"mmdet3d/datasets/transforms/__init__.py" did not exist on "94c2d862ead8256d165625ad00eda7daea51cf01"
main.py 17.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import argparse
import os
import shutil
import time

import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models

18
19
import numpy as np

20
try:
21
    from apex.parallel import DistributedDataParallel as DDP
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
    from apex.fp16_utils import *
except ImportError:
    raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.")

model_names = sorted(name for name in models.__dict__
                     if name.islower() and not name.startswith("__")
                     and callable(models.__dict__[name]))

parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR',
                    help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
                    choices=model_names,
                    help='model architecture: ' +
                    ' | '.join(model_names) +
                    ' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
                    help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
45
                    metavar='N', help='mini-batch size per process (default: 256)')
46
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
47
                    metavar='LR', help='Initial learning rate.  Will be scaled by <global batch size>/256: args.lr = args.lr*float(args.batch_size*args.world_size)/256.  A warmup schedule will also be applied over the first 5 epochs.')
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                    help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
                    metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
                    metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                    help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
                    help='use pre-trained model')

parser.add_argument('--fp16', action='store_true',
                    help='Run model fp16 mode.')
63
64
parser.add_argument('--static-loss-scale', type=float, default=1,
                    help='Static loss scale, positive power of 2 values can improve fp16 convergence.')
65
66
parser.add_argument('--prof', dest='prof', action='store_true',
                    help='Only run 10 iterations for profiling.')
67
parser.add_argument('--deterministic', action='store_true')
68

69
parser.add_argument("--local_rank", default=0, type=int)
jjsjann123's avatar
jjsjann123 committed
70
71
parser.add_argument('--sync_bn', action='store_true',
                    help='enabling apex sync BN.')
72
73
74

cudnn.benchmark = True

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
def fast_collate(batch):
    imgs = [img[0] for img in batch]
    targets = torch.tensor([target[1] for target in batch], dtype=torch.int64)
    w = imgs[0].size[0]
    h = imgs[0].size[1]
    tensor = torch.zeros( (len(imgs), 3, h, w), dtype=torch.uint8 )
    for i, img in enumerate(imgs):
        nump_array = np.asarray(img, dtype=np.uint8)
        tens = torch.from_numpy(nump_array)
        if(nump_array.ndim < 3):
            nump_array = np.expand_dims(nump_array, axis=-1)
        nump_array = np.rollaxis(nump_array, 2)

        tensor[i] += torch.from_numpy(nump_array)
        
    return tensor, targets

92
93
best_prec1 = 0
args = parser.parse_args()
mcarilli's avatar
mcarilli committed
94

95
96
97
98
99
if args.deterministic:
    cudnn.benchmark = False
    cudnn.deterministic = True
    torch.manual_seed(args.local_rank)

100
101
102
def main():
    global best_prec1, args

103
104
105
106
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1

107
    args.gpu = 0
108
    args.world_size = 1
109

110
    if args.distributed:
111
        args.gpu = args.local_rank % torch.cuda.device_count()
112
        torch.cuda.set_device(args.gpu)
113
114
115
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
        args.world_size = torch.distributed.get_world_size()
116
117
118
119

    if args.fp16:
        assert torch.backends.cudnn.enabled, "fp16 mode requires cudnn backend to be enabled."

Michael Carilli's avatar
Michael Carilli committed
120
121
    if args.static_loss_scale != 1.0:
        if not args.fp16:
122
123
124
            print("Warning:  static_loss_scale != 1.0 is only necessary with --fp16. "
                  "Resetting static_loss_scale to 1.0")
            args.static_loss_scale = 1.0
Michael Carilli's avatar
Michael Carilli committed
125

126
127
128
129
130
131
132
133
    # create model
    if args.pretrained:
        print("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch]()

jjsjann123's avatar
jjsjann123 committed
134
135
136
137
138
    if args.sync_bn:
        import apex
        print("using apex synced BN")
        model = apex.parallel.convert_syncbn_model(model)

139
140
141
142
    model = model.cuda()
    if args.fp16:
        model = network_to_half(model)
    if args.distributed:
mcarilli's avatar
mcarilli committed
143
144
145
146
147
        # By default, apex.parallel.DistributedDataParallel overlaps communication with 
        # computation in the backward pass.
        # model = DDP(model)
        # delay_allreduce delays all communication to the end of the backward pass.
        model = DDP(model, delay_allreduce=True)
148
149
150
151
152
153
154
155
156
157

    global model_params, master_params
    if args.fp16:
        model_params, master_params = prep_param_lists(model)
    else:
        master_params = list(model.parameters())

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()

158
159
    # Scale learning rate based on global batch size
    args.lr = args.lr*float(args.batch_size*args.world_size)/256. 
160
161
162
163
    optimizer = torch.optim.SGD(master_params, args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

