH * NUM_PER_THREAD) ? (TH * NUM_PER_THREAD) : n - i;
Tim Dettmers's avatar
Tim Dettmers committed
1284
1285
1286
1287
1288
1289
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items);

1290
1291
1292
        if ((i + (threadIdx.x * NUM_PER_THREAD2) + NUM_PER_THREAD2) > n) {
            continue;
        }
Tim Dettmers's avatar
Tim Dettmers committed
1293

1294
1295
#pragma unroll 4
        for (unsigned int j = 0; j < NUM_PER_THREAD2; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1296
1297
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
1298

1299
1300
1301
            if (weight_decay > 0.0f) {
                switch (OPTIMIZER) {
                case ADAGRAD:
1302
1303
                case MOMENTUM:
                case RMSPROP:
1304
1305
                    g_val += ((float)p_vals[j]) * weight_decay;
                    break;
1306
                case LION:
1307
1308
1309
                    p_vals[j] = ((float)p_vals[j]) * (1.0f - lr * weight_decay);
                    break;
                }
1310
1311
            }

1312
            s1_vals[j] = smem_quantiles1[c1s[j]] * max1[0];
Tim Dettmers's avatar
Tim Dettmers committed
1313

1314
1315
1316
1317
            switch (OPTIMIZER) {
            case ADAGRAD:
            case MOMENTUM:
                if (step == 1)
Tim Dettmers's avatar
Tim Dettmers committed
1318
                    s1_vals[j] = g_vals[j];
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
                else
                    s1_vals[j] = s1_vals[j] * beta1 + ((float)g_vals[j]);

                p_vals[j] = ((float)p_vals[j]) + (-lr * update_scale * (s1_vals[j]));
                break;
            case LION:
                p_vals[j] =
                    ((float)p_vals[j]) - (lr * sgn(((float)s1_vals[j]) * beta1 + ((1.0f - beta1) * ((float)g_val))));
                s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * g_val);
                break;
            case RMSPROP:
                s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * (g_val * g_val));
                p_vals[j] = ((float)p_vals[j]) - (lr * __fdividef(g_val, sqrtf(s1_vals[j]) + eps));
                break;
Tim Dettmers's avatar
Tim Dettmers committed
1333
1334
            }

1335
            c1s[j] = dQuantize<0>(smem_quantiles1, 0.0f, s1_vals[j] * new_max_val1);
Tim Dettmers's avatar
Tim Dettmers committed
1336
1337

            // make sure state1 term has still the same sign after quantization
1338
1339
1340
1341
1342
            if (signbit(smem_quantiles1[c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
            }
        }

        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
    }
}

1353
1354
1355
1356
1357
1358
1359
template <typename T, int BLOCK_SIZE, int NUM_VALS>
__global__ void kPercentileClipping(T* __restrict__ g, float* gnorm_vec, int step, const int n) {
    const int n_full = (BLOCK_SIZE * (n / BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
    int valid_items = 0;

    typedef cub::BlockReduce<float, BLOCK_SIZE / NUM_VALS> BlockReduce;
    typedef cub::BlockLoad<T, BLOCK_SIZE / NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
Tim Dettmers's avatar
Tim Dettmers committed
1360

1361
    __shared__ typename BlockReduce::TempStorage reduce;
Tim Dettmers's avatar
Tim Dettmers committed
1362

1363
1364
1365
1366
1367
1368
1369
    __shared__ typename LoadT::TempStorage loadT;
    T vals[NUM_VALS];
    float local_sum = 0.0f;

    for (unsigned int i = (blockIdx.x * BLOCK_SIZE); i < n_full; i += gridDim.x * BLOCK_SIZE) {
        valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
        local_sum = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
1370

1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
        __syncthreads();
        LoadT(loadT).Load(&(g[i]), vals, valid_items, (T)0.0f);

#pragma unroll NUM_VALS
        for (int j = 0; j < NUM_VALS; j++)
            local_sum += ((float)vals[j]) * ((float)vals[j]);

        local_sum = BlockReduce(reduce).Sum(local_sum, valid_items);
        if (threadIdx.x == 0) {
            if (step == 1) {
                // initialize with the same norm for all positions
                // #pragma unroll 10
                for (int j = 0; j < 100; j++)
                    atomicAdd(&gnorm_vec[j], local_sum);
            } else
                atomicAdd(&gnorm_vec[step % 100], local_sum);
        }
    }
}
Tim Dettmers's avatar
Tim Dettmers committed
1390
1391
1392

#define LANES 2
#define QUAD 3
1393
1394
1395
1396
1397
1398
1399

template <typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH>
__launch_bounds__(256, 3) __global__ void kOptimizerStatic8bit2StateBlockwise(
    T* p, T* __restrict__ const g, unsigned char* state1, unsigned char* state2, const float beta1, const float beta2,
    const float beta3, const float alpha, const float eps, const int step, const float lr,
    float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* absmax1, float* absmax2,
    float weight_decay, const float gnorm_scale, const bool skip_zeros, const int n
1400
) {
Tim Dettmers's avatar
Tim Dettmers committed
1401

1402
    // const int n_full = n + (n%BLOCK_SIZE);
Tim Dettmers's avatar
Tim Dettmers committed
1403
1404
1405
1406
1407
1408
    const int n_full = gridDim.x * BLOCK_SIZE;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[N_PER_TH];
    float s2_vals[N_PER_TH];
1409
1410
    float s3_vals[N_PER_TH];

Tim Dettmers's avatar
Tim Dettmers committed
1411
1412
    // 2-5%
    const float correction1 = 1.0f - __powf(beta1, step);
1413
1414
    const float correction2 = sqrtf(1.0f - __powf(beta2, step));
    const float step_size = __fdividef(-lr * correction2, correction1);
Tim Dettmers's avatar
Tim Dettmers committed
1415
1416
1417
    const int lane_id = threadIdx.x % LANES;
    float new_local_abs_max1 = -FLT_MAX;
    float new_local_abs_max2 = -FLT_MAX;
1418
    float new_local_abs_max3 = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
1419
1420
1421
1422
1423
    float quadrants1[QUAD];
    float quadrants2[QUAD];

    unsigned char c1s[N_PER_TH];
    unsigned char c2s[N_PER_TH];
1424
1425
    unsigned char c3s[N_PER_TH];

Tim Dettmers's avatar
Tim Dettmers committed
1426
    T g_vals[N_PER_TH];
1427
    T p_vals[N_PER_TH];
1428
1429
    typedef cub::BlockLoad<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
Tim Dettmers's avatar
Tim Dettmers committed
1430

1431
1432
    typedef cub::BlockStore<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;
Tim Dettmers's avatar
Tim Dettmers committed
1433
1434
1435

    __shared__ float smem_quantiles1[LANES][257];
    __shared__ float smem_quantiles2[LANES][257];
1436
1437
1438
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce1;
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce2;
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce3;
Tim Dettmers's avatar
Tim Dettmers committed
1439
1440
    __shared__ typename BlockReduce1::TempStorage reduce1;
    __shared__ typename BlockReduce2::TempStorage reduce2;
1441
    __shared__ typename BlockReduce2::TempStorage reduce3;
Tim Dettmers's avatar
Tim Dettmers committed
1442
1443
    __shared__ float smem_exchange1[1];
    __shared__ float smem_exchange2[1];
1444
    __shared__ float smem_exchange3[1]; // [[maybe_unused]]
Tim Dettmers's avatar
Tim Dettmers committed
1445
1446
1447
1448
1449
1450
1451

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;
1452

Tim Dettmers's avatar
Tim Dettmers committed
1453
1454
1455
    // init: 0.2 -> 0.23

    // 0.23 -> 0.23
1456
1457
1458
1459
    smem_quantiles1[0][threadIdx.x] = quantiles1[threadIdx.x];
    smem_quantiles2[0][threadIdx.x] = quantiles2[threadIdx.x];
#pragma unroll
    for (unsigned int j = 1; j < LANES; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1460
1461
        smem_quantiles1[j][threadIdx.x] = smem_quantiles1[0][threadIdx.x];
        smem_quantiles2[j][threadIdx.x] = smem_quantiles2[0][threadIdx.x];
1462
    }
Tim Dettmers's avatar
Tim Dettmers committed
1463
1464
1465

    __syncthreads();

1466
1467
1468
1469
#pragma unroll
    for (int k = 0; k < QUAD; k++) {
        quadrants1[k] = smem_quantiles1[lane_id][(k * 256 / (QUAD + 1)) + (256 / (QUAD + 1) - 1)];
        quadrants2[k] = smem_quantiles2[lane_id][(k * 256 / (QUAD + 1)) + (256 / (QUAD + 1) - 1)];
Tim Dettmers's avatar
Tim Dettmers committed
1470
1471
    }

1472
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
Tim Dettmers's avatar
Tim Dettmers committed
1473
1474
1475
1476
1477
1478
1479
1480
1481
        // loads: 0.23 -> 0.85/1.44
        valid_items = n - i >= BLOCK_SIZE ? BLOCK_SIZE : n - i;
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state2[i]), c2s, valid_items, 0);

1482
1483
        // AdEMAMix has an additional state packed into state1.
        if (OPTIMIZER == ADEMAMIX) {
1484
1485
            __syncthreads();
            LoadChar(temp_storage.loadc).Load(&(state1[n + i]), c3s, valid_items, 128);
1486
1487
        }

Tim Dettmers's avatar
Tim Dettmers committed
1488
1489
        new_local_abs_max1 = -FLT_MAX;
        new_local_abs_max2 = -FLT_MAX;
1490
        new_local_abs_max3 = -FLT_MAX;
Tim Dettmers's avatar
Tim Dettmers committed
1491

