quantizer.py 16.4 KB
Newer Older
Ji Lin's avatar
Ji Lin committed
1
import torch
2
import inspect
Casper's avatar
Casper committed
3
4
5
6
import logging
import functools
import torch.nn as nn
from tqdm import tqdm
Vik Paruchuri's avatar
Vik Paruchuri committed
7
from typing import Dict, List
Casper's avatar
Casper committed
8
9
10
from collections import defaultdict
from awq.utils.utils import clear_memory
from awq.utils.calib_data import get_calib_dataset
Casper Hansen's avatar
Casper Hansen committed
11
from awq.quantize.scale import apply_scale, apply_clip
Casper's avatar
Casper committed
12
from awq.modules.linear import WQLinear_GEMM, WQLinear_GEMV
13
14
15
16
17
18
19
from awq.utils.module import (
    append_str_prefix,
    get_op_name,
    get_named_linears,
    set_op_by_name,
    exclude_layers_to_not_quantize
)
Casper's avatar
Casper committed
20
21
22


class AwqQuantizer:
23
    def __init__(self, awq_model, model, tokenizer, w_bit, group_size, version, 
24
                       calib_data, split, text_column, duo_scaling, modules_to_not_convert=None) -> None:
Casper Hansen's avatar
Casper Hansen committed
25
        self.awq_model = awq_model
Casper's avatar
Casper committed
26
27
28
29
30
31
32
33
        self.model = model
        self.tokenizer = tokenizer
        self.w_bit = w_bit
        self.group_size = group_size
        self.version = version
        self.calib_data = calib_data
        self.split = split
        self.text_column = text_column
34
        self.duo_scaling = duo_scaling
35
        self.modules_to_not_convert = modules_to_not_convert if modules_to_not_convert is not None else []
Casper Hansen's avatar
Casper Hansen committed
36
        self.modules, self.module_kwargs, self.inps = self.init_quant()
37
    
Casper's avatar
Casper committed
38
39
40
41
42
43
44
45
    def pseudo_quantize_tensor(self, w: torch.Tensor, get_scale_zp=False):
        org_w_shape = w.shape
        if self.group_size > 0:
            assert org_w_shape[-1] % self.group_size == 0
            w = w.reshape(-1, self.group_size)
        assert w.dim() == 2

        # zero point quantization
Ji Lin's avatar
Ji Lin committed
46
47
        max_val = w.amax(dim=1, keepdim=True)
        min_val = w.amin(dim=1, keepdim=True)
Casper's avatar
Casper committed
48
        max_int = 2 ** self.w_bit - 1
Ji Lin's avatar
Ji Lin committed
49
50
51
        min_int = 0
        scales = (max_val - min_val).clamp(min=1e-5) / max_int
        zeros = (-torch.round(min_val / scales)).clamp_(min_int, max_int)
Casper's avatar
Casper committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65

        assert torch.isnan(scales).sum() == 0
        assert torch.isnan(w).sum() == 0

        w = (torch.clamp(torch.round(w / scales) + zeros, min_int, max_int) - zeros) * scales
        assert torch.isnan(w).sum() == 0

        w = w.reshape(org_w_shape)

        if get_scale_zp:
            return w, scales.view(w.shape[0], -1), zeros.view(w.shape[0], -1)
        else:
            return w
    
Casper's avatar
Casper committed
66
67
68
69
70
71
72
73
74
75
76
77
78
    def pseudo_dequantize_tensor(self, w: nn.Linear, scales: torch.Tensor, zeros: torch.Tensor):
        # get repeated count
        repeat_count = w.weight.data.shape[-1] // zeros.shape[-1]

        # get zeros and scales in correct shape
        zeros = zeros.repeat(1, repeat_count).reshape(w.weight.data.shape)
        scales = scales.repeat(1, repeat_count).reshape(w.weight.data.shape)

        # dequantize
        w = (w.weight.data - zeros) * scales

        return w
    
Casper Hansen's avatar
Casper Hansen committed
79
80
    def quantize(self):
        for i in tqdm(range(len(self.modules)), desc="AWQ"):
Casper's avatar
Casper committed
81
82
83
84
85
86
87
88
            # Move module and inputs to correct device
            common_device = next(self.modules[i].parameters()).device
            if common_device is None or str(common_device) == "cpu":
                self.modules[i] = self.modules[i].cuda()
                common_device = next(self.modules[i].parameters()).device
            
            self.inps = self.inps.to(common_device)

