quantizer.py 15.4 KB
Newer Older
Ji Lin's avatar
Ji Lin committed
1
import torch
Casper's avatar
Casper committed
2
3
4
5
import logging
import functools
import torch.nn as nn
from tqdm import tqdm
Vik Paruchuri's avatar
Vik Paruchuri committed
6
from typing import Dict, List
Casper's avatar
Casper committed
7
8
9
from collections import defaultdict
from awq.utils.utils import clear_memory
from awq.utils.calib_data import get_calib_dataset
Casper Hansen's avatar
Casper Hansen committed
10
from awq.quantize.scale import apply_scale, apply_clip
Casper's avatar
Casper committed
11
12
13
14
15
from awq.modules.linear import WQLinear_GEMM, WQLinear_GEMV
from awq.utils.module import append_str_prefix, get_op_name, get_named_linears, set_op_by_name


class AwqQuantizer:
16
    def __init__(self, awq_model, model, tokenizer, w_bit, group_size, version, 
17
                       calib_data, split, text_column, duo_scaling, modules_to_not_convert=None) -> None:
Casper Hansen's avatar
Casper Hansen committed
18
        self.awq_model = awq_model
Casper's avatar
Casper committed
19
20
21
22
23
24
25
26
        self.model = model
        self.tokenizer = tokenizer
        self.w_bit = w_bit
        self.group_size = group_size
        self.version = version
        self.calib_data = calib_data
        self.split = split
        self.text_column = text_column
27
        self.duo_scaling = duo_scaling
28
        self.modules_to_not_convert = modules_to_not_convert if modules_to_not_convert is not None else []
Casper Hansen's avatar
Casper Hansen committed
29
        self.modules, self.module_kwargs, self.inps = self.init_quant()
30
    
Casper's avatar
Casper committed
31
32
33
34
35
36
37
38
    def pseudo_quantize_tensor(self, w: torch.Tensor, get_scale_zp=False):
        org_w_shape = w.shape
        if self.group_size > 0:
            assert org_w_shape[-1] % self.group_size == 0
            w = w.reshape(-1, self.group_size)
        assert w.dim() == 2

        # zero point quantization
Ji Lin's avatar
Ji Lin committed
39
40
        max_val = w.amax(dim=1, keepdim=True)
        min_val = w.amin(dim=1, keepdim=True)
Casper's avatar
Casper committed
41
        max_int = 2 ** self.w_bit - 1
Ji Lin's avatar
Ji Lin committed
42
43
44
        min_int = 0
        scales = (max_val - min_val).clamp(min=1e-5) / max_int
        zeros = (-torch.round(min_val / scales)).clamp_(min_int, max_int)
Casper's avatar
Casper committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58

        assert torch.isnan(scales).sum() == 0
        assert torch.isnan(w).sum() == 0

        w = (torch.clamp(torch.round(w / scales) + zeros, min_int, max_int) - zeros) * scales
        assert torch.isnan(w).sum() == 0

        w = w.reshape(org_w_shape)

        if get_scale_zp:
            return w, scales.view(w.shape[0], -1), zeros.view(w.shape[0], -1)
        else:
            return w
    
Casper's avatar
Casper committed
59
60
61
62
63
64
65
66
67
68
69
70
71
    def pseudo_dequantize_tensor(self, w: nn.Linear, scales: torch.Tensor, zeros: torch.Tensor):
        # get repeated count
        repeat_count = w.weight.data.shape[-1] // zeros.shape[-1]

        # get zeros and scales in correct shape
        zeros = zeros.repeat(1, repeat_count).reshape(w.weight.data.shape)
        scales = scales.repeat(1, repeat_count).reshape(w.weight.data.shape)

        # dequantize
        w = (w.weight.data - zeros) * scales

        return w
    
72
73
74
75
76
77
78
    def _exclude_layers_to_not_quantize(self, linear_layers):
        filtered_layers = {}
        for name, linear_layer in linear_layers.items():
            if not any(key in name for key in self.modules_to_not_convert):
                filtered_layers[name] = linear_layer
        return filtered_layers
    