164
    # Optionally resume from a checkpoint
165
    if args.resume:
166
167
168
169
170
171
172
173
        # Use a local scope to avoid dangling references
        def resume():
            if os.path.isfile(args.resume):
                print("=> loading checkpoint '{}'".format(args.resume))
                checkpoint = torch.load(args.resume, map_location = lambda storage, loc: storage.cuda(args.gpu))
                args.start_epoch = checkpoint['epoch']
                best_prec1 = checkpoint['best_prec1']
                model.load_state_dict(checkpoint['state_dict'])
174
175
176
177
                if args.fp16:
                    saved_master_params = checkpoint['master_params']
                    for master, saved in zip(master_params, saved_master_params):
                        master.data.copy_(saved.data) 
178
179
180
181
182
183
                optimizer.load_state_dict(checkpoint['optimizer'])
                print("=> loaded checkpoint '{}' (epoch {})"
                      .format(args.resume, checkpoint['epoch']))
            else:
                print("=> no checkpoint found at '{}'".format(args.resume))
        resume()
184
185
186
187
188
189
190

    # Data loading code
    traindir = os.path.join(args.data, 'train')
    valdir = os.path.join(args.data, 'val')

    if(args.arch == "inception_v3"):
        crop_size = 299
191
        val_size = 320 # I chose this value arbitrarily, we can adjust.
192
193
194
195
196
197
198
199
200
    else:
        crop_size = 224
        val_size = 256

    train_dataset = datasets.ImageFolder(
        traindir,
        transforms.Compose([
            transforms.RandomResizedCrop(crop_size),
            transforms.RandomHorizontalFlip(),
Michael Carilli's avatar
Michael Carilli committed
201
202
            # transforms.ToTensor(), Too slow
            # normalize,
203
        ]))
204
205
206
207
    val_dataset = datasets.ImageFolder(valdir, transforms.Compose([
            transforms.Resize(val_size),
            transforms.CenterCrop(crop_size),
        ]))
208

209
210
    train_sampler = None
    val_sampler = None
211
212
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
213
        val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
214
215
216

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
217
        num_workers=args.workers, pin_memory=True, sampler=train_sampler, collate_fn=fast_collate)
218
219

    val_loader = torch.utils.data.DataLoader(
220
        val_dataset,
221
        batch_size=args.batch_size, shuffle=False,
222
        num_workers=args.workers, pin_memory=True,
223
        sampler=val_sampler,
224
        collate_fn=fast_collate)
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

    if args.evaluate:
        validate(val_loader, model, criterion)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch)
        if args.prof:
            break
        # evaluate on validation set
        prec1 = validate(val_loader, model, criterion)

        # remember best prec@1 and save checkpoint
242
        if args.local_rank == 0:
243
244
            is_best = prec1 > best_prec1
            best_prec1 = max(prec1, best_prec1)
245
246
247
248
249
250
251
252
253
254
255
256
257
            # Use local scope to avoid dangling references
            def create_and_save_checkpoint():
                checkpoint_dict = {
                    'epoch': epoch + 1,
                    'arch': args.arch,
                    'state_dict': model.state_dict(),
                    'best_prec1': best_prec1,
                    'optimizer' : optimizer.state_dict(),
                }
                if args.fp16:
                    checkpoint_dict['master_params'] = master_params
                save_checkpoint(checkpoint_dict, is_best)
            create_and_save_checkpoint()
258
259
260
261
262

class data_prefetcher():
    def __init__(self, loader):
        self.loader = iter(loader)
        self.stream = torch.cuda.Stream()
263
264
        self.mean = torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]).cuda().view(1,3,1,1)
        self.std = torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]).cuda().view(1,3,1,1)
265
266
267
        if args.fp16:
            self.mean = self.mean.half()
            self.std = self.std.half()
268
269
270
271
272
273
274
275
276
277
        self.preload()

    def preload(self):
        try:
            self.next_input, self.next_target = next(self.loader)
        except StopIteration:
            self.next_input = None
            self.next_target = None
            return
        with torch.cuda.stream(self.stream):
278
279
            self.next_input = self.next_input.cuda(non_blocking=True)
            self.next_target = self.next_target.cuda(non_blocking=True)
280
281
282
283
284
285
            if args.fp16:
                self.next_input = self.next_input.half()
            else:
                self.next_input = self.next_input.float()
            self.next_input = self.next_input.sub_(self.mean).div_(self.std)
            
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    def next(self):
        torch.cuda.current_stream().wait_stream(self.stream)
        input = self.next_input
        target = self.next_target
        self.preload()
        return input, target


def train(train_loader, model, criterion, optimizer, epoch):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to train mode
    model.train()
    end = time.time()

    prefetcher = data_prefetcher(train_loader)
    input, target = prefetcher.next()
    i = -1
    while input is not None:
        i += 1