Casper's avatar
Casper committed
89
90
            # [STEP 1]: Get layer, extract linear modules, extract input features
            named_linears = get_named_linears(self.modules[i])
91
92

            # Filter out the linear layers we don't want to exclude
93
            named_linears = exclude_layers_to_not_quantize(named_linears, self.modules_to_not_convert)
94

Casper's avatar
Casper committed
95
96
97
98
            input_feat = self._get_input_feat(self.modules[i], named_linears)
            clear_memory()

            # [STEP 2]: Compute and apply scale list
Vik Paruchuri's avatar
Vik Paruchuri committed
99
            module_config: List[Dict] = self.awq_model.get_layers_for_scaling(
Casper's avatar
Casper committed
100
101
                self.modules[i], input_feat, self.module_kwargs
            )
Casper Hansen's avatar
Casper Hansen committed
102
            scales_list = [self._search_best_scale(self.modules[i], **layer) for layer in module_config]
Casper's avatar
Casper committed
103
104
105
106
            apply_scale(self.modules[i], scales_list, input_feat_dict=input_feat)
            scales_list = append_str_prefix(scales_list, get_op_name(self.model, self.modules[i]) + ".")

            # [STEP 3]: Compute and apply clipping list
Casper Hansen's avatar
Casper Hansen committed
107
108
109
            clip_list = self._search_best_clip(self.modules[i], named_linears, input_feat)
            apply_clip(self.modules[i], clip_list)
            clip_list = append_str_prefix(clip_list, get_op_name(self.model, self.modules[i]) + ".")
Casper's avatar
Casper committed
110
111

            # [STEP 4]: Quantize weights
112
113
114
            self._apply_quant(self.modules[i], named_linears)
            clear_memory()
    
Vik Paruchuri's avatar
Vik Paruchuri committed
115
    def _apply_quant(self, module, named_linears: Dict[str, nn.Linear]):
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        for name, linear_layer in named_linears.items():
            # NOTE: small regression in perplexity if linear layer uses .cpu().float()
            linear_layer = linear_layer.cuda().half()

            linear_layer.weight.data, scales, zeros = self.pseudo_quantize_tensor(
                linear_layer.weight.data, 
                get_scale_zp=True
            )

            if self.version == 'GEMM':
                scales = scales.t().contiguous()
                zeros = zeros.t().contiguous()
                q_linear_module = WQLinear_GEMM

            elif self.version  == 'GEMV':
                q_linear_module = WQLinear_GEMV
Casper's avatar
Casper committed
132
            
133
134
135
136
137
138
139
140
141
142
143
144
            q_linear = q_linear_module.from_linear(
                linear=linear_layer,
                w_bit=self.w_bit,
                group_size=self.group_size,
                init_only=False,
                scales=scales,
                zeros=zeros
            )

            linear_layer.cpu()
            q_linear.to(next(module.parameters()).device)
            set_op_by_name(module, name, q_linear)
Casper's avatar
Casper committed
145
146
147
            clear_memory()

    @torch.no_grad()
Vik Paruchuri's avatar
Vik Paruchuri committed
148
    def _search_best_scale(self, module, prev_op, layers: List[nn.Linear], inp: torch.Tensor, module2inspect=None, kwargs={}):
Casper Hansen's avatar
Casper Hansen committed
149
150
151
152
153
154
155
        if module2inspect is None:
            assert len(layers) == 1
            module2inspect = layers[0]
        
        if "use_cache" in kwargs:
            kwargs.pop("use_cache")
        
Casper's avatar
Casper committed
156
        # Put x on the right device
Casper Hansen's avatar
Casper Hansen committed
157
        inp = inp.to(next(module2inspect.parameters()).device)
Casper's avatar
Casper committed
158
159

        # [STEP 1]: Compute maximum of weight
Casper Hansen's avatar
Casper Hansen committed
160
161
        weight = torch.cat([_m.weight for _m in layers], dim=0)
        org_shape = weight.shape
Casper's avatar
Casper committed
162
        weight = weight.view(-1, self.group_size)
Casper Hansen's avatar
Casper Hansen committed
163
164
165
        w_scale = weight.abs() / weight.abs().amax(dim=1, keepdim=True)
        w_scale = w_scale.view(org_shape)
        w_max = w_scale.mean(0)
Casper's avatar
Casper committed
166
167
168
        clear_memory(weight)