1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
//  update: 2.48/1.57 -> 2.51/1.60
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            if (!isnan((float)g_vals[j]) && !isinf((float)g_vals[j])) {
                s2_vals[j] = smem_quantiles2[lane_id][c2s[j]] * absmax2[i / BLOCK_SIZE];
                g_val = g_vals[j];
                // float ratio = (g_val*g_val)/fmaxf(s2_vals[j], eps*eps);
                // g_val = ratio > 2.0f ? 2.0f*g_val/ratio : g_val;
                g_val *= gnorm_scale;

                s2_vals[j] = (s2_vals[j] * beta2) + (((1.0f - beta2) * g_val * g_val));

                s1_vals[j] = smem_quantiles1[lane_id][c1s[j]] * absmax1[i / BLOCK_SIZE];
                s1_vals[j] = (s1_vals[j] * beta1) + (((1.0f - beta1) * g_val));

                if (OPTIMIZER == ADEMAMIX) {
                    // The absmax for the third state is appended to absmax1
                    s3_vals[j] = smem_quantiles1[lane_id][c3s[j]] * absmax1[(n + i) / BLOCK_SIZE];
                    s3_vals[j] = (s3_vals[j] * beta3) + (((1.0f - beta3) * g_val));
                }
            } else {
                s1_vals[j] = 0.0f;
                s2_vals[j] = 0.0f;
1515

1516
1517
1518
                if (OPTIMIZER == ADEMAMIX) {
                    s3_vals[j] = 0.0f;
                }
1519
            }
Tim Dettmers's avatar
Tim Dettmers committed
1520
1521
1522

            new_local_abs_max1 = fmaxf(new_local_abs_max1, fabsf(s1_vals[j]));
            new_local_abs_max2 = fmaxf(new_local_abs_max2, fabsf(s2_vals[j]));
1523
1524

            if (OPTIMIZER == ADEMAMIX) {
1525
                new_local_abs_max3 = fmaxf(new_local_abs_max3, fabsf(s3_vals[j]));
1526
            }
Tim Dettmers's avatar
Tim Dettmers committed
1527
1528
1529
1530
1531
1532
        }

        //  reduce: 2.51/1.60 -> 2.67/1.69
        new_local_abs_max1 = BlockReduce1(reduce1).Reduce(new_local_abs_max1, cub::Max());
        new_local_abs_max2 = BlockReduce2(reduce2).Reduce(new_local_abs_max2, cub::Max());

1533
        if (OPTIMIZER == ADEMAMIX) {
1534
            new_local_abs_max3 = BlockReduce3(reduce3).Reduce(new_local_abs_max3, cub::Max());
1535
1536
        }

1537
1538
1539
        if (threadIdx.x == 0) {
            smem_exchange1[0] = new_local_abs_max1;
            smem_exchange2[0] = new_local_abs_max2;
1540

1541
1542
1543
            if (OPTIMIZER == ADEMAMIX) {
                smem_exchange3[0] = new_local_abs_max3;
            }
Tim Dettmers's avatar
Tim Dettmers committed
1544
1545
1546
1547
        }

        __syncthreads();

1548
1549
1550
        if (threadIdx.x == 0) {
            absmax1[i / BLOCK_SIZE] = new_local_abs_max1;
            absmax2[i / BLOCK_SIZE] = new_local_abs_max2;
1551

1552
1553
1554
1555
1556
1557
            if (OPTIMIZER == ADEMAMIX) {
                absmax1[(n + i) / BLOCK_SIZE] = new_local_abs_max3;
            }
        } else {
            new_local_abs_max1 = smem_exchange1[0];
            new_local_abs_max2 = smem_exchange2[0];
1558

1559
1560
1561
            if (OPTIMIZER == ADEMAMIX) {
                new_local_abs_max3 = smem_exchange3[0];
            }
Tim Dettmers's avatar
Tim Dettmers committed
1562
1563
1564
        }

        __syncthreads();
1565
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items, (T)0.0f);
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
//  reduce: 2.67/1.69 -> 2.67/1.70
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            // if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
            if (!isnan((float)g_vals[j]) && !isinf((float)g_vals[j])) {
                if (OPTIMIZER == ADEMAMIX) {
                    p_vals[j] =
                        T((float)p_vals[j] - lr * (((s1_vals[j] / correction1) + (alpha * s3_vals[j])) /
                                                   ((sqrtf(s2_vals[j]) / correction2) + eps)));
                } else {
                    p_vals[j] =
                        (T)(((float)p_vals[j]) +
                            ((step_size * (__fdividef(s1_vals[j], (sqrtf(s2_vals[j]) + (correction2 * eps)))))));
                }

                if (weight_decay > 0.0f)
                    p_vals[j] = ((float)p_vals[j]) * (1.0f - (lr * weight_decay));
            }
Tim Dettmers's avatar
Tim Dettmers committed
1584
1585
1586
1587
        }

        //  store: 0.85/1.44 -> 2.48/1.57
        __syncthreads();
1588
        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
Tim Dettmers's avatar
Tim Dettmers committed
1589

1590
1591
1592
1593
1594
//  quantizaztion: 2.67/1.70  -> 3.4/3.3
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j], new_local_abs_max1));
            c2s[j] = quantize_2D<0>(quadrants2, smem_quantiles2[lane_id], __fdividef(s2_vals[j], new_local_abs_max2));
Tim Dettmers's avatar
Tim Dettmers committed
1595
1596
1597

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
1598
1599
1600
1601
1602
            if (signbit(smem_quantiles1[lane_id][c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1603
            }
1604
1605

            if (OPTIMIZER == ADEMAMIX) {
1606
1607
                c3s[j] =
                    quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s3_vals[j], new_local_abs_max3));
1608

1609
1610
1611
                if (signbit(smem_quantiles1[lane_id][c3s[j]]) != signbit(s3_vals[j])) {
                    c3s[j] += (s3_vals[j] > 0.0f) ? 1 : -1;
                }
1612
            }
Tim Dettmers's avatar
Tim Dettmers committed
1613
1614
1615
1616
1617
1618
        }

        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state2[i]), c2s, valid_items);
1619
1620

        if (OPTIMIZER == ADEMAMIX) {
1621
1622
            __syncthreads();
            StoreChar(temp_storage.storec).Store(&(state1[n + i]), c3s, valid_items);
1623
        }
Tim Dettmers's avatar
Tim Dettmers committed
1624
1625
1626
1627
1628
    }
}

#define LANES 2
#define QUAD 3
1629
1630
1631
1632
1633
1634
1635
1636
1637

template <typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH>
__launch_bounds__(256, 3) __global__ void kOptimizerStatic8bit1StateBlockwise(
    T* p, T* __restrict__ const g, unsigned char* state1, const float beta1, const float beta2, const float eps,
    const int step, const float lr, float* __restrict__ const quantiles1, float* absmax1, float weight_decay,
    const float gnorm_scale, const bool skip_zeros, const int n
) {

    // const int n_full = n + (n%BLOCK_SIZE);
Tim Dettmers's avatar
Tim Dettmers committed
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
    const int n_full = gridDim.x * BLOCK_SIZE;
    const int base_idx = (blockIdx.x * BLOCK_SIZE);
    int valid_items = 0;
    float g_val = 0.0f;
    float s1_vals[N_PER_TH];
    // 2-5%
    const int lane_id = threadIdx.x % LANES;
    float new_local_abs_max1 = -FLT_MAX;
    float quadrants1[QUAD];

    unsigned char c1s[N_PER_TH];
    T g_vals[N_PER_TH];
1650
    T p_vals[N_PER_TH];
Tim Dettmers's avatar
Tim Dettmers committed
1651

1652
1653
    typedef cub::BlockLoad<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
    typedef cub::BlockLoad<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
Tim Dettmers's avatar
Tim Dettmers committed
1654

1655
1656
    typedef cub::BlockStore<unsigned char, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
    typedef cub::BlockStore<T, BLOCK_SIZE / N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;
Tim Dettmers's avatar
Tim Dettmers committed
1657
1658

    __shared__ float smem_quantiles1[LANES][257];
1659
    typedef cub::BlockReduce<float, BLOCK_SIZE / N_PER_TH> BlockReduce1;
Tim Dettmers's avatar
Tim Dettmers committed
1660
1661
1662
1663
1664
1665
1666
1667
1668
    __shared__ typename BlockReduce1::TempStorage reduce1;
    __shared__ float smem_exchange1[1];

    __shared__ union {
        typename LoadT::TempStorage loadh;
        typename LoadChar::TempStorage loadc;
        typename StoreChar::TempStorage storec;
        typename StoreT::TempStorage storeh;
    } temp_storage;
1669

Tim Dettmers's avatar
Tim Dettmers committed
1670
1671
1672
    // init: 0.2 -> 0.23

    // 0.23 -> 0.23
1673
1674
1675
1676
    smem_quantiles1[0][threadIdx.x] = quantiles1[threadIdx.x];
#pragma unroll
    for (unsigned int j = 1; j < LANES; j++)
        smem_quantiles1[j][threadIdx.x] = smem_quantiles1[0][threadIdx.x];
Tim Dettmers's avatar
Tim Dettmers committed
1677
1678
1679

    __syncthreads();

1680
1681
1682
#pragma unroll
    for (int k = 0; k < QUAD; k++)
        quadrants1[k] = smem_quantiles1[lane_id][(k * 256 / (QUAD + 1)) + (256 / (QUAD + 1) - 1)];
Tim Dettmers's avatar
Tim Dettmers committed
1683

1684
    for (unsigned int i = base_idx; i < n_full; i += gridDim.x * BLOCK_SIZE) {
Tim Dettmers's avatar
Tim Dettmers committed
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
        // loads: 0.23 -> 0.85/1.44
        valid_items = n - i >= BLOCK_SIZE ? BLOCK_SIZE : n - i;
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
        __syncthreads();
        LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
        __syncthreads();
        LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items, (T)0.0f);

        new_local_abs_max1 = -FLT_MAX;

