README.md 11.8 KB
Newer Older
Casper's avatar
Casper committed
1
# AutoAWQ
Ji Lin's avatar
Ji Lin committed
2

Casper's avatar
Casper committed
3
4
<p align="center">
| <a href="https://github.com/casper-hansen/AutoAWQ/issues/32"><b>Roadmap</b></a> | <a href="https://github.com/casper-hansen/AutoAWQ/tree/main/examples"><b>Examples</b></a> | <a href="https://github.com/casper-hansen/AutoAWQ/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22"><b>Issues: Help Wanted</b></a> |
Casper's avatar
Casper committed
5
6
7
8
9
10
11
12
13
14
15
16

</p>
<p align="center">
    <a href="https://huggingface.co/models?search=awq">
        <img alt="Huggingface - Models" src="https://img.shields.io/badge/🤗_400+_models_available-8A2BE2">
    </a>
    <a href="https://github.com/casper-hansen/AutoAWQ/releases">
        <img alt="GitHub - Releases" src="https://img.shields.io/github/release/casper-hansen/AutoAWQ.svg">
    </a>
    <a href="https://pypi.org/project/autoawq/">
        <img alt="PyPI - Downloads" src="https://img.shields.io/pypi/dd/autoawq">
    </a>
Casper's avatar
Casper committed
17
</p>
Ji Lin's avatar
Ji Lin committed
18

Casper's avatar
Casper committed
19
AutoAWQ is an easy-to-use package for 4-bit quantized models. AutoAWQ speeds up models by 2x while reducing memory requirements by 3x compared to FP16. AutoAWQ implements the Activation-aware Weight Quantization (AWQ) algorithm for quantizing LLMs.  AutoAWQ was created and improved upon from the [original work](https://github.com/mit-han-lab/llm-awq) from MIT.
Ji Lin's avatar
Ji Lin committed
20

Casper's avatar
Casper committed
21
*Latest News* 🔥
Casper Hansen's avatar
Casper Hansen committed
22
- [2023/09] 1.6x-2.5x speed boost on fused models (now including MPT and Falcon).
Casper's avatar
Casper committed
23
24
- [2023/09] Multi-GPU support, bug fixes, and better benchmark scripts available
- [2023/08] PyPi package released and AutoModel class available
Ji Lin's avatar
Ji Lin committed
25
26
27

## Install

Casper's avatar
Casper committed
28
29
Requirements: 
- Compute Capability 8.0 (sm80). Ampere and later architectures are supported.
Casper's avatar
Casper committed
30
- CUDA Toolkit 11.8 and later.
Casper's avatar
Casper committed
31

Casper's avatar
Casper committed
32
33
---

Casper's avatar
Casper committed
34
35
36
37
Install:
- Use pip to install awq

```
Casper's avatar
Casper committed
38
pip install autoawq
Casper's avatar
Casper committed
39
40
```

Casper's avatar
Casper committed
41
42
43
44
45
46
47
48
49
50
51
### Using conda

CUDA dependencies can be hard to manage sometimes. It is recommended to use conda with AutoAWQ:

```
conda create --name autoawq python=3.10 -y
conda activate autoawq
conda install pytorch=2.0.1 torchvision torchaudio cudatoolkit=11.8 -c pytorch -c nvidia
pip install autoawq
```

Casper's avatar
Casper committed
52
53
54
55
56
### Build source

<details>

<summary>Build AutoAWQ from scratch</summary>
Casper Hansen's avatar
Casper Hansen committed
57

Casper's avatar
Casper committed
58
59
Build time can take 10 minutes. Download your model while you install AutoAWQ.