Casper Hansen's avatar
Casper Hansen committed
79
80
    def quantize(self):
        for i in tqdm(range(len(self.modules)), desc="AWQ"):
Casper's avatar
Casper committed
81
82
83
84
85
86
87
88
            # Move module and inputs to correct device
            common_device = next(self.modules[i].parameters()).device
            if common_device is None or str(common_device) == "cpu":
                self.modules[i] = self.modules[i].cuda()
                common_device = next(self.modules[i].parameters()).device
            
            self.inps = self.inps.to(common_device)

Casper's avatar
Casper committed
89
90
            # [STEP 1]: Get layer, extract linear modules, extract input features
            named_linears = get_named_linears(self.modules[i])
91
92
93
94

            # Filter out the linear layers we don't want to exclude
            named_linears = self._exclude_layers_to_not_quantize(named_linears)

Casper's avatar
Casper committed
95
96
97
98
            input_feat = self._get_input_feat(self.modules[i], named_linears)
            clear_memory()

            # [STEP 2]: Compute and apply scale list
Vik Paruchuri's avatar
Vik Paruchuri committed
99
            module_config: List[Dict] = self.awq_model.get_layers_for_scaling(
Casper's avatar
Casper committed
100
101
                self.modules[i], input_feat, self.module_kwargs
            )
Casper Hansen's avatar
Casper Hansen committed
102
            scales_list = [self._search_best_scale(self.modules[i], **layer) for layer in module_config]
Casper's avatar
Casper committed
103
104
105
106
            apply_scale(self.modules[i], scales_list, input_feat_dict=input_feat)
            scales_list = append_str_prefix(scales_list, get_op_name(self.model, self.modules[i]) + ".")

            # [STEP 3]: Compute and apply clipping list
Casper Hansen's avatar
Casper Hansen committed
107
108
109
            clip_list = self._search_best_clip(self.modules[i], named_linears, input_feat)
            apply_clip(self.modules[i], clip_list)
            clip_list = append_str_prefix(clip_list, get_op_name(self.model, self.modules[i]) + ".")
Casper's avatar
Casper committed
110
111

            # [STEP 4]: Quantize weights
112
113
114
            self._apply_quant(self.modules[i], named_linears)
            clear_memory()
    
Vik Paruchuri's avatar
Vik Paruchuri committed
115
    def _apply_quant(self, module, named_linears: Dict[str, nn.Linear]):
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        for name, linear_layer in named_linears.items():
            # NOTE: small regression in perplexity if linear layer uses .cpu().float()
            linear_layer = linear_layer.cuda().half()

            linear_layer.weight.data, scales, zeros = self.pseudo_quantize_tensor(
                linear_layer.weight.data, 
                get_scale_zp=True
            )

            if self.version == 'GEMM':
                scales = scales.t().contiguous()
                zeros = zeros.t().contiguous()
                q_linear_module = WQLinear_GEMM

            elif self.version  == 'GEMV':
                q_linear_module = WQLinear_GEMV
Casper's avatar
Casper committed
132
            
133
134
135
136
137
138
139
140
141
142
143
144
            q_linear = q_linear_module.from_linear(
                linear=linear_layer,
                w_bit=self.w_bit,
                group_size=self.group_size,
                init_only=False,
                scales=scales,
                zeros=zeros
            )

            linear_layer.cpu()
            q_linear.to(next(module.parameters()).device)
            set_op_by_name(module, name, q_linear)
Casper's avatar
Casper committed
145
146
147
            clear_memory()

    @torch.no_grad()
Vik Paruchuri's avatar
Vik Paruchuri committed
148
    def _search_best_scale(self, module, prev_op, layers: List[nn.Linear], inp: torch.Tensor, module2inspect=None, kwargs={}):
Casper Hansen's avatar
Casper Hansen committed
149
150
151
152
153
154
155
        if module2inspect is None:
            assert len(layers) == 1
            module2inspect = layers[0]
        
        if "use_cache" in kwargs:
            kwargs.pop("use_cache")
        
Casper's avatar
Casper committed
156
        # Put x on the right device
Casper Hansen's avatar
Casper Hansen committed
157
        inp = inp.to(next(module2inspect.parameters()).device)
Casper's avatar
Casper committed
158
159

