README.md 5.35 KB
Newer Older
Casper's avatar
Casper committed
1
# AutoAWQ
Ji Lin's avatar
Ji Lin committed
2

Casper's avatar
Casper committed
3
4
5
<p align="center">
| <a href="https://github.com/casper-hansen/AutoAWQ/issues/32"><b>Roadmap</b></a> | <a href="https://github.com/casper-hansen/AutoAWQ/tree/main/examples"><b>Examples</b></a> | <a href="https://github.com/casper-hansen/AutoAWQ/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22"><b>Issues: Help Wanted</b></a> |
</p>
Ji Lin's avatar
Ji Lin committed
6

Casper's avatar
Casper committed
7
AutoAWQ is an easy-to-use package for 4-bit quantized models. AutoAWQ speeds up models by 2x while reducing memory requirements by 3x compared to FP16. AutoAWQ implements the Activation-aware Weight Quantization (AWQ) algorithm for quantizing LLMs.  AutoAWQ was created and improved upon from the [original work](https://github.com/mit-han-lab/llm-awq) from MIT.
Ji Lin's avatar
Ji Lin committed
8

Casper's avatar
Casper committed
9
*Latest News* 🔥
Casper's avatar
Casper committed
10
- [2023/09] 1.6x-2.5x speed boost on fused models (now including MPT and Falcon). LLaMa 7B - up to 180 tokens/s.
Casper's avatar
Casper committed
11
12
- [2023/09] Multi-GPU support, bug fixes, and better benchmark scripts available
- [2023/08] PyPi package released and AutoModel class available
Ji Lin's avatar
Ji Lin committed
13
14
15

## Install

Casper's avatar
Casper committed
16
17
Requirements: 
- Compute Capability 8.0 (sm80). Ampere and later architectures are supported.
Casper's avatar
Casper committed
18
- CUDA Toolkit 11.8 and later.
Casper's avatar
Casper committed
19

Casper's avatar
Casper committed
20
21
---

Casper's avatar
Casper committed
22
23
24
25
Install:
- Use pip to install awq

```
Casper's avatar
Casper committed
26
pip install autoawq
Casper's avatar
Casper committed
27
28
```

Casper's avatar
Casper committed
29
30
31
32
33
34
35
36
37
38
39
### Using conda

CUDA dependencies can be hard to manage sometimes. It is recommended to use conda with AutoAWQ:

```
conda create --name autoawq python=3.10 -y
conda activate autoawq
conda install pytorch=2.0.1 torchvision torchaudio cudatoolkit=11.8 -c pytorch -c nvidia
pip install autoawq
```

Casper's avatar
Casper committed
40
41
42
43
44
### Build source

<details>

<summary>Build AutoAWQ from scratch</summary>
Casper Hansen's avatar
Casper Hansen committed
45

Casper's avatar
Casper committed
46
47
Build time can take 10 minutes. Download your model while you install AutoAWQ.

Ji Lin's avatar
Ji Lin committed
48
```
Casper's avatar
Casper committed
49
git clone https://github.com/casper-hansen/AutoAWQ
Casper's avatar
Casper committed
50
cd AutoAWQ
Ji Lin's avatar
Ji Lin committed
51
52
53
pip install -e .
```

Casper's avatar
Casper committed
54
55
</details>

Casper's avatar
Casper committed
56
## Supported models
Casper Hansen's avatar
Casper Hansen committed
57

Casper's avatar
Casper committed
58
The detailed support list:
Haotian (Ken) Tang's avatar
Haotian (Ken) Tang committed
59

Casper's avatar
Casper committed
60
61
62
63
64
65
66
67
68
| Models   | Sizes                       |
| ---------| ----------------------------|
| LLaMA-2  | 7B/13B/70B                  |
| LLaMA    | 7B/13B/30B/65B              |
| Vicuna   | 7B/13B                      |
| MPT      | 7B/30B                      |
| Falcon   | 7B/40B                      |
| OPT      | 125m/1.3B/2.7B/6.7B/13B/30B |
| Bloom    | 560m/3B/7B/                 |
Casper's avatar
Casper committed
69
| GPTJ     | 6.7B                        |
Casper's avatar
Casper committed
70
71

## Usage
Ji Lin's avatar
Ji Lin committed
72

Casper's avatar
Casper committed
73
74
75
Under examples, you can find examples of how to quantize, run inference, and benchmark AutoAWQ models.

