quantizer.py 14.3 KB
Newer Older
Ji Lin's avatar
Ji Lin committed
1
import torch
Casper's avatar
Casper committed
2
3
4
5
import logging
import functools
import torch.nn as nn
from tqdm import tqdm
Vik Paruchuri's avatar
Vik Paruchuri committed
6
from typing import Dict, List
Casper's avatar
Casper committed
7
8
9
from collections import defaultdict
from awq.utils.utils import clear_memory
from awq.utils.calib_data import get_calib_dataset
Casper Hansen's avatar
Casper Hansen committed
10
from awq.quantize.scale import apply_scale, apply_clip
Casper's avatar
Casper committed
11
12
13
14
15
from awq.modules.linear import WQLinear_GEMM, WQLinear_GEMV
from awq.utils.module import append_str_prefix, get_op_name, get_named_linears, set_op_by_name


class AwqQuantizer:
16
    def __init__(self, awq_model, model, tokenizer, w_bit, group_size, version, 
Casper Hansen's avatar
Casper Hansen committed
17
                       calib_data, split, text_column) -> None:
Casper Hansen's avatar
Casper Hansen committed
18
        self.awq_model = awq_model
Casper's avatar
Casper committed
19
20
21
22
23
24
25
26
        self.model = model
        self.tokenizer = tokenizer
        self.w_bit = w_bit
        self.group_size = group_size
        self.version = version
        self.calib_data = calib_data
        self.split = split
        self.text_column = text_column
Casper Hansen's avatar
Casper Hansen committed
27
        self.modules, self.module_kwargs, self.inps = self.init_quant()
28
    
Casper's avatar
Casper committed
29
30
31
32
33
34
35
36
    def pseudo_quantize_tensor(self, w: torch.Tensor, get_scale_zp=False):
        org_w_shape = w.shape
        if self.group_size > 0:
            assert org_w_shape[-1] % self.group_size == 0
            w = w.reshape(-1, self.group_size)
        assert w.dim() == 2

        # zero point quantization
Ji Lin's avatar
Ji Lin committed
37
38
        max_val = w.amax(dim=1, keepdim=True)
        min_val = w.amin(dim=1, keepdim=True)
Casper's avatar
Casper committed
39
        max_int = 2 ** self.w_bit - 1
Ji Lin's avatar
Ji Lin committed
40
41
42
        min_int = 0
        scales = (max_val - min_val).clamp(min=1e-5) / max_int
        zeros = (-torch.round(min_val / scales)).clamp_(min_int, max_int)
Casper's avatar
Casper committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56

        assert torch.isnan(scales).sum() == 0
        assert torch.isnan(w).sum() == 0

        w = (torch.clamp(torch.round(w / scales) + zeros, min_int, max_int) - zeros) * scales
        assert torch.isnan(w).sum() == 0

        w = w.reshape(org_w_shape)

        if get_scale_zp:
            return w, scales.view(w.shape[0], -1), zeros.view(w.shape[0], -1)
        else:
            return w
    
Casper's avatar
Casper committed
57
58
59
60
61
62
63
64
65
66
67
68
69
    def pseudo_dequantize_tensor(self, w: nn.Linear, scales: torch.Tensor, zeros: torch.Tensor):
        # get repeated count
        repeat_count = w.weight.data.shape[-1] // zeros.shape[-1]

        # get zeros and scales in correct shape
        zeros = zeros.repeat(1, repeat_count).reshape(w.weight.data.shape)
        scales = scales.repeat(1, repeat_count).reshape(w.weight.data.shape)

        # dequantize
        w = (w.weight.data - zeros) * scales

        return w
    
Casper Hansen's avatar
Casper Hansen committed
70
71
    def quantize(self):
        for i in tqdm(range(len(self.modules)), desc="AWQ"):
Casper's avatar
Casper committed
72
73
74
75
76
77
78
79
            # Move module and inputs to correct device
            common_device = next(self.modules[i].parameters()).device
            if common_device is None or str(common_device) == "cpu":
                self.modules[i] = self.modules[i].cuda()
                common_device = next(self.modules[i].parameters()).device
            
            self.inps = self.inps.to(common_device)