        # [STEP 1]: Compute maximum of weight
Casper Hansen's avatar
Casper Hansen committed
160
161
        weight = torch.cat([_m.weight for _m in layers], dim=0)
        org_shape = weight.shape
Casper's avatar
Casper committed
162
        weight = weight.view(-1, self.group_size)
Casper Hansen's avatar
Casper Hansen committed
163
164
165
        w_scale = weight.abs() / weight.abs().amax(dim=1, keepdim=True)
        w_scale = w_scale.view(org_shape)
        w_max = w_scale.mean(0)
Casper's avatar
Casper committed
166
167
168
        clear_memory(weight)

        # [STEP 2]: Compute maximum of x
Casper Hansen's avatar
Casper Hansen committed
169
        x_max = inp.abs().view(-1, inp.shape[-1]).mean(0)
Casper's avatar
Casper committed
170

Casper Hansen's avatar
Casper Hansen committed
171
        # [STEP 3]: Compute output of module
Casper's avatar
Casper committed
172
        with torch.no_grad():
173
174
175
            fp16_output = module2inspect(inp, **kwargs)
            if isinstance(fp16_output, tuple):
                fp16_output = fp16_output[0]
Casper's avatar
Casper committed
176
177
178
        
        # [STEP 4]: Compute loss
        best_scales = self._compute_best_scale(
Casper Hansen's avatar
Casper Hansen committed
179
            inp, w_max, x_max, module2inspect,
180
            layers, fp16_output, kwargs
Casper's avatar
Casper committed
181
182
        )
        
Casper Hansen's avatar
Casper Hansen committed
183
        return (get_op_name(module, prev_op), tuple([get_op_name(module, m) for m in layers]), best_scales)
Casper's avatar
Casper committed
184

Vik Paruchuri's avatar
Vik Paruchuri committed
185
    def _compute_best_scale(self, x, w_max, x_max, module2inspect, linears2scale: List[nn.Linear],
186
                                  fp16_output, kwargs={}):
Casper's avatar
Casper committed
187
188
189
        """
        Compute loss and select best scales

Casper's avatar
Casper committed
190
        L(s) = || Q(W * s) (s^-1 * X) - W * X ||
Casper's avatar
Casper committed
191
192
193
194
195
196
197
198
199
200
201
        Q: weight quantization function | pseudo_quantize_tensor(W * s)
        X: inputs from calib dataset    | X
        W: original weights in FP16     | layer
        s: per channel scaling factor   | s^-1 * X
        """
        n_grid = 20
        history = []
        best_ratio = -1
        best_scales = None
        best_error = float('inf')

Casper Hansen's avatar
Casper Hansen committed
202
        org_sd = {k: v.cpu() for k, v in module2inspect.state_dict().items()}
Casper's avatar
Casper committed
203
204
205
206
207
        
        device = x.device
        x_max = x_max.view(-1).to(device)
        w_max = w_max.view(-1).to(device)
        
Casper's avatar
Casper committed
208
209
        for ratio in range(n_grid):
            # create new scales
Casper's avatar
Casper committed
210
            ratio = ratio / n_grid
211

Casper Hansen's avatar
Casper Hansen committed
212
            # NOTE: s^-1 * x is fused here, according to paper
213
214
215
216
            if self.duo_scaling:
                scales = (x_max.pow(ratio) / w_max.pow(1-ratio)).clamp(min=1e-4)
            else:
                scales = x_max.pow(ratio).clamp(min=1e-4).view(-1)
Casper's avatar
Casper committed
217
            scales = scales / (scales.max() * scales.min()).sqrt()
Casper's avatar
Casper committed
218
            scales_view = scales.view(1, -1).to(device)
219

Casper Hansen's avatar
Casper Hansen committed
220
            # Q(W * s)
Casper's avatar
Casper committed
221
            for fc in linears2scale:
Casper's avatar
Casper committed
222
223
                fc.weight.mul_(scales_view)
                fc.weight.data = self.pseudo_quantize_tensor(fc.weight.data) / scales_view
Casper's avatar
Casper committed
224

225
226
227
228
229
            # W * X
            int_w_output = module2inspect(x, **kwargs)
            if isinstance(int_w_output, tuple):
                int_w_output = int_w_output[0]
            