311
312
        adjust_learning_rate(optimizer, epoch, i, len(train_loader))

313
314
315
316
317
318
319
        if args.prof:
            if i > 10:
                break
        # measure data loading time
        data_time.update(time.time() - end)

        # compute output
ptrblck's avatar
ptrblck committed
320
321
        output = model(input)
        loss = criterion(output, target)
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output.data, target, topk=(1, 5))

        if args.distributed:
            reduced_loss = reduce_tensor(loss.data)
            prec1 = reduce_tensor(prec1)
            prec5 = reduce_tensor(prec5)
        else:
            reduced_loss = loss.data

        losses.update(to_python_float(reduced_loss), input.size(0))
        top1.update(to_python_float(prec1), input.size(0))
        top5.update(to_python_float(prec5), input.size(0))

337
        loss = loss*args.static_loss_scale
338
339
340
341
342
        # compute gradient and do SGD step
        if args.fp16:
            model.zero_grad()
            loss.backward()
            model_grads_to_master_grads(model_params, master_params)
343
            if args.static_loss_scale != 1:
344
                for param in master_params:
345
                    param.grad.data = param.grad.data/args.static_loss_scale
346
347
348
349
350
351
352
            optimizer.step()
            master_params_to_model_params(model_params, master_params)
        else:
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

353
        torch.cuda.synchronize()
354
355
356
357
358
359
        # measure elapsed time
        batch_time.update(time.time() - end)

        end = time.time()
        input, target = prefetcher.next()

360
        if args.local_rank == 0 and i % args.print_freq == 0 and i > 1:
361
362
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
363
                  'Speed {3:.3f} ({4:.3f})\t'
364
365
366
367
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
368
369
370
371
                   epoch, i, len(train_loader),
                   args.world_size * args.batch_size / batch_time.val,
                   args.world_size * args.batch_size / batch_time.avg,
                   batch_time=batch_time,
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
                   data_time=data_time, loss=losses, top1=top1, top5=top5))


def validate(val_loader, model, criterion):
    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to evaluate mode
    model.eval()

    end = time.time()

    prefetcher = data_prefetcher(val_loader)
    input, target = prefetcher.next()
    i = -1
    while input is not None:
        i += 1

        # compute output
        with torch.no_grad():
ptrblck's avatar
ptrblck committed
394
395
            output = model(input)
            loss = criterion(output, target)
396
397
398
399

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output.data, target, topk=(1, 5))

400
401
402
403
404
405
        if args.distributed:
            reduced_loss = reduce_tensor(loss.data)
            prec1 = reduce_tensor(prec1)
            prec5 = reduce_tensor(prec5)
        else:
            reduced_loss = loss.data
406
407
408
409
410
411
412
413
414

        losses.update(to_python_float(reduced_loss), input.size(0))
        top1.update(to_python_float(prec1), input.size(0))
        top5.update(to_python_float(prec5), input.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

415
        if args.local_rank == 0 and i % args.print_freq == 0:
416
417
            print('Test: [{0}/{1}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
418
                  'Speed {2:.3f} ({3:.3f})\t'
419
420
421
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
422
423
424
425
                   i, len(val_loader),
                   args.world_size * args.batch_size / batch_time.val,
                   args.world_size * args.batch_size / batch_time.avg,
                   batch_time=batch_time, loss=losses,
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
                   top1=top1, top5=top5))

        input, target = prefetcher.next()

    print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
          .format(top1=top1, top5=top5))

    return top1.avg


def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, 'model_best.pth.tar')


class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


460
461
462
463
464
465
466
467
468
def adjust_learning_rate(optimizer, epoch, step, len_epoch):
    """LR schedule that should yield 76% converged accuracy with batch size 256"""
    factor = epoch // 30

    if epoch >= 80:
        factor = factor + 1

    lr = args.lr*(0.1**factor)

Michael Carilli's avatar
Michael Carilli committed
469
470
471
    """Warmup"""
    if epoch < 5:
        lr = lr*float(1 + step + epoch*len_epoch)/(5.*len_epoch)
472

Michael Carilli's avatar
Michael Carilli committed
473
474
    # if(args.local_rank == 0):
    #     print("epoch = {}, step = {}, lr = {}".format(epoch, step, lr))
475

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr


def accuracy(output, target, topk=(1,)):
    """Computes the precision@k for the specified values of k"""
    maxk = max(topk)
    batch_size = target.size(0)

    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    correct = pred.eq(target.view(1, -1).expand_as(pred))

    res = []
    for k in topk:
        correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
        res.append(correct_k.mul_(100.0 / batch_size))
    return res


def reduce_tensor(tensor):
    rt = tensor.clone()
    dist.all_reduce(rt, op=dist.reduce_op.SUM)
    rt /= args.world_size
    return rt

if __name__ == '__main__':
    main()