Casper's avatar
Casper committed
80
81
82
83
84
85
            # [STEP 1]: Get layer, extract linear modules, extract input features
            named_linears = get_named_linears(self.modules[i])
            input_feat = self._get_input_feat(self.modules[i], named_linears)
            clear_memory()

            # [STEP 2]: Compute and apply scale list
Vik Paruchuri's avatar
Vik Paruchuri committed
86
            module_config: List[Dict] = self.awq_model.get_layers_for_scaling(
Casper's avatar
Casper committed
87
88
                self.modules[i], input_feat, self.module_kwargs
            )
Casper Hansen's avatar
Casper Hansen committed
89
            scales_list = [self._search_best_scale(self.modules[i], **layer) for layer in module_config]
Casper's avatar
Casper committed
90
91
92
93
            apply_scale(self.modules[i], scales_list, input_feat_dict=input_feat)
            scales_list = append_str_prefix(scales_list, get_op_name(self.model, self.modules[i]) + ".")

            # [STEP 3]: Compute and apply clipping list
Casper Hansen's avatar
Casper Hansen committed
94
95
96
            clip_list = self._search_best_clip(self.modules[i], named_linears, input_feat)
            apply_clip(self.modules[i], clip_list)
            clip_list = append_str_prefix(clip_list, get_op_name(self.model, self.modules[i]) + ".")
Casper's avatar
Casper committed
97
98

            # [STEP 4]: Quantize weights
99
100
101
            self._apply_quant(self.modules[i], named_linears)
            clear_memory()
    
Vik Paruchuri's avatar
Vik Paruchuri committed
102
    def _apply_quant(self, module, named_linears: Dict[str, nn.Linear]):
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        for name, linear_layer in named_linears.items():
            # NOTE: small regression in perplexity if linear layer uses .cpu().float()
            linear_layer = linear_layer.cuda().half()

            linear_layer.weight.data, scales, zeros = self.pseudo_quantize_tensor(
                linear_layer.weight.data, 
                get_scale_zp=True
            )

            if self.version == 'GEMM':
                scales = scales.t().contiguous()
                zeros = zeros.t().contiguous()
                q_linear_module = WQLinear_GEMM

            elif self.version  == 'GEMV':
                q_linear_module = WQLinear_GEMV
Casper's avatar
Casper committed
119
            
120
121
122
123
124
125
126
127
128
129
130
131
            q_linear = q_linear_module.from_linear(
                linear=linear_layer,
                w_bit=self.w_bit,
                group_size=self.group_size,
                init_only=False,
                scales=scales,
                zeros=zeros
            )

            linear_layer.cpu()
            q_linear.to(next(module.parameters()).device)
            set_op_by_name(module, name, q_linear)
Casper's avatar
Casper committed
132
133
134
            clear_memory()

    @torch.no_grad()
Vik Paruchuri's avatar
Vik Paruchuri committed
135
    def _search_best_scale(self, module, prev_op, layers: List[nn.Linear], inp: torch.Tensor, module2inspect=None, kwargs={}):
Casper Hansen's avatar
Casper Hansen committed
136
137
138
139
140
141
142
        if module2inspect is None:
            assert len(layers) == 1
            module2inspect = layers[0]
        
        if "use_cache" in kwargs:
            kwargs.pop("use_cache")
        
Casper's avatar
Casper committed
143
        # Put x on the right device
Casper Hansen's avatar
Casper Hansen committed
144
        inp = inp.to(next(module2inspect.parameters()).device)
Casper's avatar
Casper committed
145
146

