README.md 11.3 KB
Newer Older
Casper's avatar
Casper committed
1
# AutoAWQ
Ji Lin's avatar
Ji Lin committed
2

Casper's avatar
Casper committed
3
4
5
<p align="center">
| <a href="https://github.com/casper-hansen/AutoAWQ/issues/32"><b>Roadmap</b></a> | <a href="https://github.com/casper-hansen/AutoAWQ/tree/main/examples"><b>Examples</b></a> | <a href="https://github.com/casper-hansen/AutoAWQ/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22"><b>Issues: Help Wanted</b></a> |
</p>
Ji Lin's avatar
Ji Lin committed
6

Casper's avatar
Casper committed
7
AutoAWQ is an easy-to-use package for 4-bit quantized models. AutoAWQ speeds up models by 2x while reducing memory requirements by 3x compared to FP16. AutoAWQ implements the Activation-aware Weight Quantization (AWQ) algorithm for quantizing LLMs.  AutoAWQ was created and improved upon from the [original work](https://github.com/mit-han-lab/llm-awq) from MIT.
Ji Lin's avatar
Ji Lin committed
8

Casper's avatar
Casper committed
9
*Latest News* 🔥
Casper's avatar
Casper committed
10
- [2023/09] 1.6x-2.5x speed boost on fused models (now including MPT and Falcon). LLaMa 7B - up to 180 tokens/s.
Casper's avatar
Casper committed
11
12
- [2023/09] Multi-GPU support, bug fixes, and better benchmark scripts available
- [2023/08] PyPi package released and AutoModel class available
Ji Lin's avatar
Ji Lin committed
13
14
15

## Install

Casper's avatar
Casper committed
16
17
Requirements: 
- Compute Capability 8.0 (sm80). Ampere and later architectures are supported.
Casper's avatar
Casper committed
18
- CUDA Toolkit 11.8 and later.
Casper's avatar
Casper committed
19

Casper's avatar
Casper committed
20
21
---

Casper's avatar
Casper committed
22
23
24
25
Install:
- Use pip to install awq

```
Casper's avatar
Casper committed
26
pip install autoawq
Casper's avatar
Casper committed
27
28
```

Casper's avatar
Casper committed
29
30
31
32
33
34
35
36
37
38
39
### Using conda

CUDA dependencies can be hard to manage sometimes. It is recommended to use conda with AutoAWQ:

```
conda create --name autoawq python=3.10 -y
conda activate autoawq
conda install pytorch=2.0.1 torchvision torchaudio cudatoolkit=11.8 -c pytorch -c nvidia
pip install autoawq
```

Casper's avatar
Casper committed
40
41
42
43
44
### Build source

<details>

<summary>Build AutoAWQ from scratch</summary>
Casper Hansen's avatar
Casper Hansen committed
45

Casper's avatar
Casper committed
46
47
Build time can take 10 minutes. Download your model while you install AutoAWQ.

Ji Lin's avatar
Ji Lin committed
48
```
Casper's avatar
Casper committed
49
git clone https://github.com/casper-hansen/AutoAWQ
Casper's avatar
Casper committed
50
cd AutoAWQ
Ji Lin's avatar
Ji Lin committed
51
52
53
pip install -e .
```

Casper's avatar
Casper committed
54
55
</details>

Casper's avatar
Casper committed
56
## Supported models
Casper Hansen's avatar
Casper Hansen committed
57

Casper's avatar
Casper committed
58
The detailed support list:
Haotian (Ken) Tang's avatar
Haotian (Ken) Tang committed
59

Casper's avatar
Casper committed
60
61
62
63
64
65
66
67
68
| Models   | Sizes                       |
| ---------| ----------------------------|
| LLaMA-2  | 7B/13B/70B                  |
| LLaMA    | 7B/13B/30B/65B              |
| Vicuna   | 7B/13B                      |
| MPT      | 7B/30B                      |
| Falcon   | 7B/40B                      |
| OPT      | 125m/1.3B/2.7B/6.7B/13B/30B |
| Bloom    | 560m/3B/7B/                 |
Casper's avatar
Casper committed
69
| GPTJ     | 6.7B                        |
Casper's avatar
Casper committed
70
71

## Usage
Ji Lin's avatar
Ji Lin committed
72

Casper's avatar
Casper committed
73
74
Under examples, you can find examples of how to quantize, run inference, and benchmark AutoAWQ models.

75
76
77
78
79
80
81
82
83
84
### INT4 GEMM vs INT4 GEMV vs FP16

There are two versions of AWQ: GEMM and GEMV. Both names to how matrix multiplication runs under the hood. We suggest the following:

- GEMV (quantized): Best for small context, batch size 1, highest number of tokens/s.
- GEMM (quantized): Best for larger context, up to batch size 8, faster than GEMV on batch size > 1, slower than GEMV on batch size = 1.
- FP16 (non-quantized): Best for large batch sizes of 8 or larger, highest throughput. We recommend [TGI](https://github.com/huggingface/text-generation-inference) or [vLLM](https://github.com/vllm-project/vllm).