1696
1697
1698
//  update: 2.48/1.57 -> 2.51/1.60
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
Tim Dettmers's avatar
Tim Dettmers committed
1699
1700
            g_val = float(g_vals[j]);
            g_val *= gnorm_scale;
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
            if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                if (weight_decay > 0.0f) {
                    switch (OPTIMIZER) {
                    case MOMENTUM:
                    case ADAGRAD:
                    case RMSPROP:
                        g_val += ((float)p_vals[j]) * weight_decay;
                        break;
                    case LION:
                        p_vals[j] = ((float)p_vals[j]) * (1.0f - lr * weight_decay);
                        break;
                    }
                }

                s1_vals[j] = smem_quantiles1[lane_id][c1s[j]] * absmax1[i / BLOCK_SIZE];

                switch (OPTIMIZER) {
                case MOMENTUM:
                    if (step == 1)
                        s1_vals[j] = g_val;
                    else
                        s1_vals[j] = (s1_vals[j] * beta1) + g_val;
                    break;
                case LION:
                    // here, using gvals[j] to store the gradient smoothed by beta1 for the following parameter update,
                    // before the momentum is updated by beta2
                    g_vals[j] = lr * sgn(((float)s1_vals[j]) * beta1 + ((1.0f - beta1) * g_val));
                    s1_vals[j] = s1_vals[j] * beta2 + ((1.0f - beta2) * g_val);
1729
                    break;
1730
1731
1732
1733
1734
                case RMSPROP:
                    s1_vals[j] = s1_vals[j] * beta1 + ((1.0f - beta1) * (g_val * g_val));
                    break;
                case ADAGRAD:
                    s1_vals[j] = s1_vals[j] + (g_val * g_val);
1735
1736
                    break;
                }
1737
            }
Tim Dettmers's avatar
Tim Dettmers committed
1738
1739
1740
1741
1742
1743
1744

            new_local_abs_max1 = fmaxf(new_local_abs_max1, fabsf(s1_vals[j]));
        }

        //  reduce: 2.51/1.60 -> 2.67/1.69
        new_local_abs_max1 = BlockReduce1(reduce1).Reduce(new_local_abs_max1, cub::Max());

1745
1746
        if (threadIdx.x == 0)
            smem_exchange1[0] = new_local_abs_max1;
Tim Dettmers's avatar
Tim Dettmers committed
1747
1748
1749

        __syncthreads();

1750
1751
        if (threadIdx.x == 0)
            absmax1[i / BLOCK_SIZE] = new_local_abs_max1;
Tim Dettmers's avatar
Tim Dettmers committed
1752
        else
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
            new_local_abs_max1 = smem_exchange1[0];

//  reduce: 2.67/1.69 -> 2.67/1.70
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            if (!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f))) {
                switch (OPTIMIZER) {
                case MOMENTUM:
                    p_vals[j] = ((float)p_vals[j]) - lr * (s1_vals[j]);
                    break;
                case LION:
                    p_vals[j] = ((float)p_vals[j]) - ((float)g_vals[j]);
                    break;
                case RMSPROP:
                    g_val = g_vals[j];
                    p_vals[j] = ((float)p_vals[j]) - lr * (__fdividef(g_val, sqrtf(s1_vals[j]) + eps));
                    break;
                case ADAGRAD:
                    g_val = g_vals[j];
                    p_vals[j] = ((float)p_vals[j]) - lr * (__fdividef(g_val, sqrtf(s1_vals[j]) + eps));
                    break;
                }
            }
        }
Tim Dettmers's avatar
Tim Dettmers committed
1777
1778
1779
1780
1781

        //  store: 0.85/1.44 -> 2.48/1.57
        __syncthreads();
        StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);

1782
1783
1784
1785
//  quantizaztion: 2.67/1.70  -> 3.4/3.3
#pragma unroll N_PER_TH
        for (unsigned int j = 0; j < N_PER_TH; j++) {
            c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j], new_local_abs_max1));
Tim Dettmers's avatar
Tim Dettmers committed
1786
1787
1788

            // make sure state1 term has still the same sign after quantization
            // (not needed for state2 term which has only positive values)
1789
1790
1791
1792
1793
            if (signbit(smem_quantiles1[lane_id][c1s[j]]) != signbit(s1_vals[j])) {
                if (s1_vals[j] > 0.0f)
                    c1s[j] += 1;
                else
                    c1s[j] -= 1;
Tim Dettmers's avatar
Tim Dettmers committed
1794
1795
1796
1797
1798
1799
1800
1801
            }
        }

        __syncthreads();
        StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
    }
}

1802
1803
1804
1805
1806
// Inputs:
//  A [rows, cols]
// Outputs:
//  rowStats [rows]
//  out [rows, cols]
1807
1808
1809
template <typename T, int THREADS, int SPARSE_DECOMP>
__launch_bounds__(1024, BNB_MAX_THREADS_PER_SM / 1024) __global__
    void kInt8VectorQuant(T* __restrict__ A, int8_t* out, float* rowStats, float threshold, int rows, int cols) {
1810

1811
1812
    // For sm50/sm52 and CUDA < 12.2 we need to do the reduction in fp32.
    // Otherwise `T` is `fp16`. This can be removed when Maxwell is dropped.
1813
#if (__CUDACC_VER_MAJOR__ >= 12 && __CUDACC_VER_MINOR >= 2) || BNB_FP16_AVAILABLE
1814
    using TReduction = T;
1815
#else
1816
    using TReduction = float;
1817
#endif
Tim Dettmers's avatar
Tim Dettmers committed
1818

1819
    using BlockReduceT = cub::BlockReduce<TReduction, THREADS>;
Tim Dettmers's avatar
Tim Dettmers committed
1820

1821
1822
1823
1824
1825
1826
    // One block per row.
    // Threads load column values in a striped arrangement.
    // e.g. t0 reads row[0], row[0+nthreads], ..
    // and  t1 reads row[1], row[1+nthreads], ..
    // Each thread will determine its local absmax.
    // We then do a blockwise reduction to determine the row's absmax.
Tim Dettmers's avatar
Tim Dettmers committed
1827

1828
1829
    __shared__ typename BlockReduceT::TempStorage temp_storage;
    __shared__ TReduction smem_row_absmax;
Tim Dettmers's avatar
Tim Dettmers committed
1830

1831
1832
    const int row_id = blockIdx.x;
    const T* row_data = A + (row_id * cols);
Tim Dettmers's avatar
Tim Dettmers committed
1833

1834
1835
1836
1837
    // Threads will read the row values in a striped access pattern and find a local absmax.
    TReduction row_local_absmax = -FLT_MIN;
    for (int i = threadIdx.x; i < cols; i += THREADS) {
        const TReduction absval = fabsf(__ldcs(&(row_data[i])));
Tim Dettmers's avatar
Tim Dettmers committed
1838

1839
1840
1841
1842
1843
1844
1845
        // For sparse decomposition, values outside of the threshold are not to be
        // included when calculating the row's absmax.
        if constexpr (SPARSE_DECOMP) {
            row_local_absmax = fmaxf(row_local_absmax, absval < TReduction(threshold) ? absval : row_local_absmax);
        } else {
            row_local_absmax = fmaxf(row_local_absmax, absval);
        }
Tim Dettmers's avatar
Tim Dettmers committed
1846
    }
1847

1848
1849
1850
1851
1852
1853
1854
    // Reduce thread-local absmax across the block.
    const TReduction row_absmax = BlockReduceT(temp_storage).Reduce(row_local_absmax, cub::Max(), cols);
    if (threadIdx.x == 0) {
        // Save our block's absmax to shared memory for the quantization step.
        rowStats[row_id] = smem_row_absmax = row_absmax;
    }
    __syncthreads();
1855

1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
    // Quantize row-wise.
    const float scale = __fdividef(127.0f, smem_row_absmax);
    for (int i = threadIdx.x; i < cols; i += THREADS) {
        float val = row_data[i];

        if constexpr (SPARSE_DECOMP) {
            // For sparse decomposition, we do not want to quantize the outliers.
            // Instead they're zeroed out.
            out[row_id * cols + i] = fabs(val) < threshold ? __float2int_rn(val * scale) : 0;
        } else {
            out[row_id * cols + i] = __float2int_rn(val * scale);
        }
    }
}
1870

1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
template <typename T, int THREADS, int SPARSE_DECOMP>
__launch_bounds__(1024, BNB_MAX_THREADS_PER_SM / 1024) __global__
    void kgetRowStats(T* __restrict__ A, float* rowStats, float threshold, int rows, int cols) {
    using BlockReduceT = cub::BlockReduce<float, THREADS>;

    // One block per row.
    // Threads load column values in a striped arrangement.
    // e.g. t0 reads row[0], row[0+nthreads], ..
    // and  t1 reads row[1], row[1+nthreads], ..
    // Each thread will determine its local absmax.
    // We then do a blockwise reduction to determine the row's absmax.

    __shared__ typename BlockReduceT::TempStorage temp_storage;

    const int row_id = blockIdx.x;
    const T* __restrict__ row_data = A + (row_id * cols);

    // Threads will read the row values in a striped access pattern and find a local absmax.
    float row_local_absmax = -FLT_MIN;
    for (int i = threadIdx.x; i < cols; i += THREADS) {
        const float absval = fabsf(row_data[i]);

        // For sparse decomposition, values outside of the threshold are not to be
        // included when calculating the row's absmax.
        if constexpr (SPARSE_DECOMP) {
            row_local_absmax = fmaxf(row_local_absmax, absval < threshold ? absval : row_local_absmax);
        } else {
            row_local_absmax = fmaxf(row_local_absmax, absval);
        }
    }
1901

1902
1903
1904
1905
1906
1907
    // Reduce thread-local absmax across the block.
    // TODO: Consider algorithm BLOCK_REDUCE_RAKING_COMMUTATIVE_ONLY
    const float row_absmax = BlockReduceT(temp_storage).Reduce(row_local_absmax, cub::Max(), cols);
    if (threadIdx.x == 0) {
        // Save our block's absmax to shared memory for the quantization step.
        rowStats[row_id] = row_absmax;
Tim Dettmers's avatar
Tim Dettmers committed
1908
    }
1909
}
Tim Dettmers's avatar
Tim Dettmers committed
1910

1911
1912
1913
1914
template __global__ void
    kgetRowStats<half, 1024, 0>(half* __restrict__ A, float* rowStats, float threshold, int rows, int cols);
template __global__ void
    kgetRowStats<half, 1024, 1>(half* __restrict__ A, float* rowStats, float threshold, int rows, int cols);
Tim Dettmers's avatar
Tim Dettmers committed
1915

1916
1917
1918
1919
1920
1921
template __global__ void kInt8VectorQuant<half, 1024, 0>(
    half* __restrict__ A, int8_t* out, float* rowStats, float threshold, int rows, int cols
);
template __global__ void kInt8VectorQuant<half, 1024, 1>(
    half* __restrict__ A, int8_t* out, float* rowStats, float threshold, int rows, int cols
);
Tim Dettmers's avatar
Tim Dettmers committed
1922