        # [STEP 1]: Compute maximum of weight
Casper Hansen's avatar
Casper Hansen committed
147
148
        weight = torch.cat([_m.weight for _m in layers], dim=0)
        org_shape = weight.shape
Casper's avatar
Casper committed
149
        weight = weight.view(-1, self.group_size)
Casper Hansen's avatar
Casper Hansen committed
150
151
152
        w_scale = weight.abs() / weight.abs().amax(dim=1, keepdim=True)
        w_scale = w_scale.view(org_shape)
        w_max = w_scale.mean(0)
Casper's avatar
Casper committed
153
154
155
        clear_memory(weight)

        # [STEP 2]: Compute maximum of x
Casper Hansen's avatar
Casper Hansen committed
156
        x_max = inp.abs().view(-1, inp.shape[-1]).mean(0)
Casper's avatar
Casper committed
157

Casper Hansen's avatar
Casper Hansen committed
158
        # [STEP 3]: Compute output of module
Casper's avatar
Casper committed
159
        with torch.no_grad():
160
161
162
            fp16_output = module2inspect(inp, **kwargs)
            if isinstance(fp16_output, tuple):
                fp16_output = fp16_output[0]
Casper's avatar
Casper committed
163
164
165
        
        # [STEP 4]: Compute loss
        best_scales = self._compute_best_scale(
Casper Hansen's avatar
Casper Hansen committed
166
            inp, w_max, x_max, module2inspect,
167
            layers, fp16_output, kwargs
Casper's avatar
Casper committed
168
169
        )
        
Casper Hansen's avatar
Casper Hansen committed
170
        return (get_op_name(module, prev_op), tuple([get_op_name(module, m) for m in layers]), best_scales)
Casper's avatar
Casper committed
171

Vik Paruchuri's avatar
Vik Paruchuri committed
172
    def _compute_best_scale(self, x, w_max, x_max, module2inspect, linears2scale: List[nn.Linear],
173
                                  fp16_output, kwargs={}):
Casper's avatar
Casper committed
174
175
176
        """
        Compute loss and select best scales

Casper's avatar
Casper committed
177
        L(s) = || Q(W * s) (s^-1 * X) - W * X ||
Casper's avatar
Casper committed
178
179
180
181
182
183
184
185
186
187
188
        Q: weight quantization function | pseudo_quantize_tensor(W * s)
        X: inputs from calib dataset    | X
        W: original weights in FP16     | layer
        s: per channel scaling factor   | s^-1 * X
        """
        n_grid = 20
        history = []
        best_ratio = -1
        best_scales = None
        best_error = float('inf')

Casper Hansen's avatar
Casper Hansen committed
189
        org_sd = {k: v.cpu() for k, v in module2inspect.state_dict().items()}
Casper's avatar
Casper committed
190
191
192
193
194
        
        device = x.device
        x_max = x_max.view(-1).to(device)
        w_max = w_max.view(-1).to(device)
        
Casper's avatar
Casper committed
195
196
        for ratio in range(n_grid):
            # create new scales
Casper's avatar
Casper committed
197
            ratio = ratio / n_grid
198

Casper Hansen's avatar
Casper Hansen committed
199
            # NOTE: s^-1 * x is fused here, according to paper
Casper's avatar
Casper committed
200
            scales = (x_max.pow(ratio) / w_max.pow(1-ratio)).clamp(min=1e-4)
Casper's avatar
Casper committed
201
            scales = scales / (scales.max() * scales.min()).sqrt()
Casper's avatar
Casper committed
202
            scales_view = scales.view(1, -1).to(device)
203

Casper Hansen's avatar
Casper Hansen committed
204
            # Q(W * s)
Casper's avatar
Casper committed
205
            for fc in linears2scale:
Casper's avatar
Casper committed
206
207
                fc.weight.mul_(scales_view)
                fc.weight.data = self.pseudo_quantize_tensor(fc.weight.data) / scales_view
Casper's avatar
Casper committed
208

209
210
211
212
213
            # W * X
            int_w_output = module2inspect(x, **kwargs)
            if isinstance(int_w_output, tuple):
                int_w_output = int_w_output[0]
            
