README.md 14 KB
Newer Older
Casper's avatar
Casper committed
1
# AutoAWQ
Ji Lin's avatar
Ji Lin committed
2

Casper's avatar
Casper committed
3
4
<p align="center">
| <a href="https://github.com/casper-hansen/AutoAWQ/issues/32"><b>Roadmap</b></a> | <a href="https://github.com/casper-hansen/AutoAWQ/tree/main/examples"><b>Examples</b></a> | <a href="https://github.com/casper-hansen/AutoAWQ/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22"><b>Issues: Help Wanted</b></a> |
Casper's avatar
Casper committed
5
6
7
8

</p>
<p align="center">
    <a href="https://huggingface.co/models?search=awq">
Casper's avatar
Casper committed
9
        <img alt="Huggingface - Models" src="https://img.shields.io/badge/🤗_600+_models_available-8A2BE2">
Casper's avatar
Casper committed
10
11
12
13
14
    </a>
    <a href="https://github.com/casper-hansen/AutoAWQ/releases">
        <img alt="GitHub - Releases" src="https://img.shields.io/github/release/casper-hansen/AutoAWQ.svg">
    </a>
    <a href="https://pypi.org/project/autoawq/">
Casper's avatar
Casper committed
15
        <img alt="PyPI - Downloads" src="https://static.pepy.tech/badge/autoawq/month">
Casper's avatar
Casper committed
16
    </a>
Casper's avatar
Casper committed
17
</p>
Ji Lin's avatar
Ji Lin committed
18

Casper's avatar
Casper committed
19
AutoAWQ is an easy-to-use package for 4-bit quantized models. AutoAWQ speeds up models by 2x while reducing memory requirements by 3x compared to FP16. AutoAWQ implements the Activation-aware Weight Quantization (AWQ) algorithm for quantizing LLMs.  AutoAWQ was created and improved upon from the [original work](https://github.com/mit-han-lab/llm-awq) from MIT.
Ji Lin's avatar
Ji Lin committed
20

Casper's avatar
Casper committed
21
*Latest News* 🔥
Casper's avatar
Casper committed
22
- [2023/11] AutoAWQ has been merged into 🤗 transformers. Now includes CUDA 12.1 wheels.
Casper's avatar
Casper committed
23
- [2023/10] Mistral (Fused Modules), Bigcode, Turing support, Memory Bug Fix (Saves 2GB VRAM)
Casper Hansen's avatar
Casper Hansen committed
24
- [2023/09] 1.6x-2.5x speed boost on fused models (now including MPT and Falcon).
Casper's avatar
Casper committed
25
26
- [2023/09] Multi-GPU support, bug fixes, and better benchmark scripts available
- [2023/08] PyPi package released and AutoModel class available
Ji Lin's avatar
Ji Lin committed
27
28
29

## Install

Casper's avatar
Casper committed
30
Requirements: 
Casper's avatar
Casper committed
31
- Compute Capability 7.5 (sm75). Turing and later architectures are supported.
Casper's avatar
Casper committed
32
- CUDA Toolkit 11.8 and later.
Casper's avatar
Casper committed
33

Casper's avatar
Casper committed
34
35
---

Casper's avatar
Casper committed
36
Install:
Casper's avatar
Casper committed
37
38

- Install from PyPi distributed wheels (torch 2.1.0 + CUDA 12.1.1)
Casper's avatar
Casper committed
39
40

```
Casper's avatar
Casper committed
41
pip install autoawq
Casper's avatar
Casper committed
42
43
```

Casper's avatar
Casper committed
44
45
46
47
48
49
50
51
52
53
- Install from GitHub a release (torch 2.0.1 + CUDA 11.8.0)

Remember to grab the right link for the [latest release](https://github.com/casper-hansen/AutoAWQ/releases) that matches your environment.

For example, this wheel is torch 2.0.1 with CUDA 11.8.0 and Python 3.10 for Linux:

```
pip install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
```

Casper's avatar
Casper committed
54
55
56
57
58
59
60
61
62
63
64
### Using conda

CUDA dependencies can be hard to manage sometimes. It is recommended to use conda with AutoAWQ:

```
conda create --name autoawq python=3.10 -y
conda activate autoawq
conda install pytorch=2.0.1 torchvision torchaudio cudatoolkit=11.8 -c pytorch -c nvidia
pip install autoawq
```

Casper's avatar
Casper committed
65
66
67
68
69
### Build source

<details>

<summary>Build AutoAWQ from scratch</summary>
Casper Hansen's avatar
Casper Hansen committed
70

Casper's avatar
Casper committed
71
72
Build time can take 10 minutes. Download your model while you install AutoAWQ.