1923
#define MM_DEQUANT_CONST 6.200012e-05f // 1.0f/(127.0f*127.0f)
Tim Dettmers's avatar
Tim Dettmers committed
1924

1925
1926
template <int ITEMS_PER_THREAD, int THREADS>
__global__ void kdequant_mm_int32_fp16(
1927
1928
    int* __restrict__ const A, float* __restrict__ const rowStats, float* __restrict__ const colStats, half* out,
    half* __restrict__ const bias, const int numRows, const int numCols, const int n
1929
) {
1930
    const int n_out = numRows * numCols;
Tim Dettmers's avatar
Tim Dettmers committed
1931

1932
1933
    int block_offset = blockIdx.x * THREADS * ITEMS_PER_THREAD;
    int thread_offset = threadIdx.x * ITEMS_PER_THREAD;
Tim Dettmers's avatar
Tim Dettmers committed
1934

1935
1936
    int local_values[ITEMS_PER_THREAD];
    half local_output[ITEMS_PER_THREAD];
1937

1938
1939
1940
    float local_rowStats[ITEMS_PER_THREAD];
    float local_colStats[ITEMS_PER_THREAD];
    float local_biasValue[ITEMS_PER_THREAD];
Tim Dettmers's avatar
Tim Dettmers committed
1941

1942
1943
    typedef cub::BlockLoad<int, THREADS, ITEMS_PER_THREAD, cub::BLOCK_LOAD_VECTORIZE> LoadInt32;
    __shared__ typename LoadInt32::TempStorage loadint32;
Tim Dettmers's avatar
Tim Dettmers committed
1944

1945
    int row_idx, col_idx;
Tim Dettmers's avatar
Tim Dettmers committed
1946

1947
1948
#pragma unroll ITEMS_PER_THREAD
    for (int j = 0; j < ITEMS_PER_THREAD; ++j) {
Tim Dettmers's avatar
Tim Dettmers committed
1949

1950
1951
        row_idx = (block_offset + thread_offset + j) / numCols;
        col_idx = (block_offset + thread_offset + j) % numCols;
Tim Dettmers's avatar
Tim Dettmers committed
1952

1953
1954
1955
1956
        local_colStats[j] = col_idx >= numCols ? 0.0f : __ldg(&colStats[col_idx]);
        local_rowStats[j] = row_idx >= numRows ? 0.0f : __ldg(&rowStats[row_idx]);
        local_biasValue[j] = ((bias == nullptr) || col_idx >= numCols) ? 0.0f : __half2float(bias[col_idx]);
    }
Tim Dettmers's avatar
Tim Dettmers committed
1957

1958
1959
1960
1961
    // Each block loads THREADS * ITEMS_PER_THREAD values from A
    int valid_items =
        block_offset + THREADS * ITEMS_PER_THREAD < n_out ? THREADS * ITEMS_PER_THREAD : n_out - block_offset;
    LoadInt32(loadint32).Load(&(A[block_offset]), local_values, valid_items, 0);
Tim Dettmers's avatar
Tim Dettmers committed
1962

1963
1964
1965
1966
1967
1968
#pragma unroll ITEMS_PER_THREAD
    for (int j = 0; j < ITEMS_PER_THREAD; ++j) {
        local_output[j] = __float2half(
            fmaf(local_values[j] * local_rowStats[j] * local_colStats[j], MM_DEQUANT_CONST, local_biasValue[j])
        );
    }
Tim Dettmers's avatar
Tim Dettmers committed
1969

1970
1971
1972
1973
1974
1975
#pragma unroll ITEMS_PER_THREAD
    for (int j = 0; j < ITEMS_PER_THREAD; j++) {
        int outIdx = block_offset + thread_offset + j;
        if (outIdx < n_out) {
            out[outIdx] = local_output[j];
        }
Tim Dettmers's avatar
Tim Dettmers committed
1976
1977
1978
    }
}

1979
#define DENORM 1.0f / 127.0f
Tim Dettmers's avatar
Tim Dettmers committed
1980
#define MAX_SPARSE_COUNT 32
1981
1982
#define SMEM_SIZE 8 * 256

1983
template <typename T, int SPMM_ITEMS, int BITS>
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
__global__ void kspmm_coo_very_sparse_naive(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, T* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
) {

    // 0. load balancing: We process rows with most columns first (count_vec)and we process one row per block
    //    If a block finishes, the next one is scheduled. Since the last blocks like have fewer
    //    elements they finish faster "fillin up" the gaps left by larger blocks

    // without tensor cores
    // 1. use rowidx_length to find what to load (as many blocks as there are rows)
    // 2. Load A into registers
    // 3. each warp loads all required rows of B but each warp is offset by k
    // 4. Do mma operations that accumulate into registers
    // 5. Each warp stores its output row into matrix C

    const int count = max_count[blockIdx.x];
    const int local_max_idx = max_idx[blockIdx.x];
    const int offset = local_max_idx == 0 ? 0 : offset_rowidx[local_max_idx - 1];
    const int local_row_idx = rowidx[offset];

    const int warp_id = threadIdx.x / 32;
    const int warp_idx = threadIdx.x % 32;
    const int warp_offset = (warp_id * 32) * SPMM_ITEMS;
    const int num_items = BITS == 8 ? 8 : 8;
    int idx_col_B = warp_offset;
    int local_idx_col_B_offset = 0;

    half local_valA[MAX_SPARSE_COUNT];
    int local_colidxA[MAX_SPARSE_COUNT];
    half local_valC[SPMM_ITEMS];
    T local_valsB[num_items];
    half local_valOut[num_items];
    // 128 byte loads per warp == 4 bytes per thread

    // 2. Load A into registers
    for (int j = 0; j < MAX_SPARSE_COUNT; j++) {
        local_valA[j] = j < count ? values[offset + j] : __float2half(0.0f);
        local_colidxA[j] = j < count ? colidx[offset + j] : 0;
Tim Dettmers's avatar
Tim Dettmers committed
2023
2024
    }

2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
    // each thread processes SPMM_ITEMS=32 per iteration. We have 256 threads. 32*256=x192
    // we expect each warp to be SPMM_ITEMS*32 apart
    // we have a total of 128 bytes for the bank with a bank size of 4 bytes
    // added 3 bytes = 6 values between warps should reduce bank conflicts
    __shared__ half smem_dequant_stats[SMEM_SIZE];

    while (idx_col_B < colsB) {

        if (dequant_stats != NULL) {
            for (int i = threadIdx.x; i < SMEM_SIZE; i += blockDim.x)
                if ((idx_col_B + i - local_idx_col_B_offset) < colsB)
                    smem_dequant_stats[i] = dequant_stats[idx_col_B + i - local_idx_col_B_offset];

            __syncthreads();
        }

#pragma unroll SPMM_ITEMS
        for (int j = 0; j < SPMM_ITEMS; j++)
            local_valC[j] = 0.0f;

#pragma unroll
        for (int i = 0; i < count; i++) {
            // 3. each warp loads all required rows of B but each warp is offset by k
            int row_offset = colsB * local_colidxA[i];

#pragma unroll SPMM_ITEMS
            for (int j = 0; j < SPMM_ITEMS; j += num_items) {
                // 4. Multiply the tile -> accumulate outputs in shared memory until 128 bytes it reached
                int idx = idx_col_B + (warp_idx * SPMM_ITEMS) + j;
                if (idx >= colsB) {
                    break;
                }
                if ((idx + num_items < colsB)) {
                    if (BITS == 8)
                        reinterpret_cast<float2(&)[num_items]>(local_valsB)[0] =
                            reinterpret_cast<float2*>(B)[(row_offset + idx) / num_items];
                    else
                        reinterpret_cast<float4(&)[num_items]>(local_valsB)[0] =
                            reinterpret_cast<float4*>(B)[(row_offset + idx) / num_items];
                } else {
#pragma unroll num_items
                    for (int k = 0; k < num_items; k++)
                        if (idx + k < colsB)
                            local_valsB[k] = B[row_offset + idx + k];
                        else
                            local_valsB[k] = 0.0f;
                }
#pragma unroll num_items
                for (int k = 0; k < num_items; k++) {
                    if (BITS == 8 && dequant_stats != NULL)
                    // we do texture cache reads (__ldg) on dequant_stats which should be super fast
                    {
                        float valB = local_valsB[k];
                        float valA = local_valA[i];
                        if (valB != 0.0 && valA != 0.0)
                            local_valC[j + k] =
                                (float)local_valC[j + k] +
                                ((float)smem_dequant_stats[idx + k - local_idx_col_B_offset]) * DENORM * valB * valA;
                    } else
                        local_valC[j + k] = (float)local_valC[j + k] + (float)local_valsB[k] * (float)local_valA[i];
                }
Tim Dettmers's avatar
Tim Dettmers committed
2086
2087
2088
            }
        }

2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
        int idx_row_C = (colsB * local_row_idx);

#pragma unroll SPMM_ITEMS
        for (int j = 0; j < SPMM_ITEMS; j += num_items) {
            // int idx_col_C =  idx_col_B + (32*j) + warp_idx;
            int idx_col_C = idx_col_B + warp_idx * SPMM_ITEMS + j;
            int idx_val = idx_col_C + idx_row_C;

            if (idx_col_C + num_items < colsB) {

                // load outputs to do inplace addition
                reinterpret_cast<float4(&)[num_items / 4]>(local_valOut)[0] =
                    reinterpret_cast<float4*>(out)[idx_val / num_items];

#pragma unroll num_items
                for (int k = 0; k < num_items; k++)
                    local_valC[(j / num_items) + k] = (float)local_valC[(j / num_items) + k] + (float)local_valOut[k];

                reinterpret_cast<float4*>(out)[idx_val / num_items] =
                    reinterpret_cast<float4(&)[num_items]>(local_valC)[j / num_items];
            } else {
#pragma unroll num_items
                for (int k = 0; k < num_items; k++)
                    if (idx_col_C + k < colsB)
                        out[idx_val + k] = (float)out[idx_val + k] + (float)local_valC[j + k];
            }
        }
Tim Dettmers's avatar
Tim Dettmers committed
2116