Ji Lin's avatar
Ji Lin committed
60
```
Casper's avatar
Casper committed
61
git clone https://github.com/casper-hansen/AutoAWQ
Casper's avatar
Casper committed
62
cd AutoAWQ
Ji Lin's avatar
Ji Lin committed
63
64
65
pip install -e .
```

Casper's avatar
Casper committed
66
67
</details>

Casper's avatar
Casper committed
68
## Supported models
Casper Hansen's avatar
Casper Hansen committed
69

Casper's avatar
Casper committed
70
The detailed support list:
Haotian (Ken) Tang's avatar
Haotian (Ken) Tang committed
71

Casper's avatar
Casper committed
72
73
74
75
76
77
78
79
80
| Models   | Sizes                       |
| ---------| ----------------------------|
| LLaMA-2  | 7B/13B/70B                  |
| LLaMA    | 7B/13B/30B/65B              |
| Vicuna   | 7B/13B                      |
| MPT      | 7B/30B                      |
| Falcon   | 7B/40B                      |
| OPT      | 125m/1.3B/2.7B/6.7B/13B/30B |
| Bloom    | 560m/3B/7B/                 |
Casper's avatar
Casper committed
81
| GPTJ     | 6.7B                        |
Casper's avatar
Casper committed
82
83

## Usage
Ji Lin's avatar
Ji Lin committed
84

Casper's avatar
Casper committed
85
86
Under examples, you can find examples of how to quantize, run inference, and benchmark AutoAWQ models.

87
88
### INT4 GEMM vs INT4 GEMV vs FP16

Casper's avatar
Casper committed
89
There are two versions of AWQ: GEMM and GEMV. Both names relate to how matrix multiplication runs under the hood. We suggest the following:
90
91
92
93
94
95
96

- GEMV (quantized): Best for small context, batch size 1, highest number of tokens/s.
- GEMM (quantized): Best for larger context, up to batch size 8, faster than GEMV on batch size > 1, slower than GEMV on batch size = 1.
- FP16 (non-quantized): Best for large batch sizes of 8 or larger, highest throughput. We recommend [TGI](https://github.com/huggingface/text-generation-inference) or [vLLM](https://github.com/vllm-project/vllm).

### Examples

Casper's avatar
Casper committed
97
<details>
Casper Hansen's avatar
Casper Hansen committed
98

Casper's avatar
Casper committed
99
<summary>Quantization</summary>
Casper Hansen's avatar
Casper Hansen committed
100

101
102
Expect this to take 10-15 minutes on smaller 7B models, and around 1 hour for 70B models.

Casper's avatar
Casper committed
103
```python
Casper's avatar
Casper committed
104
from awq import AutoAWQForCausalLM
Casper's avatar
Casper committed
105
from transformers import AutoTokenizer
Casper Hansen's avatar
Casper Hansen committed
106

Casper's avatar
Casper committed
107
108
109
model_path = 'lmsys/vicuna-7b-v1.5'
quant_path = 'vicuna-7b-v1.5-awq'
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4 }
Ji Lin's avatar
Ji Lin committed
110

Casper's avatar
Casper committed
111
112
113
# Load model
model = AutoAWQForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
Ji Lin's avatar
Ji Lin committed
114

Casper's avatar
Casper committed
115
116
117
118
119
120
# Quantize
model.quantize(tokenizer, quant_config=quant_config)

# Save quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)
Ji Lin's avatar
Ji Lin committed
121
122
```

Casper's avatar
Casper committed
123
124
125
</details>

<details>
Ji Lin's avatar
Ji Lin committed
126

Casper's avatar
Casper committed
127
<summary>Inference</summary>
Ji Lin's avatar
Ji Lin committed
128

Casper's avatar
Casper committed
129
```python
Casper's avatar
Casper committed
130
from awq import AutoAWQForCausalLM
Casper's avatar
Casper committed
131
from transformers import AutoTokenizer, TextStreamer
Ji Lin's avatar
Ji Lin committed
132

Casper's avatar
Casper committed
133
134
quant_path = "casperhansen/vicuna-7b-v1.5-awq"
quant_file = "awq_model_w4_g128.pt"
Ji Lin's avatar
Ji Lin committed
135

Casper's avatar
Casper committed
136
137
# Load model
model = AutoAWQForCausalLM.from_quantized(quant_path, quant_file, fuse_layers=True)
Casper's avatar
Casper committed
138
tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True)
Casper's avatar
Casper committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
streamer = TextStreamer(tokenizer, skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.

USER: {prompt}
ASSISTANT:"""

tokens = tokenizer(
    prompt_template.format(prompt="How are you today?"), 
    return_tensors='pt'
).input_ids.cuda()

# Generate output
generation_output = model.generate(
    tokens, 
    streamer=streamer,
    max_new_tokens=512
)
Casper's avatar
Casper committed
159
```
Ji Lin's avatar
Ji Lin committed
160