Ji Lin's avatar
Ji Lin committed
73
```
Casper's avatar
Casper committed
74
git clone https://github.com/casper-hansen/AutoAWQ
Casper's avatar
Casper committed
75
cd AutoAWQ
Ji Lin's avatar
Ji Lin committed
76
77
78
pip install -e .
```

Casper's avatar
Casper committed
79
80
</details>

Casper's avatar
Casper committed
81
## Supported models
Casper Hansen's avatar
Casper Hansen committed
82

Casper's avatar
Casper committed
83
The detailed support list:
Haotian (Ken) Tang's avatar
Haotian (Ken) Tang committed
84

Casper's avatar
Casper committed
85
86
87
88
| Models   | Sizes                       |
| ---------| ----------------------------|
| LLaMA-2  | 7B/13B/70B                  |
| LLaMA    | 7B/13B/30B/65B              |
Casper's avatar
Casper committed
89
| Mistral  | 7B                          |
Casper's avatar
Casper committed
90
91
92
93
94
| Vicuna   | 7B/13B                      |
| MPT      | 7B/30B                      |
| Falcon   | 7B/40B                      |
| OPT      | 125m/1.3B/2.7B/6.7B/13B/30B |
| Bloom    | 560m/3B/7B/                 |
Casper's avatar
Casper committed
95
| GPTJ     | 6.7B                        |
ldwang's avatar
ldwang committed
96
97
| Aquila   | 7B                          |
| Aquila2  | 7B/34B                      |
Casper's avatar
Casper committed
98
99

## Usage
Ji Lin's avatar
Ji Lin committed
100

Casper's avatar
Casper committed
101
102
Under examples, you can find examples of how to quantize, run inference, and benchmark AutoAWQ models.

103
104
### INT4 GEMM vs INT4 GEMV vs FP16

Casper's avatar
Casper committed
105
There are two versions of AWQ: GEMM and GEMV. Both names relate to how matrix multiplication runs under the hood. We suggest the following:
106

Casper's avatar
Casper committed
107
- GEMV (quantized): 20% faster than GEMM, only batch size 1 (not good for large context).
Casper's avatar
Casper committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
- GEMM (quantized): Much faster than FP16 at batch sizes below 8 (good with large contexts).
- FP16 (non-quantized): Recommended for highest throughput: [vLLM](https://github.com/vllm-project/vllm).

#### Compute-bound vs Memory-bound

At small batch sizes with small 7B models, we are memory-bound. This means we are bound by the bandwidth our GPU has to push around the weights in memory, and this is essentially what limits how many tokens per second we can generate. Being memory-bound is what makes quantized models faster because your weights are 3x smaller and can therefore be pushed around in memory much faster. This is different from being compute-bound where the main time spent during generation is doing matrix multiplication. 

In the scenario of being compute-bound, which happens at higher batch sizes, you will not gain a speed-up using a W4A16 quantized model because the overhead of dequantization will slow down the overall generation. This happens because AWQ quantized models only store the weights in INT4 but perform FP16 operations during inference, so we are essentially converting INT4 -> FP16 during inference.

### Fused modules

Fused modules are a large part of the speedup you get from AutoAWQ. The idea is to combine multiple layers into a single operation, thus becoming more efficient. Fused modules represent a set of custom modules that work separately from Huggingface models. They are compatible with `model.generate()` and other Huggingface methods, which comes with some inflexibility in how you can use your model if you activate fused modules:

- Fused modules are activated when you use `fuse_layers=True`.
- A custom cache is implemented. It preallocates based on batch size and sequence length.
    - You cannot change the sequence length or batch size after you have created your model.
    - Reference: `AutoAWQForCausalLM.from_quantized(max_new_tokens=seq_len, batch_size=batch_size)`
- The main accelerator in the fused modules comes from FasterTransformer, which is only compatible with Linux.
- The `past_key_values` from `model.generate()` are only dummy values, so they cannot be used after generation.
127
128
129

### Examples

Casper's avatar
Casper committed
130
131
More examples can be found in the [examples directory](examples).

Casper's avatar
Casper committed
132
<details>
Casper Hansen's avatar
Casper Hansen committed
133

Casper's avatar
Casper committed
134
<summary>Quantization</summary>
Casper Hansen's avatar
Casper Hansen committed
135

136
137
Expect this to take 10-15 minutes on smaller 7B models, and around 1 hour for 70B models.