Casper Hansen's avatar
Casper Hansen committed
230
231
            # compute mean squared error (L2 norm)
            loss = (fp16_output - int_w_output).float().pow(2).mean().item() # NOTE: float prevents overflow
Casper's avatar
Casper committed
232
233

            history.append(loss)
Casper's avatar
Casper committed
234
            if loss < best_error:
Casper's avatar
Casper committed
235
236
                best_error = loss
                best_ratio = ratio
Casper's avatar
Casper committed
237
                best_scales = scales.clone()
Casper Hansen's avatar
Casper Hansen committed
238
            module2inspect.load_state_dict(org_sd)
Casper's avatar
Casper committed
239

Casper's avatar
Casper committed
240
241
242
243
244
245
        if best_ratio == -1:
            logging.debug(history)
            raise Exception

        assert torch.isnan(best_scales).sum() == 0, best_scales

Casper Hansen's avatar
Casper Hansen committed
246
        return best_scales.detach().cpu()
Casper's avatar
Casper committed
247

Casper Hansen's avatar
Casper Hansen committed
248
249
250
251
    @torch.no_grad()
    def _search_best_clip(self, layer, named_linears, input_feat):
        clip_list = []
        avoid_clipping = ["q_", "k_", "query", "key", "Wqkv"]
Casper's avatar
Casper committed
252

Casper Hansen's avatar
Casper Hansen committed
253
254
255
256
257
258
259
260
261
262
        for name in named_linears:
            # due to qk bmm, it is hard to clip precisely
            if any([_ in name for _ in avoid_clipping]):
                continue

            named_linears[name].cuda()
            max_val = self._compute_best_clip(named_linears[name].weight, input_feat[name])
            clip_list.append((name, max_val))

            named_linears[name].cpu()
Casper Hansen's avatar
Casper Hansen committed
263
264
        
        return clip_list
Casper Hansen's avatar
Casper Hansen committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

    @torch.no_grad()
    def _compute_best_clip(self, w: torch.Tensor, input_feat: torch.Tensor, n_grid=20, max_shrink=0.5, n_sample_token=512):
        assert w.dim() == 2
        org_w_shape = w.shape
        # w           [co, ci]      -> [co, 1, n_group, group size]
        # input_feat  [n_token, ci] -> [1, n_token, n_group, group size]
        group_size = self.group_size if self.group_size > 0 else w.shape[1]
        input_feat = input_feat.view(-1, input_feat.shape[-1])
        input_feat = input_feat.reshape(1, input_feat.shape[0], -1, group_size)
        input_feat = input_feat[:, 0::input_feat.shape[1] // n_sample_token]
        w = w.reshape(w.shape[0], 1, -1, group_size)

        oc_batch_size = 256 if w.shape[0] % 256 == 0 else 64  # prevent OOM
        assert w.shape[0] % oc_batch_size == 0
        w_all = w
        best_max_val_all = []
Casper's avatar
Casper committed
282

Casper Hansen's avatar
Casper Hansen committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        for i_b in range(w.shape[0] // oc_batch_size):
            w = w_all[i_b * oc_batch_size: (i_b + 1) * oc_batch_size]

            org_max_val = w.abs().amax(dim=-1, keepdim=True)  # co, 1, n_group, 1

            best_max_val = org_max_val.clone()
            min_errs = torch.ones_like(org_max_val) * 1e9
            input_feat = input_feat.to(w.device)
            org_out = (input_feat * w).sum(dim=-1)  # co, n_token, n_group

            for i_s in range(int(max_shrink * n_grid)):
                max_val = org_max_val * (1 - i_s / n_grid)
                min_val = - max_val
                cur_w = torch.clamp(w, min_val, max_val)
                q_w = self.pseudo_quantize_tensor(cur_w)
                cur_out = (input_feat * q_w).sum(dim=-1)