        # [STEP 2]: Compute maximum of x
Casper Hansen's avatar
Casper Hansen committed
169
        x_max = inp.abs().view(-1, inp.shape[-1]).mean(0)
Casper's avatar
Casper committed
170

Casper Hansen's avatar
Casper Hansen committed
171
        # [STEP 3]: Compute output of module
Casper's avatar
Casper committed
172
        with torch.no_grad():
173
174
175
            module_kwargs = self._sanitize_kwargs(kwargs, module2inspect)

            fp16_output = module2inspect(inp, **module_kwargs)
176
177
            if isinstance(fp16_output, tuple):
                fp16_output = fp16_output[0]
Casper's avatar
Casper committed
178
179
180
        
        # [STEP 4]: Compute loss
        best_scales = self._compute_best_scale(
Casper Hansen's avatar
Casper Hansen committed
181
            inp, w_max, x_max, module2inspect,
182
            layers, fp16_output, module_kwargs
Casper's avatar
Casper committed
183
184
        )
        
Casper Hansen's avatar
Casper Hansen committed
185
        return (get_op_name(module, prev_op), tuple([get_op_name(module, m) for m in layers]), best_scales)
Casper's avatar
Casper committed
186

Vik Paruchuri's avatar
Vik Paruchuri committed
187
    def _compute_best_scale(self, x, w_max, x_max, module2inspect, linears2scale: List[nn.Linear],
188
                                  fp16_output, kwargs={}):
Casper's avatar
Casper committed
189
190
191
        """
        Compute loss and select best scales

Casper's avatar
Casper committed
192
        L(s) = || Q(W * s) (s^-1 * X) - W * X ||
Casper's avatar
Casper committed
193
194
195
196
197
198
199
200
201
202
203
        Q: weight quantization function | pseudo_quantize_tensor(W * s)
        X: inputs from calib dataset    | X
        W: original weights in FP16     | layer
        s: per channel scaling factor   | s^-1 * X
        """
        n_grid = 20
        history = []
        best_ratio = -1
        best_scales = None
        best_error = float('inf')

Casper Hansen's avatar
Casper Hansen committed
204
        org_sd = {k: v.cpu() for k, v in module2inspect.state_dict().items()}
Casper's avatar
Casper committed
205
206
207
208
209
        
        device = x.device
        x_max = x_max.view(-1).to(device)
        w_max = w_max.view(-1).to(device)
        
Casper's avatar
Casper committed
210
211
        for ratio in range(n_grid):
            # create new scales
Casper's avatar
Casper committed
212
            ratio = ratio / n_grid
213

Casper Hansen's avatar
Casper Hansen committed
214
            # NOTE: s^-1 * x is fused here, according to paper
215
216
217
218
            if self.duo_scaling:
                scales = (x_max.pow(ratio) / w_max.pow(1-ratio)).clamp(min=1e-4)
            else:
                scales = x_max.pow(ratio).clamp(min=1e-4).view(-1)
Casper's avatar
Casper committed
219
            scales = scales / (scales.max() * scales.min()).sqrt()
Casper's avatar
Casper committed
220
            scales_view = scales.view(1, -1).to(device)
221

Casper Hansen's avatar
Casper Hansen committed
222
            # Q(W * s)
Casper's avatar
Casper committed
223
            for fc in linears2scale:
Casper's avatar
Casper committed
224
225
                fc.weight.mul_(scales_view)
                fc.weight.data = self.pseudo_quantize_tensor(fc.weight.data) / scales_view
Casper's avatar
Casper committed
226

227
228
229
230
231
            # W * X
            int_w_output = module2inspect(x, **kwargs)
            if isinstance(int_w_output, tuple):
                int_w_output = int_w_output[0]
            
Casper Hansen's avatar
Casper Hansen committed
232
233
            # compute mean squared error (L2 norm)
            loss = (fp16_output - int_w_output).float().pow(2).mean().item() # NOTE: float prevents overflow
Casper's avatar
Casper committed
234
235

            history.append(loss)
Casper's avatar
Casper committed
236
            if loss < best_error:
Casper's avatar
Casper committed
237
238
                best_error = loss
                best_ratio = ratio
Casper's avatar
Casper committed
239
                best_scales = scales.clone()
Casper Hansen's avatar
Casper Hansen committed
240
            module2inspect.load_state_dict(org_sd)
Casper's avatar
Casper committed
241