2117
2118
2119
        idx_col_B += blockDim.x * SPMM_ITEMS;
        local_idx_col_B_offset += blockDim.x * SPMM_ITEMS;
    }
Tim Dettmers's avatar
Tim Dettmers committed
2120
2121
}

2122
#define WARPS 3
2123
2124
2125

template <typename T, int BITS, int THREADS>
__global__ void gemm_device(int M, int N, int K, T* __restrict__ const A, T* B, T* out, int lda, int ldb, int ldc) {
Tim Dettmers's avatar
Tim Dettmers committed
2126
2127

#if __CUDA_ARCH__ >= 750
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
    using namespace nvcuda;
    int col_offset = blockIdx.x * 32;
    const int warp_id = threadIdx.x / 32;
    const int half_warp_id = threadIdx.x / 16;
    const int half_warp_lane = threadIdx.x % 16;
    const int batch_size_warps = (WARPS - 1) * 2;
    const int val_per_iter = blockDim.x - 32;

    T local_A[4];
    T local_B[128];

    const int a_tile_offset = 16;
    const int b_tile_offset = (16 * 32 + 16);

    __shared__ T smem_A[8 * 16 + (2 * 16 * (batch_size_warps - 1))];
    __shared__ T smem_B[2 * batch_size_warps * 16 * 32 + (2 * 16 * (batch_size_warps - 1))];
    //__shared__ T smem_C[8*32];

    wmma::fragment<wmma::matrix_a, 8, 32, 16, half, wmma::row_major> a_frag;
    wmma::fragment<wmma::matrix_b, 8, 32, 16, half, wmma::col_major> b_frag;
    wmma::fragment<wmma::accumulator, 8, 32, 16, half> c_frag;
    wmma::fill_fragment(c_frag, 0.0f);

    int ticktock = 0;
    int idx = 0 + threadIdx.x;
    int loaded_values = 0;
    // prefetch
    if (idx < K && warp_id < (WARPS - 1)) {
        if (loaded_values == 0) {
            local_A[0] = A[idx];
            local_A[1] = A[idx + (1 * val_per_iter)];
            local_A[2] = A[idx + (2 * val_per_iter)];
            local_A[3] = A[idx + (3 * val_per_iter)];

#pragma unroll 32
            for (int col = 0; col < 32; col++) {
                local_B[col] = B[(col_offset + col) * ldb + idx];
                local_B[col + 32] = B[(col_offset + col) * ldb + idx + (1 * val_per_iter)];
                local_B[col + 64] = B[(col_offset + col) * ldb + idx + (2 * val_per_iter)];
                local_B[col + 96] = B[(col_offset + col) * ldb + idx + (3 * val_per_iter)];
            }
            loaded_values = 3;
        } else {

            if (loaded_values == 3) {
                local_A[0] = local_A[1];
#pragma unroll 32
                for (int col = 0; col < 32; col++)
                    local_B[col] = local_B[col + (32)];
            } else if (loaded_values == 2) {
                local_A[0] = local_A[2];
#pragma unroll 32
                for (int col = 0; col < 32; col++)
                    local_B[col] = local_B[col + (64)];
            } else {
                local_A[0] = local_A[3];
#pragma unroll 32
                for (int col = 0; col < 32; col++)
                    local_B[col] = local_B[col + (96)];
            }
            loaded_values--;
        }
Tim Dettmers's avatar
Tim Dettmers committed
2190

2191
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];
Tim Dettmers's avatar
Tim Dettmers committed
2192

2193
2194
2195
2196
2197
2198
2199
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                local_B[col];
    } else if (warp_id < (WARPS - 1)) {
        local_A[0] = T(0.0);
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2200

2201
2202
2203
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            local_B[col] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2204

2205
2206
2207
2208
2209
2210
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                0.0f;
    }
    ticktock = ticktock == 0 ? 1 : 0;
Tim Dettmers's avatar
Tim Dettmers committed
2211

2212
2213
2214
    // for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
    for (int base_idx = blockDim.x - 32; base_idx < K; base_idx += blockDim.x - 32) {
        idx = base_idx + threadIdx.x;
Tim Dettmers's avatar
Tim Dettmers committed
2215

2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
        __syncthreads();
        if (idx < K && warp_id < (WARPS - 1)) {
            // local_A[0] = A[idx];

            // #pragma unroll 32
            // for(int col = 0; col < 32; col++)
            //   local_B[col] = B[(col_offset+col)*ldb+idx];
            if (loaded_values == 0) {
                local_A[0] = A[idx];
                local_A[1] = A[idx + (1 * val_per_iter)];
                local_A[2] = A[idx + (2 * val_per_iter)];
                local_A[3] = A[idx + (3 * val_per_iter)];

#pragma unroll 32
                for (int col = 0; col < 32; col++) {
                    local_B[col] = B[(col_offset + col) * ldb + idx];
                    local_B[col + 32] = B[(col_offset + col) * ldb + idx + (1 * val_per_iter)];
                    local_B[col + 64] = B[(col_offset + col) * ldb + idx + (2 * val_per_iter)];
                    local_B[col + 96] = B[(col_offset + col) * ldb + idx + (3 * val_per_iter)];
                }
                loaded_values = 3;

            } else {

                if (loaded_values == 3) {
                    local_A[0] = local_A[1];
#pragma unroll 32
                    for (int col = 0; col < 32; col++)
                        local_B[col] = local_B[col + (32)];
                } else if (loaded_values == 2) {
                    local_A[0] = local_A[2];
#pragma unroll 32
                    for (int col = 0; col < 32; col++)
                        local_B[col] = local_B[col + (64)];
                } else {
                    local_A[0] = local_A[3];
#pragma unroll 32
                    for (int col = 0; col < 32; col++)
                        local_B[col] = local_B[col + (96)];
                }
                loaded_values--;
            }

            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    local_B[col];
        } else if (warp_id < (WARPS - 1)) {
            local_A[0] = T(0.0);
            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2268

2269
2270
2271
#pragma unroll 32
            for (int col = 0; col < 32; col++)
                local_B[col] = 0.0f;
Tim Dettmers's avatar
Tim Dettmers committed
2272

2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    0.0f;
        }
        ticktock = ticktock == 0 ? 1 : 0;

        if (warp_id == (WARPS - 1))
            for (int k = 0; k < batch_size_warps; k++) {
                wmma::load_matrix_sync(
                    a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16
                ); //  111 mu
                wmma::load_matrix_sync(
                    b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16
                ); // 35 mu
                wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
            }
Tim Dettmers's avatar
Tim Dettmers committed
2290
    }
2291
2292
2293
2294

    __syncthreads();
    if (warp_id != (WARPS - 1)) {
        return;
Tim Dettmers's avatar
Tim Dettmers committed
2295
    }
2296
2297
    // only warp_id == (WARPS-1) from here
    int warp_lane = threadIdx.x % 32;
Tim Dettmers's avatar
Tim Dettmers committed
2298

2299
2300
2301
2302
    ticktock = ticktock == 0 ? 1 : 0;
    for (int k = 0; k < batch_size_warps; k++) {
        wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16); //  111 mu
        wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16); // 35 mu
Tim Dettmers's avatar
Tim Dettmers committed
2303
        wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
2304
2305
2306
2307
2308
2309
2310
2311
    }

    // 129 mu
    if (warp_id == (WARPS - 1))
        wmma::store_matrix_sync(&(smem_A[0]), c_frag, 32, wmma::mem_row_major);

    if (col_offset + warp_lane < M)
        out[col_offset + warp_lane] = smem_A[warp_lane];
Tim Dettmers's avatar
Tim Dettmers committed
2312
#endif
Tim Dettmers's avatar
Tim Dettmers committed
2313
2314
}

2315
2316
2317
2318
template <typename T> __device__ void printnonzero(T* A, int num_values, const char* strval) {
    for (int i = 0; i < num_values; i++)
        if ((float)A[i] != 0.0)
            printf("%s %i %f\n", strval, i, (float)A[i]);
Tim Dettmers's avatar
Tim Dettmers committed
2319
2320
}

2321
2322
2323
2324
2325
template <typename T, int THREADS>
__global__ void kgemm_4bit_inference(
    int M, int N, int K, T* __restrict__ const A, unsigned char* B, float* absmax, T* out, int lda, int ldb, int ldc,
    int blocksize
) {
Tim Dettmers's avatar
Tim Dettmers committed
2326

2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
    //// element-wise kernel
    //// 1. Load batch x k into registers
    //// 2. Load k x k into registers
    //// 3. dequantize and store in second pair of k x k
    //// 4. matmul
    //// 5. sum with cub
    //// 6. store outputs
    //// TC kernel
    //// use k warps per thread block
    //// 1. threadblock use read-only cache to read in register tile for A into shared memory
    //// 2. each warp loops over shared memory tiles of A of size 8x16 and loads them into fragments
    //// 3. each warp reads a segment of values 16x32 from B
    //// 4. do dequantization from register of B into second pair of registers
    //// 5. store (4) into fragment
    //// 6. matmul aggregate into fragment C
    //// 7. aggregate files of C into shared memory block C
    //// 8. sum (7)
    //// 9. write outputs to matmul output matrix
2345
#if __CUDA_ARCH__ >= 750
2346
2347
2348
2349
2350
2351
2352
    using namespace nvcuda;
    int col_offset = blockIdx.x * 32;
    const int warp_id = threadIdx.x / 32;
    const int warp_idx = threadIdx.x % 32;
    const int half_warp_id = threadIdx.x / 16;
    const int half_warp_lane = threadIdx.x % 16;
    const int batch_size_warps = (WARPS - 1) * 2;
Tim Dettmers's avatar
Tim Dettmers committed
2353

2354
2355
2356
2357
2358
2359
    T quant_map[16];

#pragma unroll 16
    for (int i = 0; i < 16; i++)
        quant_map[i] = nf4_data[i];
    //__shared__ T quant_map[16*160];
2360

2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
    T local_A[2];
    T local_B[64];
    unsigned char local_B_4bit[32];

    const int a_tile_offset = 16;
    const int b_tile_offset = (16 * 32 + 16);