Casper Hansen's avatar
Casper Hansen committed
214
215
            # compute mean squared error (L2 norm)
            loss = (fp16_output - int_w_output).float().pow(2).mean().item() # NOTE: float prevents overflow
Casper's avatar
Casper committed
216
217

            history.append(loss)
Casper's avatar
Casper committed
218
            if loss < best_error:
Casper's avatar
Casper committed
219
220
                best_error = loss
                best_ratio = ratio
Casper's avatar
Casper committed
221
                best_scales = scales.clone()
Casper Hansen's avatar
Casper Hansen committed
222
            module2inspect.load_state_dict(org_sd)
Casper's avatar
Casper committed
223

Casper's avatar
Casper committed
224
225
226
227
228
229
        if best_ratio == -1:
            logging.debug(history)
            raise Exception

        assert torch.isnan(best_scales).sum() == 0, best_scales

Casper Hansen's avatar
Casper Hansen committed
230
        return best_scales.detach().cpu()
Casper's avatar
Casper committed
231

Casper Hansen's avatar
Casper Hansen committed
232
233
234
235
    @torch.no_grad()
    def _search_best_clip(self, layer, named_linears, input_feat):
        clip_list = []
        avoid_clipping = ["q_", "k_", "query", "key", "Wqkv"]
Casper's avatar
Casper committed
236

Casper Hansen's avatar
Casper Hansen committed
237
238
239
240
241
242
243
244
245
246
        for name in named_linears:
            # due to qk bmm, it is hard to clip precisely
            if any([_ in name for _ in avoid_clipping]):
                continue

            named_linears[name].cuda()
            max_val = self._compute_best_clip(named_linears[name].weight, input_feat[name])
            clip_list.append((name, max_val))

            named_linears[name].cpu()
Casper Hansen's avatar
Casper Hansen committed
247
248
        
        return clip_list
Casper Hansen's avatar
Casper Hansen committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

    @torch.no_grad()
    def _compute_best_clip(self, w: torch.Tensor, input_feat: torch.Tensor, n_grid=20, max_shrink=0.5, n_sample_token=512):
        assert w.dim() == 2
        org_w_shape = w.shape
        # w           [co, ci]      -> [co, 1, n_group, group size]
        # input_feat  [n_token, ci] -> [1, n_token, n_group, group size]
        group_size = self.group_size if self.group_size > 0 else w.shape[1]
        input_feat = input_feat.view(-1, input_feat.shape[-1])
        input_feat = input_feat.reshape(1, input_feat.shape[0], -1, group_size)
        input_feat = input_feat[:, 0::input_feat.shape[1] // n_sample_token]
        w = w.reshape(w.shape[0], 1, -1, group_size)

        oc_batch_size = 256 if w.shape[0] % 256 == 0 else 64  # prevent OOM
        assert w.shape[0] % oc_batch_size == 0
        w_all = w
        best_max_val_all = []
Casper's avatar
Casper committed
266

Casper Hansen's avatar
Casper Hansen committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
        for i_b in range(w.shape[0] // oc_batch_size):
            w = w_all[i_b * oc_batch_size: (i_b + 1) * oc_batch_size]

            org_max_val = w.abs().amax(dim=-1, keepdim=True)  # co, 1, n_group, 1

            best_max_val = org_max_val.clone()
            min_errs = torch.ones_like(org_max_val) * 1e9
            input_feat = input_feat.to(w.device)
            org_out = (input_feat * w).sum(dim=-1)  # co, n_token, n_group

            for i_s in range(int(max_shrink * n_grid)):
                max_val = org_max_val * (1 - i_s / n_grid)
                min_val = - max_val
                cur_w = torch.clamp(w, min_val, max_val)
                q_w = self.pseudo_quantize_tensor(cur_w)
                cur_out = (input_feat * q_w).sum(dim=-1)