Casper's avatar
Casper committed
138
```python
Casper's avatar
Casper committed
139
from awq import AutoAWQForCausalLM
Casper's avatar
Casper committed
140
from transformers import AutoTokenizer
Casper Hansen's avatar
Casper Hansen committed
141

Casper's avatar
Casper committed
142
143
model_path = 'lmsys/vicuna-7b-v1.5'
quant_path = 'vicuna-7b-v1.5-awq'
Casper's avatar
Casper committed
144
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }
Ji Lin's avatar
Ji Lin committed
145

Casper's avatar
Casper committed
146
147
148
# Load model
model = AutoAWQForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
Ji Lin's avatar
Ji Lin committed
149

Casper's avatar
Casper committed
150
151
152
153
154
155
# Quantize
model.quantize(tokenizer, quant_config=quant_config)

# Save quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)
Ji Lin's avatar
Ji Lin committed
156
157
```

Casper's avatar
Casper committed
158
159
160
</details>

<details>
Ji Lin's avatar
Ji Lin committed
161

Casper's avatar
Casper committed
162
<summary>Inference</summary>
Ji Lin's avatar
Ji Lin committed
163

Casper's avatar
Casper committed
164
```python
Casper's avatar
Casper committed
165
from awq import AutoAWQForCausalLM
Casper's avatar
Casper committed
166
from transformers import AutoTokenizer, TextStreamer
Ji Lin's avatar
Ji Lin committed
167

Casper's avatar
Casper committed
168
quant_path = "casperhansen/vicuna-7b-v1.5-awq"
Ji Lin's avatar
Ji Lin committed
169

Casper's avatar
Casper committed
170
# Load model
Casper's avatar
Casper committed
171
model = AutoAWQForCausalLM.from_quantized(quant_path, fuse_layers=True)
Casper's avatar
Casper committed
172
tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True)
Casper's avatar
Casper committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
streamer = TextStreamer(tokenizer, skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.

USER: {prompt}
ASSISTANT:"""

tokens = tokenizer(
    prompt_template.format(prompt="How are you today?"), 
    return_tensors='pt'
).input_ids.cuda()

# Generate output
generation_output = model.generate(
    tokens, 
    streamer=streamer,
    max_new_tokens=512
)
Casper's avatar
Casper committed
193
```
Ji Lin's avatar
Ji Lin committed
194

Casper's avatar
Casper committed
195
</details>
Ji Lin's avatar
Ji Lin committed
196

197
198
199
200
201
202
203
204
205
206
207
208
<details>

<summary>AutoAWQForCausalLM.from_quantized</summary>

- `quant_path`: Path to folder containing model files.
- `quant_filename`: The filename to model weights or `index.json` file.
- `max_new_tokens`: The max sequence length, used to allocate kv-cache for fused models.
- `fuse_layers`: Whether or not to use fused layers.
- `batch_size`: The batch size to initialize the AWQ model with.

</details>

Casper's avatar
Casper committed
209
## Benchmarks
Ji Lin's avatar
Ji Lin committed
210

Casper's avatar
Casper committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
These benchmarks showcase the speed and memory usage of processing context (prefill) and generating tokens (decoding). The results include speed at various batch sizes and different versions of AWQ kernels. We have aimed to test models fairly using the same benchmarking tool that you can use to reproduce the results. Do note that speed may vary not only between GPUs but also between CPUs. What matters most is a GPU with high memory bandwidth and a CPU with high single core clock speed.

- Tested with AutoAWQ version 0.1.6
- GPU: RTX 4090 (AMD Ryzen 9 7950X)
- Command: `python examples/benchmark --model_path <hf_model> --batch_size 1`
- 🟢 for GEMV, 🔵 for GEMM, 🔴 for avoid using