Casper's avatar
Casper committed
242
243
244
245
246
247
        if best_ratio == -1:
            logging.debug(history)
            raise Exception

        assert torch.isnan(best_scales).sum() == 0, best_scales

Casper Hansen's avatar
Casper Hansen committed
248
        return best_scales.detach().cpu()
Casper's avatar
Casper committed
249

Casper Hansen's avatar
Casper Hansen committed
250
251
252
253
    @torch.no_grad()
    def _search_best_clip(self, layer, named_linears, input_feat):
        clip_list = []
        avoid_clipping = ["q_", "k_", "query", "key", "Wqkv"]
Casper's avatar
Casper committed
254

Casper Hansen's avatar
Casper Hansen committed
255
256
257
258
259
260
261
262
263
264
        for name in named_linears:
            # due to qk bmm, it is hard to clip precisely
            if any([_ in name for _ in avoid_clipping]):
                continue

            named_linears[name].cuda()
            max_val = self._compute_best_clip(named_linears[name].weight, input_feat[name])
            clip_list.append((name, max_val))

            named_linears[name].cpu()
Casper Hansen's avatar
Casper Hansen committed
265
266
        
        return clip_list
Casper Hansen's avatar
Casper Hansen committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

    @torch.no_grad()
    def _compute_best_clip(self, w: torch.Tensor, input_feat: torch.Tensor, n_grid=20, max_shrink=0.5, n_sample_token=512):
        assert w.dim() == 2
        org_w_shape = w.shape
        # w           [co, ci]      -> [co, 1, n_group, group size]
        # input_feat  [n_token, ci] -> [1, n_token, n_group, group size]
        group_size = self.group_size if self.group_size > 0 else w.shape[1]
        input_feat = input_feat.view(-1, input_feat.shape[-1])
        input_feat = input_feat.reshape(1, input_feat.shape[0], -1, group_size)
        input_feat = input_feat[:, 0::input_feat.shape[1] // n_sample_token]
        w = w.reshape(w.shape[0], 1, -1, group_size)

        oc_batch_size = 256 if w.shape[0] % 256 == 0 else 64  # prevent OOM
        assert w.shape[0] % oc_batch_size == 0
        w_all = w
        best_max_val_all = []
Casper's avatar
Casper committed
284

Casper Hansen's avatar
Casper Hansen committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        for i_b in range(w.shape[0] // oc_batch_size):
            w = w_all[i_b * oc_batch_size: (i_b + 1) * oc_batch_size]

            org_max_val = w.abs().amax(dim=-1, keepdim=True)  # co, 1, n_group, 1

            best_max_val = org_max_val.clone()
            min_errs = torch.ones_like(org_max_val) * 1e9
            input_feat = input_feat.to(w.device)
            org_out = (input_feat * w).sum(dim=-1)  # co, n_token, n_group

            for i_s in range(int(max_shrink * n_grid)):
                max_val = org_max_val * (1 - i_s / n_grid)
                min_val = - max_val
                cur_w = torch.clamp(w, min_val, max_val)
                q_w = self.pseudo_quantize_tensor(cur_w)
                cur_out = (input_feat * q_w).sum(dim=-1)

                # co, 1, n_group, 1
                err = (cur_out - org_out).pow(2).mean(dim=1).view(min_errs.shape)
                del cur_w
                del cur_out
                cur_best_idx = err < min_errs
                min_errs[cur_best_idx] = err[cur_best_idx]
                best_max_val[cur_best_idx] = max_val[cur_best_idx]
            best_max_val_all.append(best_max_val)

        best_max_val = torch.cat(best_max_val_all, dim=0)

        clear_memory(input_feat)
        clear_memory(org_out)

        return best_max_val.squeeze(1)

    def init_quant(self, n_samples=128, seqlen=512):
        modules = self.awq_model.get_model_layers(self.model)
Casper's avatar
Casper committed
320
321
322
323
324
325
326
327
328
        samples = get_calib_dataset(
            data=self.calib_data, tokenizer=self.tokenizer, n_samples=n_samples, block_size=seqlen,
            split=self.split, text_column=self.text_column
        )
        samples = torch.cat(samples, dim=0)

        inps = []
        layer_kwargs = {}

Casper Hansen's avatar
Casper Hansen committed
329
330
        modules[0] = modules[0].cuda()
        self.awq_model.move_embed(self.model, "cuda")
Casper's avatar
Casper committed
331
332
333
334
335
336
337
338
339
        