                # co, 1, n_group, 1
                err = (cur_out - org_out).pow(2).mean(dim=1).view(min_errs.shape)
                del cur_w
                del cur_out
                cur_best_idx = err < min_errs
                min_errs[cur_best_idx] = err[cur_best_idx]
                best_max_val[cur_best_idx] = max_val[cur_best_idx]
            best_max_val_all.append(best_max_val)

        best_max_val = torch.cat(best_max_val_all, dim=0)

        clear_memory(input_feat)
        clear_memory(org_out)

        return best_max_val.squeeze(1)

    def init_quant(self, n_samples=128, seqlen=512):
        modules = self.awq_model.get_model_layers(self.model)
Casper's avatar
Casper committed
302
303
304
305
306
307
308
309
310
        samples = get_calib_dataset(
            data=self.calib_data, tokenizer=self.tokenizer, n_samples=n_samples, block_size=seqlen,
            split=self.split, text_column=self.text_column
        )
        samples = torch.cat(samples, dim=0)

        inps = []
        layer_kwargs = {}

Casper Hansen's avatar
Casper Hansen committed
311
312
        modules[0] = modules[0].cuda()
        self.awq_model.move_embed(self.model, "cuda")
Casper's avatar
Casper committed
313
314
315
316
317
318
319
320
321
        
        # get input and kwargs to layer 0
        # with_kwargs is only supported in PyTorch 2.0
        # use this Catcher hack for now
        class Catcher(nn.Module):
            def __init__(self, module):
                super().__init__()
                self.module = module

322
323
324
325
326
327
328
329
330
331
            def forward(self, *args, **kwargs):
                # assume first input to forward is hidden states
                if len(args) > 0:
                    hidden_states = args[0]
                    del args
                else:
                    first_key = list(kwargs.keys())[0]
                    hidden_states = kwargs.pop(first_key)

                inps.append(hidden_states)
Casper's avatar
Casper committed
332
333
334
335
                layer_kwargs.update(kwargs)
                raise ValueError  # early exit to break later inference

        # patch layer 0 to catch input and kwargs
Casper Hansen's avatar
Casper Hansen committed
336
        modules[0] = Catcher(modules[0])
Casper's avatar
Casper committed
337
338
339
340
341
        try:
            self.model(samples.to(next(self.model.parameters()).device))
        except ValueError:  # work with early exit
            pass
        del samples
Casper Hansen's avatar
Casper Hansen committed
342
        modules[0] = modules[0].module  # restore
Casper's avatar
Casper committed
343
344
        inps = inps[0]

Casper Hansen's avatar
Casper Hansen committed
345
346
        modules[0] = modules[0].cpu()
        self.awq_model.move_embed(self.model, "cpu")
Casper's avatar
Casper committed
347
348
        
        clear_memory()
349
        
Casper's avatar
Casper committed
350
        if layer_kwargs.get("attention_mask") is not None:
351
            layer_kwargs["attention_mask"] = layer_kwargs["attention_mask"].to("cuda")
Casper's avatar
Casper committed
352

Casper Hansen's avatar
Casper Hansen committed
353
        return modules, layer_kwargs, inps
Casper's avatar
Casper committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    
    def _get_input_feat(self, layer, named_linears):
        # firstly, get input features of all linear layers
        def cache_input_hook(m, x, y, name, feat_dict):
            x = x[0]
            x = x.detach().cpu()
            feat_dict[name].append(x)

        input_feat = defaultdict(list)
        handles = []
        for name in named_linears:
            handles.append(named_linears[name].register_forward_hook(
                functools.partial(cache_input_hook, name=name,
                                feat_dict=input_feat)))
Casper Hansen's avatar
Casper Hansen committed
368
        self.inps = self.inps.to(next(layer.parameters()).device)  # in case multi-gpu
Casper's avatar
Casper committed
369
        # get output as next layer's input
Casper Hansen's avatar
Casper Hansen committed
370
        self.inps = layer(self.inps, **self.module_kwargs)[0]
Casper's avatar
Casper committed
371
372
373
374
375
376
        for h in handles:
            h.remove()
        # now solve for scaling and clipping
        input_feat = {k: torch.cat(v, dim=0) for k, v in input_feat.items()}
        
        return input_feat