<details>
Casper Hansen's avatar
Casper Hansen committed
76

Casper's avatar
Casper committed
77
<summary>Quantization</summary>
Casper Hansen's avatar
Casper Hansen committed
78

Casper's avatar
Casper committed
79
```python
Casper's avatar
Casper committed
80
from awq import AutoAWQForCausalLM
Casper's avatar
Casper committed
81
from transformers import AutoTokenizer
Casper Hansen's avatar
Casper Hansen committed
82

Casper's avatar
Casper committed
83
84
85
model_path = 'lmsys/vicuna-7b-v1.5'
quant_path = 'vicuna-7b-v1.5-awq'
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4 }
Ji Lin's avatar
Ji Lin committed
86

Casper's avatar
Casper committed
87
88
89
# Load model
model = AutoAWQForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
Ji Lin's avatar
Ji Lin committed
90

Casper's avatar
Casper committed
91
92
93
94
95
96
# Quantize
model.quantize(tokenizer, quant_config=quant_config)

# Save quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)
Ji Lin's avatar
Ji Lin committed
97
98
```

Casper's avatar
Casper committed
99
100
101
</details>

<details>
Ji Lin's avatar
Ji Lin committed
102

Casper's avatar
Casper committed
103
<summary>Inference</summary>
Ji Lin's avatar
Ji Lin committed
104

Casper's avatar
Casper committed
105
```python
Casper's avatar
Casper committed
106
from awq import AutoAWQForCausalLM
Casper's avatar
Casper committed
107
from transformers import AutoTokenizer, TextStreamer
Ji Lin's avatar
Ji Lin committed
108

Casper's avatar
Casper committed
109
110
quant_path = "casperhansen/vicuna-7b-v1.5-awq"
quant_file = "awq_model_w4_g128.pt"
Ji Lin's avatar
Ji Lin committed
111

Casper's avatar
Casper committed
112
113
# Load model
model = AutoAWQForCausalLM.from_quantized(quant_path, quant_file, fuse_layers=True)
Casper's avatar
Casper committed
114
tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True)
Casper's avatar
Casper committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
streamer = TextStreamer(tokenizer, skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.

USER: {prompt}
ASSISTANT:"""

tokens = tokenizer(
    prompt_template.format(prompt="How are you today?"), 
    return_tensors='pt'
).input_ids.cuda()

# Generate output
generation_output = model.generate(
    tokens, 
    streamer=streamer,
    max_new_tokens=512
)
Casper's avatar
Casper committed
135
```
Ji Lin's avatar
Ji Lin committed
136

Casper's avatar
Casper committed
137
</details>
Ji Lin's avatar
Ji Lin committed
138

Casper's avatar
Casper committed
139
## Benchmarks
Ji Lin's avatar
Ji Lin committed
140

Casper's avatar
Casper committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
| Model       | GPU   | FP16 latency (ms) | INT4 latency (ms) | Speedup |
| ----------- |:-----:|:-----------------:|:-----------------:|:-------:|
| LLaMA-2-7B  | 4090  | 19.97             | 8.66              | 2.31x   |
| LLaMA-2-13B | 4090  | OOM               | 13.54             | --      |
| Vicuna-7B   | 4090  | 19.09             | 8.61              | 2.22x   |
| Vicuna-13B  | 4090  | OOM               | 12.17             | --      |
| MPT-7B      | 4090  | 17.09             | 12.58             | 1.36x   |
| MPT-30B     | 4090  | OOM               | 23.54             | --      |
| Falcon-7B   | 4090  | 29.91             | 19.84             | 1.51x   |
| LLaMA-2-7B  | A6000 | 27.14             | 12.44             | 2.18x   |
| LLaMA-2-13B | A6000 | 47.28             | 20.28             | 2.33x   |
| Vicuna-7B   | A6000 | 26.06             | 12.43             | 2.10x   |
| Vicuna-13B  | A6000 | 44.91             | 17.30             | 2.60x   |
| MPT-7B      | A6000 | 22.79             | 16.87             | 1.35x   |
| MPT-30B     | A6000 | OOM               | 31.57             | --      |
| Falcon-7B   | A6000 | 39.44             | 27.34             | 1.44x   |
Ji Lin's avatar
Ji Lin committed
157

Casper's avatar
Casper committed
158

Ji Lin's avatar
Ji Lin committed
159
160
## Reference

Casper's avatar
Casper committed
161
If you find AWQ useful or relevant to your research, you can cite their [paper](https://arxiv.org/abs/2306.00978):
Ji Lin's avatar
Ji Lin committed
162
163
164
165
166
167
168
169
170

```
@article{lin2023awq,
  title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
  author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
  journal={arXiv},
  year={2023}
}
```