        # get input and kwargs to layer 0
        # with_kwargs is only supported in PyTorch 2.0
        # use this Catcher hack for now
        class Catcher(nn.Module):
            def __init__(self, module):
                super().__init__()
                self.module = module

340
341
342
343
344
345
346
347
348
349
            def forward(self, *args, **kwargs):
                # assume first input to forward is hidden states
                if len(args) > 0:
                    hidden_states = args[0]
                    del args
                else:
                    first_key = list(kwargs.keys())[0]
                    hidden_states = kwargs.pop(first_key)

                inps.append(hidden_states)
Casper's avatar
Casper committed
350
351
352
353
                layer_kwargs.update(kwargs)
                raise ValueError  # early exit to break later inference

        # patch layer 0 to catch input and kwargs
Casper Hansen's avatar
Casper Hansen committed
354
        modules[0] = Catcher(modules[0])
Casper's avatar
Casper committed
355
356
357
358
        try:
            self.model(samples.to(next(self.model.parameters()).device))
        except ValueError:  # work with early exit
            pass
359
360
361
362
363
364
365
        
        # Update the layer kwargs with `prepare_inputs_for_generation` method
        # that takes care of everything to avoid unexpected errors.
        layer_kwargs = self.model.prepare_inputs_for_generation(samples, **layer_kwargs)
        # Pop the input_ids as they are not needed at all.
        layer_kwargs.pop("input_ids")

Casper's avatar
Casper committed
366
        del samples
Casper Hansen's avatar
Casper Hansen committed
367
        modules[0] = modules[0].module  # restore
Casper's avatar
Casper committed
368
369
        inps = inps[0]

Casper Hansen's avatar
Casper Hansen committed
370
371
        modules[0] = modules[0].cpu()
        self.awq_model.move_embed(self.model, "cpu")
Casper's avatar
Casper committed
372
373
        
        clear_memory()
374
        
Casper's avatar
Casper committed
375
        if layer_kwargs.get("attention_mask") is not None:
376
            layer_kwargs["attention_mask"] = layer_kwargs["attention_mask"].to("cuda")
Casper's avatar
Casper committed
377

Casper Hansen's avatar
Casper Hansen committed
378
        return modules, layer_kwargs, inps
Casper's avatar
Casper committed
379
380
381
382
383
384
385
386
387
388
    
    def _get_input_feat(self, layer, named_linears):
        # firstly, get input features of all linear layers
        def cache_input_hook(m, x, y, name, feat_dict):
            x = x[0]
            x = x.detach().cpu()
            feat_dict[name].append(x)

        input_feat = defaultdict(list)
        handles = []
389
390
391
392
393

        # FIXME: Workaround for Mixtral to use block_sparse_moe input features
        if self.awq_model.model_type == "mixtral":
            named_linears = {**named_linears, "block_sparse_moe": layer.block_sparse_moe}

Casper's avatar
Casper committed
394
395
396
397
        for name in named_linears:
            handles.append(named_linears[name].register_forward_hook(
                functools.partial(cache_input_hook, name=name,
                                feat_dict=input_feat)))
Casper Hansen's avatar
Casper Hansen committed
398
        self.inps = self.inps.to(next(layer.parameters()).device)  # in case multi-gpu
Casper's avatar
Casper committed
399
        # get output as next layer's input
400
401
402
403
404
405
406
        
        # Sanitize the kwargs in case we use transformers version that contains
        # kwargs that are not handled by the module.
        # Useful for trust_remote_code models.
        module_kwargs = self._sanitize_kwargs(self.module_kwargs, layer)

        self.inps = layer(self.inps, **module_kwargs)[0]
Casper's avatar
Casper committed
407
408
409
410
411
412
        for h in handles:
            h.remove()
        # now solve for scaling and clipping
        input_feat = {k: torch.cat(v, dim=0) for k, v in input_feat.items()}
        
        return input_feat
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432


    def _sanitize_kwargs(self, inputs_kwargs, module):
        """
        Remove the arguments that are not supported in the module's
        forward pass to avoid breaking behaviour between different versions
        of transformers. 

        Args:
            inputs_kwargs (`dict`):
                The input dictionary to pass to the model layer
            module (`torch.nn.Module`):
                Target module to quantize.
        """
        module_signature = inspect.signature(module.forward).parameters
        sanitized_kwargs = {}
        for k, v in  inputs_kwargs.items():
            if k in module_signature:
                sanitized_kwargs[k] = v
        return sanitized_kwargs