### Examples

Casper's avatar
Casper committed
85
<details>
Casper Hansen's avatar
Casper Hansen committed
86

Casper's avatar
Casper committed
87
<summary>Quantization</summary>
Casper Hansen's avatar
Casper Hansen committed
88

89
90
Expect this to take 10-15 minutes on smaller 7B models, and around 1 hour for 70B models.

Casper's avatar
Casper committed
91
```python
Casper's avatar
Casper committed
92
from awq import AutoAWQForCausalLM
Casper's avatar
Casper committed
93
from transformers import AutoTokenizer
Casper Hansen's avatar
Casper Hansen committed
94

Casper's avatar
Casper committed
95
96
97
model_path = 'lmsys/vicuna-7b-v1.5'
quant_path = 'vicuna-7b-v1.5-awq'
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4 }
Ji Lin's avatar
Ji Lin committed
98

Casper's avatar
Casper committed
99
100
101
# Load model
model = AutoAWQForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
Ji Lin's avatar
Ji Lin committed
102

Casper's avatar
Casper committed
103
104
105
106
107
108
# Quantize
model.quantize(tokenizer, quant_config=quant_config)

# Save quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)
Ji Lin's avatar
Ji Lin committed
109
110
```

Casper's avatar
Casper committed
111
112
113
</details>

<details>
Ji Lin's avatar
Ji Lin committed
114

Casper's avatar
Casper committed
115
<summary>Inference</summary>
Ji Lin's avatar
Ji Lin committed
116

Casper's avatar
Casper committed
117
```python
Casper's avatar
Casper committed
118
from awq import AutoAWQForCausalLM
Casper's avatar
Casper committed
119
from transformers import AutoTokenizer, TextStreamer
Ji Lin's avatar
Ji Lin committed
120

Casper's avatar
Casper committed
121
122
quant_path = "casperhansen/vicuna-7b-v1.5-awq"
quant_file = "awq_model_w4_g128.pt"
Ji Lin's avatar
Ji Lin committed
123

Casper's avatar
Casper committed
124
125
# Load model
model = AutoAWQForCausalLM.from_quantized(quant_path, quant_file, fuse_layers=True)
Casper's avatar
Casper committed
126
tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True)
Casper's avatar
Casper committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
streamer = TextStreamer(tokenizer, skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.

USER: {prompt}
ASSISTANT:"""

tokens = tokenizer(
    prompt_template.format(prompt="How are you today?"), 
    return_tensors='pt'
).input_ids.cuda()

# Generate output
generation_output = model.generate(
    tokens, 
    streamer=streamer,
    max_new_tokens=512
)
Casper's avatar
Casper committed
147
```
Ji Lin's avatar
Ji Lin committed
148

Casper's avatar
Casper committed
149
</details>
Ji Lin's avatar
Ji Lin committed
150

151
152
153
154
155
156
157
158
159
160
161
162
<details>

<summary>AutoAWQForCausalLM.from_quantized</summary>

- `quant_path`: Path to folder containing model files.
- `quant_filename`: The filename to model weights or `index.json` file.
- `max_new_tokens`: The max sequence length, used to allocate kv-cache for fused models.
- `fuse_layers`: Whether or not to use fused layers.
- `batch_size`: The batch size to initialize the AWQ model with.

</details>

Casper's avatar
Casper committed
163
## Benchmarks
Ji Lin's avatar
Ji Lin committed
164

Casper Hansen's avatar
Casper Hansen committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
### Vicuna 7B (LLaMa-2)

- Note: Blazing fast generation, slow context processing
- GPU: NVIDIA GeForce RTX 3090
- Version: GEMV
- Command: `python examples/benchmark.py --model_path casperhansen/vicuna-7b-v1.5-awq-gemv`

|   Batch Size |   Prefill Length |   Decode Length |   Prefill tokens/s |   Decode tokens/s | Memory (VRAM)    |
|-------------:|-----------------:|----------------:|-------------------:|------------------:|:-----------------|
|            1 |               32 |              32 |           231.393  |           153.632 | 4.66 GB (19.68%) |
|            1 |               64 |              64 |           233.909  |           154.475 | 4.66 GB (19.68%) |
|            1 |              128 |             128 |           233.145  |           152.133 | 4.66 GB (19.68%) |
|            1 |              256 |             256 |           228.562  |           147.692 | 4.67 GB (19.72%) |
|            1 |              512 |             512 |           228.914  |           139.179 | 4.80 GB (20.26%) |
|            1 |             1024 |            1024 |           227.393  |           125.058 | 5.56 GB (23.48%) |
|            1 |             2048 |            2048 |           225.736  |           123.228 | 8.08 GB (34.09%) |