    __shared__ T smem_A[8 * 16 + (16 * (batch_size_warps - 1))];
    __shared__ T smem_B[2 * batch_size_warps * 16 * 32 + (2 * 16 * (batch_size_warps - 1))];
    __shared__ T smem_C[8 * 32];

    wmma::fragment<wmma::matrix_a, 8, 32, 16, half, wmma::row_major> a_frag;
    wmma::fragment<wmma::matrix_b, 8, 32, 16, half, wmma::col_major> b_frag;
    wmma::fragment<wmma::accumulator, 8, 32, 16, half> c_frag;
    wmma::fill_fragment(c_frag, 0.0f);

    for (int i = threadIdx.x; i < (8 * 32); i += blockDim.x)
        smem_C[i] = 0.0f;

    __syncthreads();

    int ticktock = 0;
    int idx = 0 + threadIdx.x;
    int loaded_values = 0;
    // prefetch
    if (idx < K && warp_id < (WARPS - 1)) {
        if (loaded_values == 0) {
            local_A[0] = A[idx];
            local_A[1] = A[idx + blockDim.x - 32];

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                local_B_4bit[col] = B[(col_offset + col) * ldb + idx];

            loaded_values = 1;
        } else {
            local_A[0] = local_A[1];
            loaded_values--;

#pragma unroll 64
            for (int col = 0; col < 64; col += 2) {
                // local_B[col] = dhDequantizeNF4(local_B_4bit[col/2] >> 4)*T(1.0f);
                // local_B[col+1] = dhDequantizeNF4(local_B_4bit[col/2] & 0x0F)*T(1.0f);
                // local_B[col] = d2DequantizeFP4(local_B_4bit[col/2] >> 4)*(float)(17.0);
                // local_B[col+1] = d2DequantizeFP4(local_B_4bit[col/2] & 0x0F)*(float)(17.0);
                // local_B[col] = 127*(local_B_4bit[col/2] >> 4)*(float)(17.0);
                // local_B[col+1] = 127*(local_B_4bit[col/2] & 0x0F)*(float)(17.0);

                // local_B[col] = quant_map[(local_B_4bit[col/2] >> 4)]*T(17.0);
                // local_B[col+1] = quant_map[(local_B_4bit[col/2] & 0x0F)]*T(17.0);
                local_B[col] = quant_map[160 * (local_B_4bit[col / 2] >> 4) + warp_idx] * T(17.0);
                local_B[col + 1] = quant_map[160 * (local_B_4bit[col / 2] & 0x0F) + warp_idx] * T(17.0);
            }
2414
        }
Tim Dettmers's avatar
Tim Dettmers committed
2415

2416
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];
2417

2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                local_B[col];
    } else if (warp_id < (WARPS - 1)) {
        local_A[0] = T(0.0);
        smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;

#pragma unroll 32
        for (int col = 0; col < 32; col++)
            local_B[col] = 0.0f;

#pragma unroll 32
        for (int col = 0; col < 32; col++)
            smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                0.0f;
2434
2435
    }
    ticktock = ticktock == 0 ? 1 : 0;
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
    // if(threadIdx.x == 0)
    // printf("aa %i %i\n", idx, loaded_values);

    // for(int base_idx = blockDim.x-32; base_idx < K; base_idx+=blockDim.x-32)
    for (int base_idx = blockDim.x - 32; base_idx < K; base_idx += blockDim.x - 32) {
        idx = base_idx + threadIdx.x;
        // if(threadIdx.x == 0)
        // printf("%i %i\n", idx, loaded_values);

        //__syncthreads();
        if (idx < K && warp_id < (WARPS - 1)) {
            if (loaded_values == 0) {
                local_A[0] = A[idx];
                local_A[1] = A[idx + blockDim.x - 32];

#pragma unroll 32
                for (int col = 0; col < 32; col++) {
                    local_B_4bit[col] = B[(col_offset + col) * ldb + idx];
                    local_B_4bit[col + 16] = B[(col_offset + col) * ldb + idx];
                }

                loaded_values = 1;
            } else {
                local_A[0] = local_A[1];
                loaded_values--;

                int absidx = (idx + col_offset) / blocksize;
                half local_absmax = __ldg(&(absmax[absidx]));

#pragma unroll 64
                for (int col = 0; col < 64; col += 2) {
                    // local_B[col] = dhDequantizeNF4(local_B_4bit[col/2] >> 4)*T(absidx);
                    // local_B[col+1] = dhDequantizeNF4(local_B_4bit[col/2] & 0x0F)*T(absidx);
                    // local_B[col] = T(127)*T(local_B_4bit[col/2] >> 4)*T(absidx);
                    // local_B[col+1] = T(127)*T(local_B_4bit[col/2] & 0x0F)*T(absidx);

                    // local_B[col] = quant_map[160*(local_B_4bit[col/2] >> 4)+warp_idx]*T(local_absmax);
                    // local_B[col+1] = quant_map[160*(local_B_4bit[col/2] & 0x0F)+warp_idx]*T(local_absmax);
                    local_B[col] = quant_map[(local_B_4bit[col / 2] >> 4)] * T(absidx);
                    local_B[col + 1] = quant_map[(local_B_4bit[col / 2] & 0x0F)] * T(absidx);
                }
                // printnonzero<T>(local_B, 128, "");
            }

            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = local_A[0];
2481

2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    local_B[col];
        } else if (warp_id < (WARPS - 1)) {
            local_A[0] = T(0.0);
            smem_A[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * a_tile_offset)] = 0.0f;

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                local_B[col] = 0.0f;

#pragma unroll 32
            for (int col = 0; col < 32; col++)
                smem_B[half_warp_lane + (((batch_size_warps * ticktock) + half_warp_id) * b_tile_offset) + (col * 16)] =
                    0.0f;
        }
        ticktock = ticktock == 0 ? 1 : 0;

        if (warp_id == (WARPS - 1))
            for (int k = 0; k < batch_size_warps; k++) {
                wmma::load_matrix_sync(
                    a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16
                ); //  111 mu
                wmma::load_matrix_sync(
                    b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16
                ); // 35 mu
                wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
            }
    }

    __syncthreads();
    // if(threadIdx.x == 0)
    //{
    //   printnonzero<T>(smem_A, 8*16 + (2*16*(batch_size_warps-1)), "A: ");
    //   printnonzero<T>(smem_B, 2*batch_size_warps*16*32 + (2*16*(batch_size_warps-1)), "B: ");
    // }
    if (warp_id != (WARPS - 1)) {
        return;
    }
    // only warp_id == (WARPS-1) from here
    int warp_lane = threadIdx.x % 32;

    ticktock = ticktock == 0 ? 1 : 0;
    for (int k = 0; k < batch_size_warps; k++) {
        // if(warp_lane == 0)
        // printf("%i %i %i %i\n", (ticktock*batch_size_warps + k)*a_tile_offset, k, ticktock, threadIdx.x);
        wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock * batch_size_warps + k) * a_tile_offset]), 16); //  111 mu
        wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock * batch_size_warps + k) * b_tile_offset]), 16); // 35 mu
2531
        wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
    }

    // 129 mu
    if (warp_id == (WARPS - 1))
        wmma::store_matrix_sync(&(smem_C[0]), c_frag, 32, wmma::mem_row_major);

    // printnonzero<T>(smem_C, 32, "");

    if (col_offset + warp_lane < M)
        out[col_offset + warp_lane] = smem_C[warp_lane];
2542
#endif
Tim Dettmers's avatar
Tim Dettmers committed
2543
2544
}

2545
#define num_values_4bit 32
2546

2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
template <typename T, int THREADS, int BITS>
__global__ void kgemm_4bit_inference_naive(
    int M, int N, int K, T* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype, T* out,
    int lda, int ldb, int ldc, int blocksize
) {

    // per threadblock:
    // load step-by-step in chunks of [32,warps]: 1x32 * [32,warps] -> [1,warps]
    // 4 warps -> 4 loads per iter
    // 1x32 * 32x4 -> 1x4 outputs per thread block
    typedef cub::WarpReduce<float> WarpReduce;
    __shared__ typename WarpReduce::TempStorage temp_storage[THREADS / 32];

    const int warp_idx = threadIdx.x / 32;
    const int warp_lane = threadIdx.x % 32;
    const int row_B = (THREADS / 32) * blockIdx.x + warp_idx;
    const int offset_B = ldb * row_B;
    const int num_values_8bit = num_values_4bit / 2;
    float local_C = 0.0f;

    unsigned char local_B_4bit[num_values_8bit];
    T local_B[num_values_4bit / 4];
    T local_A[num_values_4bit / 4];
    __shared__ T quant_map[16];
    T local_absmax = T(0.0f);

    if (threadIdx.x < 16)
        quant_map[threadIdx.x] = T(__ldg(&datatype[threadIdx.x]));
    // for(int i = threadIdx.x; i < 16; i++)
    // quant_map[i] = T(__ldg(&datatype[i]));
    __syncthreads();

    // A: [1, K]
    // B: [N, K]
    for (int inner_idx = warp_lane * num_values_4bit; inner_idx < K; inner_idx += 32 * num_values_4bit) {
        const int inner_idx_halved = inner_idx / 2;

        // Since blocksize will always be a power-of-2, we avoid more expensive
        // division by the blocksize and instead use a shift operation.
        // This is equivalent to (i+threadId.x*NUM_PER_TH)/blocksize.
        const int absidx = ((2 * offset_B) + inner_idx) >> (31 - __clz(blocksize));

        local_absmax = __ldg(&(absmax[absidx]));

        if (row_B < M) {
            if ((inner_idx_halved + num_values_8bit) < (K / 2)) {
                // this is the most important for performance considerations
                reinterpret_cast<int4(&)[num_values_8bit]>(local_B_4bit)[0] =
                    reinterpret_cast<int4*>(B)[(offset_B + (inner_idx_halved)) / (num_values_8bit)];
            } else {
#pragma unroll
                for (int j = 0; j < (num_values_8bit); j++)
                    if ((inner_idx_halved) + j < (K / 2))
                        local_B_4bit[j] = B[offset_B + inner_idx_halved + j];
                    else
                        local_B_4bit[j] = 0b01110111;
            }
        } else {
#pragma unroll
            for (int j = 0; j < (num_values_8bit); j++)
                local_B_4bit[j] = 0b01110111;
Tim Dettmers's avatar
Tim Dettmers committed
2608
        }
2609