                # co, 1, n_group, 1
                err = (cur_out - org_out).pow(2).mean(dim=1).view(min_errs.shape)
                del cur_w
                del cur_out
                cur_best_idx = err < min_errs
                min_errs[cur_best_idx] = err[cur_best_idx]
                best_max_val[cur_best_idx] = max_val[cur_best_idx]
            best_max_val_all.append(best_max_val)

        best_max_val = torch.cat(best_max_val_all, dim=0)

        clear_memory(input_feat)
        clear_memory(org_out)

        return best_max_val.squeeze(1)

    def init_quant(self, n_samples=128, seqlen=512):
        modules = self.awq_model.get_model_layers(self.model)
Casper's avatar
Casper committed
318
319
320
321
322
323
324
325
326
        samples = get_calib_dataset(
            data=self.calib_data, tokenizer=self.tokenizer, n_samples=n_samples, block_size=seqlen,
            split=self.split, text_column=self.text_column
        )
        samples = torch.cat(samples, dim=0)

        inps = []
        layer_kwargs = {}

Casper Hansen's avatar
Casper Hansen committed
327
328
        modules[0] = modules[0].cuda()
        self.awq_model.move_embed(self.model, "cuda")
Casper's avatar
Casper committed
329
330
331
332
333
334
335
336
337
        
        # get input and kwargs to layer 0
        # with_kwargs is only supported in PyTorch 2.0
        # use this Catcher hack for now
        class Catcher(nn.Module):
            def __init__(self, module):
                super().__init__()
                self.module = module

338
339
340
341
342
343
344
345
346
347
            def forward(self, *args, **kwargs):
                # assume first input to forward is hidden states
                if len(args) > 0:
                    hidden_states = args[0]
                    del args
                else:
                    first_key = list(kwargs.keys())[0]
                    hidden_states = kwargs.pop(first_key)

                inps.append(hidden_states)
Casper's avatar
Casper committed
348
349
350
351
                layer_kwargs.update(kwargs)
                raise ValueError  # early exit to break later inference

        # patch layer 0 to catch input and kwargs
Casper Hansen's avatar
Casper Hansen committed
352
        modules[0] = Catcher(modules[0])
Casper's avatar
Casper committed
353
354
355
356
        try:
            self.model(samples.to(next(self.model.parameters()).device))
        except ValueError:  # work with early exit
            pass
357
358
359
360
361
362
363
        
        # Update the layer kwargs with `prepare_inputs_for_generation` method
        # that takes care of everything to avoid unexpected errors.
        layer_kwargs = self.model.prepare_inputs_for_generation(samples, **layer_kwargs)
        # Pop the input_ids as they are not needed at all.
        layer_kwargs.pop("input_ids")

Casper's avatar
Casper committed
364
        del samples
Casper Hansen's avatar
Casper Hansen committed
365
        modules[0] = modules[0].module  # restore
Casper's avatar
Casper committed
366
367
        inps = inps[0]

Casper Hansen's avatar
Casper Hansen committed
368
369
        modules[0] = modules[0].cpu()
        self.awq_model.move_embed(self.model, "cpu")
Casper's avatar
Casper committed
370
371
        
        clear_memory()
372
        
Casper's avatar
Casper committed
373
        if layer_kwargs.get("attention_mask") is not None:
374
            layer_kwargs["attention_mask"] = layer_kwargs["attention_mask"].to("cuda")
Casper's avatar
Casper committed
375

Casper Hansen's avatar
Casper Hansen committed
376
        return modules, layer_kwargs, inps
Casper's avatar
Casper committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    
    def _get_input_feat(self, layer, named_linears):
        # firstly, get input features of all linear layers
        def cache_input_hook(m, x, y, name, feat_dict):
            x = x[0]
            x = x.detach().cpu()
            feat_dict[name].append(x)

        input_feat = defaultdict(list)
        handles = []
        for name in named_linears:
            handles.append(named_linears[name].register_forward_hook(
                functools.partial(cache_input_hook, name=name,
                                feat_dict=input_feat)))
Casper Hansen's avatar
Casper Hansen committed
391
        self.inps = self.inps.to(next(layer.parameters()).device)  # in case multi-gpu
Casper's avatar
Casper committed
392
        # get output as next layer's input
Casper Hansen's avatar
Casper Hansen committed
393
        self.inps = layer(self.inps, **self.module_kwargs)[0]
Casper's avatar
Casper committed
394
395
396
397
398
399
        for h in handles:
            h.remove()
        # now solve for scaling and clipping
        input_feat = {k: torch.cat(v, dim=0) for k, v in input_feat.items()}
        
        return input_feat