- Note: Fast generation, fast context processing
- GPU: NVIDIA GeForce RTX 3090
- Version: GEMM
- Command: `python examples/benchmark.py --model_path casperhansen/vicuna-7b-v1.5-awq`

|   Batch Size |   Prefill Length |   Decode Length |   Prefill tokens/s |   Decode tokens/s | Memory (VRAM)    |
|-------------:|-----------------:|----------------:|-------------------:|------------------:|:-----------------|
|            1 |               32 |              32 |            521.444 |           126.51  | 4.55 GB (19.21%) |
|            1 |               64 |              64 |           2618.88  |           125.428 | 4.57 GB (19.31%) |
|            1 |              128 |             128 |           2808.09  |           123.865 | 4.61 GB (19.44%) |
|            1 |              256 |             256 |           2807.46  |           120.779 | 4.67 GB (19.72%) |
|            1 |              512 |             512 |           2769.9   |           115.08  | 4.80 GB (20.26%) |
|            1 |             1024 |            1024 |           2640.95  |           105.493 | 5.56 GB (23.48%) |
|            1 |             2048 |            2048 |           2341.36  |           104.188 | 8.08 GB (34.09%) |

### MPT 7B

- Note: Blazing fast generation, slow context processing
- GPU: NVIDIA GeForce RTX 3090
- Command: `python examples/benchmark.py --model_path casperhansen/mpt-7b-8k-chat-awq-gemv`
- Version: GEMV

|   Batch Size |   Prefill Length |   Decode Length |   Prefill tokens/s |   Decode tokens/s | Memory (VRAM)    |
|-------------:|-----------------:|----------------:|-------------------:|------------------:|:-----------------|
|            1 |               32 |              32 |            187.332 |           136.765 | 3.65 GB (15.42%) |
|            1 |               64 |              64 |            241.026 |           136.476 | 3.67 GB (15.48%) |
|            1 |              128 |             128 |            239.44  |           137.599 | 3.70 GB (15.61%) |
|            1 |              256 |             256 |            233.184 |           137.02  | 3.76 GB (15.88%) |
|            1 |              512 |             512 |            233.082 |           135.633 | 3.89 GB (16.41%) |
|            1 |             1024 |            1024 |            231.504 |           122.197 | 4.40 GB (18.57%) |
|            1 |             2048 |            2048 |            228.307 |           121.468 | 5.92 GB (24.98%) |

- Note: Fast generation, fast context processing
- GPU: NVIDIA GeForce RTX 3090
- Version: GEMM
- Command: `python examples/benchmark.py --model_path casperhansen/mpt-7b-8k-chat-awq`

|   Batch Size |   Prefill Length |   Decode Length |   Prefill tokens/s |   Decode tokens/s | Memory (VRAM)    |
|-------------:|-----------------:|----------------:|-------------------:|------------------:|:-----------------|
|            1 |               32 |              32 |            557.714 |           118.567 | 3.65 GB (15.42%) |
|            1 |               64 |              64 |           2752.9   |           120.772 | 3.67 GB (15.48%) |
|            1 |              128 |             128 |           2982.67  |           119.52  | 3.70 GB (15.61%) |
|            1 |              256 |             256 |           3009.16  |           116.911 | 3.76 GB (15.88%) |
|            1 |              512 |             512 |           2901.91  |           111.607 | 3.95 GB (16.68%) |
|            1 |             1024 |            1024 |           2718.68  |           102.623 | 4.40 GB (18.57%) |
|            1 |             2048 |            2048 |           2363.61  |           101.368 | 5.92 GB (24.98%) |

### Falcon 7B

Note: Fast generation, fast context processing
GPU: NVIDIA GeForce RTX 3090
Command: `python examples/benchmark.py --model_path casperhansen/falcon-7b-awq --quant_file awq_model_w4_g64.pt`
Version: GEMM
|   Batch Size |   Prefill Length |   Decode Length |   Prefill tokens/s |   Decode tokens/s | Memory (VRAM)    |
|-------------:|-----------------:|----------------:|-------------------:|------------------:|:-----------------|
|            1 |               32 |              32 |            466.826 |           95.1413 | 4.47 GB (18.88%) |
|            1 |               64 |              64 |           1920.61  |           94.5963 | 4.48 GB (18.92%) |
|            1 |              128 |             128 |           2406.1   |           94.793  | 4.48 GB (18.92%) |
|            1 |              256 |             256 |           2521.08  |           94.1144 | 4.48 GB (18.92%) |
|            1 |              512 |             512 |           2478.28  |           93.4123 | 4.48 GB (18.92%) |
|            1 |             1024 |            1024 |           2256.22  |           94.0237 | 4.69 GB (19.78%) |
|            1 |             2048 |            2048 |           1831.71  |           94.2032 | 6.83 GB (28.83%) |
Casper's avatar
Casper committed
244

Ji Lin's avatar
Ji Lin committed
245
246
## Reference

Casper's avatar
Casper committed
247
If you find AWQ useful or relevant to your research, you can cite their [paper](https://arxiv.org/abs/2306.00978):
Ji Lin's avatar
Ji Lin committed
248
249
250
251
252
253
254
255
256

```
@article{lin2023awq,
  title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
  author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
  journal={arXiv},
  year={2023}
}
```