Casper's avatar
Casper committed
161
</details>
Ji Lin's avatar
Ji Lin committed
162

163
164
165
166
167
168
169
170
171
172
173
174
<details>

<summary>AutoAWQForCausalLM.from_quantized</summary>

- `quant_path`: Path to folder containing model files.
- `quant_filename`: The filename to model weights or `index.json` file.
- `max_new_tokens`: The max sequence length, used to allocate kv-cache for fused models.
- `fuse_layers`: Whether or not to use fused layers.
- `batch_size`: The batch size to initialize the AWQ model with.

</details>

Casper's avatar
Casper committed
175
## Benchmarks
Ji Lin's avatar
Ji Lin committed
176

Casper Hansen's avatar
Casper Hansen committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
### Vicuna 7B (LLaMa-2)

- Note: Blazing fast generation, slow context processing
- GPU: NVIDIA GeForce RTX 3090
- Version: GEMV
- Command: `python examples/benchmark.py --model_path casperhansen/vicuna-7b-v1.5-awq-gemv`

|   Batch Size |   Prefill Length |   Decode Length |   Prefill tokens/s |   Decode tokens/s | Memory (VRAM)    |
|-------------:|-----------------:|----------------:|-------------------:|------------------:|:-----------------|
|            1 |               32 |              32 |           231.393  |           153.632 | 4.66 GB (19.68%) |
|            1 |               64 |              64 |           233.909  |           154.475 | 4.66 GB (19.68%) |
|            1 |              128 |             128 |           233.145  |           152.133 | 4.66 GB (19.68%) |
|            1 |              256 |             256 |           228.562  |           147.692 | 4.67 GB (19.72%) |
|            1 |              512 |             512 |           228.914  |           139.179 | 4.80 GB (20.26%) |
|            1 |             1024 |            1024 |           227.393  |           125.058 | 5.56 GB (23.48%) |
|            1 |             2048 |            2048 |           225.736  |           123.228 | 8.08 GB (34.09%) |

- Note: Fast generation, fast context processing
- GPU: NVIDIA GeForce RTX 3090
- Version: GEMM
- Command: `python examples/benchmark.py --model_path casperhansen/vicuna-7b-v1.5-awq`

|   Batch Size |   Prefill Length |   Decode Length |   Prefill tokens/s |   Decode tokens/s | Memory (VRAM)    |
|-------------:|-----------------:|----------------:|-------------------:|------------------:|:-----------------|
|            1 |               32 |              32 |            521.444 |           126.51  | 4.55 GB (19.21%) |
|            1 |               64 |              64 |           2618.88  |           125.428 | 4.57 GB (19.31%) |
|            1 |              128 |             128 |           2808.09  |           123.865 | 4.61 GB (19.44%) |
|            1 |              256 |             256 |           2807.46  |           120.779 | 4.67 GB (19.72%) |
|            1 |              512 |             512 |           2769.9   |           115.08  | 4.80 GB (20.26%) |
|            1 |             1024 |            1024 |           2640.95  |           105.493 | 5.56 GB (23.48%) |
|            1 |             2048 |            2048 |           2341.36  |           104.188 | 8.08 GB (34.09%) |