| Model Name |  Size    | Version          | Batch Size | Prefill Length | Decode Length | Prefill tokens/s | Decode tokens/s | Memory (VRAM)    |
|------------|----------|------------------|------------|----------------|---------------|------------------|-----------------|------------------|
| Vicuna     |   7B     | 🟢GEMV           | 1          | 64             | 64            | 639.65           | 198.848         | 4.50 GB (19.05%) |
| Vicuna     |   7B     | 🟢GEMV           | 1          | 2048           | 2048          | 1123.63          | 133.191         | 6.15 GB (26.02%) |
| ...        |   ...    | ...              | ...        | ...            | ...           | ...              | ...             | ...              |
| Mistral    |   7B     | 🔵GEMM           | 1          | 64             | 64            | 1093.35          | 156.317         | 4.35 GB (18.41%) |
| Mistral    |   7B     | 🔵GEMM           | 1          | 2048           | 2048          | 3897.02          | 114.355         | 5.55 GB (23.48%) |
| Mistral    |   7B     | 🔵GEMM           | 8          | 64             | 64            | 4199.18          | 1185.25         | 4.35 GB (18.41%) |
| Mistral    |   7B     | 🔵GEMM           | 8          | 2048           | 2048          | 3661.46          | 829.754         | 16.82 GB (71.12%)|
| ...        |   ...    | ...              | ...        | ...            | ...           | ...              | ...             | ...              |
| Mistral    |   7B     | 🟢GEMV           | 1          | 64             | 64            | 531.99           | 188.29          | 4.28 GB (18.08%) |
| Mistral    |   7B     | 🟢GEMV           | 1          | 2048           | 2048          | 903.83           | 130.66          | 5.55 GB (23.48%) |
| Mistral    |   7B     | 🔴GEMV           | 8          | 64             | 64            | 897.87           | 486.46          | 4.33 GB (18.31%) |
| Mistral    |   7B     | 🔴GEMV           | 8          | 2048           | 2048          | 884.22           | 411.893         | 16.82 GB (71.12%)|
| ...        |   ...    | ...              | ...        | ...            | ...           | ...              | ...             | ...              |
| TinyLlama  |   1B     | 🟢GEMV           | 1          | 64             | 64            | 1088.63          | 548.993         | 0.86 GB (3.62%)  |
| TinyLlama  |   1B     | 🟢GEMV           | 1          | 2048           | 2048          | 5178.98          | 431.468         | 2.10 GB (8.89%)  |
| ...        |   ...    | ...              | ...        | ...            | ...           | ...              | ...             | ...              |
| Llama 2    |   13B    | 🔵GEMM           | 1          | 64             | 64            | 820.34           | 96.74           | 8.47 GB (35.83%) |
| Llama 2    |   13B    | 🔵GEMM           | 1          | 2048           | 2048          | 2279.41          | 73.8213         | 10.28 GB (43.46%)|
| Llama 2    |   13B    | 🔵GEMM           | 3          | 64             | 64            | 1593.88          | 286.249         | 8.57 GB (36.24%) |
| Llama 2    |   13B    | 🔵GEMM           | 3          | 2048           | 2048          | 2226.7           | 189.573         | 16.90 GB (71.47%)|
| ...        |   ...    | ...              | ...        | ...            | ...           | ...              | ...             | ...              |
| MPT        |   7B     | 🔵GEMM           | 1          | 64             | 64            | 1079.06          | 161.344         | 3.67 GB (15.51%) |
| MPT        |   7B     | 🔵GEMM           | 1          | 2048           | 2048          | 4069.78          | 114.982         | 5.87 GB (24.82%) |
| ...        |   ...    | ...              | ...        | ...            | ...           | ...              | ...             | ...              |
| Falcon     |   7B     | 🔵GEMM           | 1          | 64             | 64            | 1139.93          | 133.585         | 4.47 GB (18.92%) |
| Falcon     |   7B     | 🔵GEMM           | 1          | 2048           | 2048          | 2850.97          | 115.73          | 6.83 GB (28.88%) |
| ...        |   ...    | ...              | ...        | ...            | ...           | ...              | ...             | ...              |
| CodeLlama  |   34B    | 🔵GEMM           | 1          | 64             | 64            | 681.74           | 41.01           | 19.05 GB (80.57%)|
| CodeLlama  |   34B    | 🔵GEMM           | 1          | 2048           | 2048          | 1072.36          | 35.8316         | 20.26 GB (85.68%)|
| ...        |  ...     | ...              | ...        | ...            | ...           | ...              | ...             | ...              |
| DeepSeek   |   33B    | 🔵GEMM           | 1          | 64             | 64            | 1160.18          | 40.29           | 18.92 GB (80.00%)|
| DeepSeek   |   33B    | 🔵GEMM           | 1          | 2048           | 2048          | 1012.1           | 34.0093         | 19.87 GB (84.02%)|
252

Ji Lin's avatar
Ji Lin committed
253
254
## Reference

Casper's avatar
Casper committed
255
If you find AWQ useful or relevant to your research, you can cite their [paper](https://arxiv.org/abs/2306.00978):
Ji Lin's avatar
Ji Lin committed
256
257
258
259
260
261
262
263
264

```
@article{lin2023awq,
  title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
  author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
  journal={arXiv},
  year={2023}
}
```