2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
        for (int i = 0; i < 4; i++) {
#pragma unroll
            for (int k = 0; k < num_values_8bit / 4; k++) {
#if BNB_BF16_AVAILABLE
                local_B[k * 2] = quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] >> 4] * local_absmax;
                local_B[k * 2 + 1] = quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] & 0x0F] * local_absmax;
#else
                // bf16 multipliation not supported
                local_B[k * 2] =
                    T((float)quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] >> 4] * (float)local_absmax);
                local_B[k * 2 + 1] =
                    T((float)quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] & 0x0F] * (float)local_absmax);
#endif
            }
2624

2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
            if (inner_idx + (num_values_4bit / 4) + (i * num_values_4bit / 4) < K) {
                // this is also relatively important for performance
                if (BITS == 16) {
                    reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[0] =
                        reinterpret_cast<int4*>(A)[inner_idx / (num_values_4bit / 4) + i];
                } else {
                    reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[0] =
                        reinterpret_cast<int4*>(A)[inner_idx / (num_values_4bit / 8) + (2 * i) + 0];
                    reinterpret_cast<int4(&)[num_values_4bit]>(local_A)[1] =
                        reinterpret_cast<int4*>(A)[inner_idx / (num_values_4bit / 8) + (2 * i) + 1];
                }
2636

2637
2638
2639
2640
2641
2642
2643
            } else
#pragma unroll
                for (int k = 0; k < num_values_4bit / 4; k++)
                    if (inner_idx + (i * num_values_4bit / 4) + k < K)
                        local_A[k] = A[inner_idx + k + (i * num_values_4bit / 4)];
                    else
                        local_A[k] = T(0.0f);
2644

2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
// accumulate in float; small performance hit for Ampere, but lower error for outputs
#pragma unroll
            for (int k = 0; k < num_values_4bit / 4; k++) {
#if BNB_BF16_AVAILABLE
                local_C += (float)(local_A[k] * local_B[k]);
#else
                // bf16 multipliation not supported
                local_C += ((float)local_A[k] * (float)local_B[k]);
#endif
            }
        }
    }

    local_C = WarpReduce(temp_storage[warp_idx]).Sum(local_C);

    if (row_B < M && warp_lane == 0)
        out[row_B] = T(local_C);
2662
2663
}

2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
template <typename T, int FUNC> __global__ void kfunc(T* A, T* B, T value, long n) {
    for (long i = (blockDim.x * blockIdx.x) + threadIdx.x; i < n; i += (blockDim.x * gridDim.x)) {
        switch (FUNC) {
        case FILL:
            A[i] = (T)value;
            break;
        case ARANGE:
            A[i] = (T)i;
            break;
        case _MUL:
            A[i] = A[i] * B[i];
            break;
        }
Tim Dettmers's avatar
Tim Dettmers committed
2677
2678
2679
    }
}

Tim Dettmers's avatar
Tim Dettmers committed
2680
2681
2682
2683
//==============================================================
//                   TEMPLATE DEFINITIONS
//==============================================================

2684
2685
2686
2687
template __global__ void kfunc<float, FILL>(float* A, float* B, float value, long n);
template __global__ void kfunc<unsigned char, FILL>(unsigned char* A, unsigned char* B, unsigned char value, long n);
template __global__ void kfunc<float, ARANGE>(float* A, float* B, float value, long n);
template __global__ void kfunc<float, _MUL>(float* A, float* B, float value, long n);
Tim Dettmers's avatar
Tim Dettmers committed
2688
2689

// these are not used and make no sense, but the compiler needs them
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
// template __global__ void gemm_device<float, 16, 128>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 32, 256>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 192>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 160>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 128>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
// template __global__ void gemm_device<float, 16, 32>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 32, 32>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 64>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 32, 96>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
Tim Dettmers's avatar
Tim Dettmers committed
2715
2716
// these are not used and make no sense, but the compiler needs them

2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
// template __global__ void gemm_device<float, 32, 128>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 16, 256>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 192>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 160>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 128>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
// template __global__ void gemm_device<float, 32, 32>(int M, int N, int K, float * __restrict__ const A,  float* B,
// float * out,  int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 16, 32>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 64>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);
template __global__ void gemm_device<half, 16, 96>(
    int M, int N, int K, half* __restrict__ const A, half* B, half* out, int lda, int ldb, int ldc
);

template __global__ void kgemm_4bit_inference<half, 96>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference<half, 128>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference<half, 160>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference<half, 256>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, half* out, int lda, int ldb,
    int ldc, int blocksize
);

template __global__ void kgemm_4bit_inference_naive<half, 128, 16>(
    int M, int N, int K, half* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype, half* out,
    int lda, int ldb, int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference_naive<__nv_bfloat16, 128, 16>(
    int M, int N, int K, __nv_bfloat16* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype,
    __nv_bfloat16* out, int lda, int ldb, int ldc, int blocksize
);
template __global__ void kgemm_4bit_inference_naive<float, 128, 32>(
    int M, int N, int K, float* __restrict__ const A, unsigned char* B, float* absmax, const float* datatype,
    float* out, int lda, int ldb, int ldc, int blocksize
);

template __global__ void kspmm_coo_very_sparse_naive<half, 8, 16>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, half* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<half, 16, 16>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, half* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<half, 32, 16>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, half* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 8, 8>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, signed char* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 16, 8>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, signed char* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);
template __global__ void kspmm_coo_very_sparse_naive<signed char, 32, 8>(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, signed char* B, half* out,
    float* __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB
);

template __global__ void kdequant_mm_int32_fp16<4, 512>(
    int* __restrict__ const A, float* __restrict__ const rowStats, float* __restrict__ const colStats, half* out,
    half* __restrict__ const bias, const int numRows, const int numCols, const int n
);
Tim Dettmers's avatar
Tim Dettmers committed
2802

Tim Dettmers's avatar
Tim Dettmers committed
2803
2804
2805
template __device__ unsigned char dQuantize<0>(float* smem_code, const float rand, float x);
template __device__ unsigned char dQuantize<1>(float* smem_code, const float rand, float x);

2806
2807
2808
2809
2810
#define MAKE_PreconditionOptimizer32bit1State(oname, gtype)                                                            \
    template __global__ void kPreconditionOptimizer32bit1State<gtype, oname, 4096, 8>(                                 \
        gtype * g, gtype * p, float* state1, float* unorm, const float beta1, const float beta2, const float eps,      \
        const float weight_decay, const int step, const float lr, const float gnorm_scale, const int n                 \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2811
2812
2813

MAKE_PreconditionOptimizer32bit1State(MOMENTUM, half)
MAKE_PreconditionOptimizer32bit1State(MOMENTUM, float)
2814
MAKE_PreconditionOptimizer32bit1State(MOMENTUM, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2815
2816
MAKE_PreconditionOptimizer32bit1State(RMSPROP, half)
MAKE_PreconditionOptimizer32bit1State(RMSPROP, float)
2817
MAKE_PreconditionOptimizer32bit1State(RMSPROP, __nv_bfloat16)
2818
2819
MAKE_PreconditionOptimizer32bit1State(LION, half)
MAKE_PreconditionOptimizer32bit1State(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
2820
MAKE_PreconditionOptimizer32bit1State(LION, __nv_bfloat16)
2821
2822
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, half)
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, float)
2823
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2824

2825
2826
2827
2828
2829
2830
#define MAKE_Optimizer32bit1State(oname, gtype)                                                                        \
    template __global__ void kOptimizer32bit1State<gtype, oname>(                                                      \
        gtype * g, gtype * p, float* state1, float* unorm, const float max_unorm, const float param_norm,              \
        const float beta1, const float beta2, const float eps, const float weight_decay, const int step,               \
        const float lr, const float gnorm_scale, const bool skip_zeros, const int n                                    \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2831
2832
2833

MAKE_Optimizer32bit1State(MOMENTUM, half)
MAKE_Optimizer32bit1State(MOMENTUM, float)
2834
MAKE_Optimizer32bit1State(MOMENTUM, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2835
2836
MAKE_Optimizer32bit1State(RMSPROP, half)
MAKE_Optimizer32bit1State(RMSPROP, float)
2837
MAKE_Optimizer32bit1State(RMSPROP, __nv_bfloat16)
2838
2839
MAKE_Optimizer32bit1State(LION, half)
MAKE_Optimizer32bit1State(LION, float)
Tim Dettmers's avatar
Tim Dettmers committed
2840
MAKE_Optimizer32bit1State(LION, __nv_bfloat16)
2841
2842
MAKE_Optimizer32bit1State(ADAGRAD, half)
MAKE_Optimizer32bit1State(ADAGRAD, float)
2843
MAKE_Optimizer32bit1State(ADAGRAD, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2844

2845
2846
2847
2848
2849
2850
#define MAKE_PreconditionOptimizer32bit2State(oname, gtype)                                                            \
    template __global__ void kPreconditionOptimizer32bit2State<gtype, oname, 4096, 8>(                                 \
        gtype * g, gtype * p, float* state1, float* state2, float* unorm, const float beta1, const float beta2,        \
        const float eps, const float weight_decay, const int step, const float lr, const float gnorm_scale,            \
        const int n                                                                                                    \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2851
2852

MAKE_PreconditionOptimizer32bit2State(ADAM, float)
2853
2854
MAKE_PreconditionOptimizer32bit2State(ADAM, half)
MAKE_PreconditionOptimizer32bit2State(ADAM, __nv_bfloat16)
2855
2856
2857
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, float)
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, half)
MAKE_PreconditionOptimizer32bit2State(ADEMAMIX, __nv_bfloat16)
Tim Dettmers's avatar
Tim Dettmers committed
2858

2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
template __global__ void kOptimizer32bit2State<float, ADAM>(
    float* g, float* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<half, ADAM>(
    half* g, half* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<__nv_bfloat16, ADAM>(
    __nv_bfloat16* g, __nv_bfloat16* p, float* state1, float* state2, float* unorm, const float max_unorm,
    const float param_norm, const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<float, ADEMAMIX>(
    float* g, float* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<half, ADEMAMIX>(
    half* g, half* p, float* state1, float* state2, float* unorm, const float max_unorm, const float param_norm,
    const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);
template __global__ void kOptimizer32bit2State<__nv_bfloat16, ADEMAMIX>(
    __nv_bfloat16* g, __nv_bfloat16* p, float* state1, float* state2, float* unorm, const float max_unorm,
    const float param_norm, const float beta1, const float beta2, const float beta3, const float alpha, const float eps,
    const float weight_decay, const int step, const float lr, const float gnorm_scale, const bool skip_zeros,
    const int n
);