### MPT 7B

- Note: Blazing fast generation, slow context processing
- GPU: NVIDIA GeForce RTX 3090
- Command: `python examples/benchmark.py --model_path casperhansen/mpt-7b-8k-chat-awq-gemv`
- Version: GEMV

|   Batch Size |   Prefill Length |   Decode Length |   Prefill tokens/s |   Decode tokens/s | Memory (VRAM)    |
|-------------:|-----------------:|----------------:|-------------------:|------------------:|:-----------------|
|            1 |               32 |              32 |            187.332 |           136.765 | 3.65 GB (15.42%) |
|            1 |               64 |              64 |            241.026 |           136.476 | 3.67 GB (15.48%) |
|            1 |              128 |             128 |            239.44  |           137.599 | 3.70 GB (15.61%) |
|            1 |              256 |             256 |            233.184 |           137.02  | 3.76 GB (15.88%) |
|            1 |              512 |             512 |            233.082 |           135.633 | 3.89 GB (16.41%) |
|            1 |             1024 |            1024 |            231.504 |           122.197 | 4.40 GB (18.57%) |
|            1 |             2048 |            2048 |            228.307 |           121.468 | 5.92 GB (24.98%) |

- Note: Fast generation, fast context processing
- GPU: NVIDIA GeForce RTX 3090
- Version: GEMM
- Command: `python examples/benchmark.py --model_path casperhansen/mpt-7b-8k-chat-awq`

|   Batch Size |   Prefill Length |   Decode Length |   Prefill tokens/s |   Decode tokens/s | Memory (VRAM)    |
|-------------:|-----------------:|----------------:|-------------------:|------------------:|:-----------------|
|            1 |               32 |              32 |            557.714 |           118.567 | 3.65 GB (15.42%) |
|            1 |               64 |              64 |           2752.9   |           120.772 | 3.67 GB (15.48%) |
|            1 |              128 |             128 |           2982.67  |           119.52  | 3.70 GB (15.61%) |
|            1 |              256 |             256 |           3009.16  |           116.911 | 3.76 GB (15.88%) |
|            1 |              512 |             512 |           2901.91  |           111.607 | 3.95 GB (16.68%) |
|            1 |             1024 |            1024 |           2718.68  |           102.623 | 4.40 GB (18.57%) |
|            1 |             2048 |            2048 |           2363.61  |           101.368 | 5.92 GB (24.98%) |

### Falcon 7B

Casper Hansen's avatar
Casper Hansen committed
243
244
245
246
247
- Note: Fast generation, fast context processing
- GPU: NVIDIA GeForce RTX 3090
- Command: `python examples/benchmark.py --model_path casperhansen/falcon-7b-awq --quant_file awq_model_w4_g64.pt`
- Version: GEMM

Casper Hansen's avatar
Casper Hansen committed
248
249
250
251
252
253
254
255
256
|   Batch Size |   Prefill Length |   Decode Length |   Prefill tokens/s |   Decode tokens/s | Memory (VRAM)    |
|-------------:|-----------------:|----------------:|-------------------:|------------------:|:-----------------|
|            1 |               32 |              32 |            466.826 |           95.1413 | 4.47 GB (18.88%) |
|            1 |               64 |              64 |           1920.61  |           94.5963 | 4.48 GB (18.92%) |
|            1 |              128 |             128 |           2406.1   |           94.793  | 4.48 GB (18.92%) |
|            1 |              256 |             256 |           2521.08  |           94.1144 | 4.48 GB (18.92%) |
|            1 |              512 |             512 |           2478.28  |           93.4123 | 4.48 GB (18.92%) |
|            1 |             1024 |            1024 |           2256.22  |           94.0237 | 4.69 GB (19.78%) |
|            1 |             2048 |            2048 |           1831.71  |           94.2032 | 6.83 GB (28.83%) |
Casper's avatar
Casper committed
257

Ji Lin's avatar
Ji Lin committed
258
259
## Reference

Casper's avatar
Casper committed
260
If you find AWQ useful or relevant to your research, you can cite their [paper](https://arxiv.org/abs/2306.00978):
Ji Lin's avatar
Ji Lin committed
261
262
263
264
265
266
267
268
269

```
@article{lin2023awq,
  title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
  author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
  journal={arXiv},
  year={2023}
}
```