#define MAKE_PreconditionStatic8bit1State(oname, gtype)                                                                \
    template __global__ void kPreconditionOptimizerStatic8bit1State<gtype, oname>(                                     \
        gtype * p, gtype* __restrict__ const g, unsigned char* __restrict__ const state1, float* unorm,                \
        const float beta1, const float beta2, const float eps, const int step, float* __restrict__ const quantiles1,   \
        float* max1, float* new_max1, const float weight_decay, const float gnorm_scale, const int n                   \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2902
2903
2904
2905
2906

MAKE_PreconditionStatic8bit1State(MOMENTUM, half)
MAKE_PreconditionStatic8bit1State(MOMENTUM, float)
MAKE_PreconditionStatic8bit1State(RMSPROP, half)
MAKE_PreconditionStatic8bit1State(RMSPROP, float)
2907
2908
MAKE_PreconditionStatic8bit1State(LION, half)
MAKE_PreconditionStatic8bit1State(LION, float)
2909
2910
MAKE_PreconditionStatic8bit1State(ADAGRAD, half)
MAKE_PreconditionStatic8bit1State(ADAGRAD, float)
Tim Dettmers's avatar
Tim Dettmers committed
2911

2912
2913
2914
2915
2916
2917
2918
#define MAKE_optimizerStatic8bit1State(oname, gtype)                                                                   \
    template __global__ void kOptimizerStatic8bit1State<gtype, oname>(                                                 \
        gtype * p, gtype* const g, unsigned char* state1, const float* unorm, const float max_unorm,                   \
        const float param_norm, const float beta1, const float beta2, const float eps, const int step, const float lr, \
        float* __restrict__ const quantiles1, float* max1, float* new_max1, float weight_decay,                        \
        const float gnorm_scale, const int n                                                                           \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2919
2920
2921
2922
2923

MAKE_optimizerStatic8bit1State(MOMENTUM, half)
MAKE_optimizerStatic8bit1State(MOMENTUM, float)
MAKE_optimizerStatic8bit1State(RMSPROP, half)
MAKE_optimizerStatic8bit1State(RMSPROP, float)
2924
2925
MAKE_optimizerStatic8bit1State(LION, half)
MAKE_optimizerStatic8bit1State(LION, float)
2926
2927
2928
MAKE_optimizerStatic8bit1State(ADAGRAD, half)
MAKE_optimizerStatic8bit1State(ADAGRAD, float)

2929
2930
2931
2932
2933
2934
2935
#define MAKE_PreconditionStatic8bit2State(oname, gtype)                                                                \
    template __global__ void kPreconditionOptimizerStatic8bit2State<gtype, oname>(                                     \
        gtype * p, gtype* __restrict__ const g, unsigned char* __restrict__ const state1,                              \
        unsigned char* __restrict__ const state2, float* unorm, const float beta1, const float beta2, const float eps, \
        const int step, float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* max1,       \
        float* max2, float* new_max1, float* new_max2, const float gnorm_scale, const int n                            \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2936
2937
2938
2939

MAKE_PreconditionStatic8bit2State(ADAM, half)
MAKE_PreconditionStatic8bit2State(ADAM, float)

2940
2941
2942
2943
2944
2945
2946
2947
#define MAKE_optimizerStatic8bit2State(oname, gtype)                                                                   \
    template __global__ void kOptimizerStatic8bit2State<gtype, oname>(                                                 \
        gtype * p, gtype* const g, unsigned char* state1, unsigned char* state2, const float* unorm,                   \
        const float max_unorm, const float param_norm, const float beta1, const float beta2, const float eps,          \
        const int step, const float lr, float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,    \
        float* max1, float* max2, float* new_max1, float* new_max2, float weight_decay, const float gnorm_scale,       \
        const int n                                                                                                    \
    );
Tim Dettmers's avatar
Tim Dettmers committed
2948
2949
2950
2951

MAKE_optimizerStatic8bit2State(ADAM, half)
MAKE_optimizerStatic8bit2State(ADAM, float)

2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
template __global__ void
    kPercentileClipping<float, 2048, 4>(float* __restrict__ g, float* gnorm_vec, int step, const int n);
template __global__ void
    kPercentileClipping<half, 2048, 4>(half* __restrict__ g, float* gnorm_vec, int step, const int n);

#define MAKE_kQuantizeBlockwise(dtype, blocksize, num_per_thread, stochastic, data_type_name)                          \
    template __global__ void kQuantizeBlockwise<dtype, blocksize, num_per_thread, stochastic, data_type_name>(         \
        float* code, dtype* __restrict__ const A, float* absmax, unsigned char* out, float* __restrict__ const rand,   \
        const int rand_offset, const int n                                                                             \
    );

MAKE_kQuantizeBlockwise(half, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(half, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 1024, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 64, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(half, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half, 1024, 4, 0, FP4)
MAKE_kQuantizeBlockwise(half, 512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half, 256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half, 128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half, 64, 2, 0, FP4)
MAKE_kQuantizeBlockwise(half, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half, 1024, 4, 0, NF4)
MAKE_kQuantizeBlockwise(half, 512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half, 256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half, 128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(half, 64, 2, 0, NF4)
Tim Dettmers's avatar
Tim Dettmers committed
2985
2986
2987
2988
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, General8bit)
2989
2990
2991
2992
MAKE_kQuantizeBlockwise(float, 512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(float, 64, 2, 0, General8bit)
Tim Dettmers's avatar
Tim Dettmers committed
2993
2994
2995
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, FP4)
2996
2997
2998
2999
MAKE_kQuantizeBlockwise(float, 512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float, 256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float, 128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(float, 64, 2, 0, FP4)
Tim Dettmers's avatar
Tim Dettmers committed
3000
3001
3002
MAKE_kQuantizeBlockwise(float, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(float, 1024, 4, 0, NF4)
3003
3004
3005
3006
MAKE_kQuantizeBlockwise(float, 512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float, 256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float, 128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(float, 64, 2, 0, NF4)
Tim Dettmers's avatar
Tim Dettmers committed
3007

3008
3009
3010
3011
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 1, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, General8bit)
3012
3013
3014
3015
MAKE_kQuantizeBlockwise(__nv_bfloat16, 512, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 256, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 128, 2, 0, General8bit)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 64, 2, 0, General8bit)
3016
3017
3018
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, FP4)
3019
3020
3021
3022
MAKE_kQuantizeBlockwise(__nv_bfloat16, 512, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 256, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 128, 2, 0, FP4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 64, 2, 0, FP4)
3023
3024
3025
MAKE_kQuantizeBlockwise(__nv_bfloat16, 4096, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 2048, 4, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 1024, 4, 0, NF4)
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
MAKE_kQuantizeBlockwise(__nv_bfloat16, 512, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 256, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 128, 2, 0, NF4)
MAKE_kQuantizeBlockwise(__nv_bfloat16, 64, 2, 0, NF4)

template __global__ void kDequantizeBlockwise<half, 512, 64, 8, FP4>(
    float* code, unsigned char* A, float* absmax, half* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, General8bit>(
    float* code, unsigned char* A, float* absmax, half* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<half, 512, 64, 8, NF4>(
    float* code, unsigned char* A, float* absmax, half* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, FP4>(
    float* code, unsigned char* A, float* absmax, float* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, General8bit>(
    float* code, unsigned char* A, float* absmax, float* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<float, 512, 64, 8, NF4>(
    float* code, unsigned char* A, float* absmax, float* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, FP4>(
    float* code, unsigned char* A, float* absmax, __nv_bfloat16* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, General8bit>(
    float* code, unsigned char* A, float* absmax, __nv_bfloat16* out, const int blocksize, const int n
);
template __global__ void kDequantizeBlockwise<__nv_bfloat16, 512, 64, 8, NF4>(
    float* code, unsigned char* A, float* absmax, __nv_bfloat16* out, const int blocksize, const int n
);

#define MAKE_OptimizerStatic8bit2StateBlockwise(oname, gtype, block_size, num_per_thread)                              \
    template __global__ void kOptimizerStatic8bit2StateBlockwise<gtype, oname, block_size, num_per_thread>(            \
        gtype * p, gtype* __restrict__ const g, unsigned char* state1, unsigned char* state2, const float beta1,       \
        const float beta2, const float beta3, const float alpha, const float eps, const int step, const float lr,      \
        float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, float* absmax1, float* absmax2,    \
        float weight_decay, const float gnorm_scale, const bool skip_zeros, const int n                                \
    );
Tim Dettmers's avatar
Tim Dettmers committed
3066

3067
3068
3069
3070
3071
3072
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, float, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, half, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, float, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, half, 256, 1)
MAKE_OptimizerStatic8bit2StateBlockwise(ADEMAMIX, __nv_bfloat16, 256, 1)
Tim Dettmers's avatar
Tim Dettmers committed
3073

3074
3075
3076
3077
3078
3079
#define MAKE_OptimizerStatic8bit1StateBlockwise(oname, gtype, block_size, num_per_thread)                              \
    template __global__ void kOptimizerStatic8bit1StateBlockwise<gtype, oname, block_size, num_per_thread>(            \
        gtype * p, gtype* __restrict__ const g, unsigned char* state1, const float beta1, const float beta2,           \
        const float eps, const int step, const float lr, float* __restrict__ const quantiles1, float* absmax1,         \
        float weight_decay, const float gnorm_scale, const bool skip_zeros, const int n                                \
    );
Tim Dettmers's avatar
Tim Dettmers committed
3080

3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(LION, __nv_bfloat16, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, float, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, half, 256, 1)
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, __nv_bfloat16, 256, 1)
3093

3094
3095
template __device__ void printnonzero<float>(float* A, int num_values, const char* strval);
template __device__ void printnonzero<half>(half* A, int num_values, const char* strval);