main.py 16.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import argparse
import os
import shutil
import time

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models

19
20
import numpy as np

21
try:
22
    from apex.parallel import DistributedDataParallel as DDP
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    from apex.fp16_utils import *
except ImportError:
    raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.")

model_names = sorted(name for name in models.__dict__
                     if name.islower() and not name.startswith("__")
                     and callable(models.__dict__[name]))

parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR',
                    help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
                    choices=model_names,
                    help='model architecture: ' +
                    ' | '.join(model_names) +
                    ' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
                    help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
46
                    metavar='N', help='mini-batch size per process (default: 256)')
47
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
48
                    metavar='LR', help='Initial learning rate.  Will be scaled by <global batch size>/256: args.lr = args.lr*float(args.batch_size*args.world_size)/256.  A warmup schedule will also be applied over the first 5 epochs.')
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                    help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
                    metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
                    metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                    help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
                    help='use pre-trained model')

parser.add_argument('--fp16', action='store_true',
                    help='Run model fp16 mode.')
64
65
parser.add_argument('--static-loss-scale', type=float, default=1,
                    help='Static loss scale, positive power of 2 values can improve fp16 convergence.')
66
67
68
parser.add_argument('--prof', dest='prof', action='store_true',
                    help='Only run 10 iterations for profiling.')

69
parser.add_argument("--local_rank", default=0, type=int)
70
71
72

cudnn.benchmark = True

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
def fast_collate(batch):
    imgs = [img[0] for img in batch]
    targets = torch.tensor([target[1] for target in batch], dtype=torch.int64)
    w = imgs[0].size[0]
    h = imgs[0].size[1]
    tensor = torch.zeros( (len(imgs), 3, h, w), dtype=torch.uint8 )
    for i, img in enumerate(imgs):
        nump_array = np.asarray(img, dtype=np.uint8)
        tens = torch.from_numpy(nump_array)
        if(nump_array.ndim < 3):
            nump_array = np.expand_dims(nump_array, axis=-1)
        nump_array = np.rollaxis(nump_array, 2)

        tensor[i] += torch.from_numpy(nump_array)
        
    return tensor, targets

90
91
92
93
94
best_prec1 = 0
args = parser.parse_args()
def main():
    global best_prec1, args

95
96
97
98
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1

99
    args.gpu = 0
100
    args.world_size = 1
101

102
    if args.distributed:
103
        args.gpu = args.local_rank % torch.cuda.device_count()
104
        torch.cuda.set_device(args.gpu)
105
106
107
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
        args.world_size = torch.distributed.get_world_size()
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

    if args.fp16:
        assert torch.backends.cudnn.enabled, "fp16 mode requires cudnn backend to be enabled."

    # create model
    if args.pretrained:
        print("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch]()

    model = model.cuda()
    if args.fp16:
        model = network_to_half(model)
    if args.distributed:
124
        # shared param turns off bucketing in DDP, for lower latency runs this can improve perf
125
        model = DDP(model)
126
127
128
129
130
131
132
133
134
135

    global model_params, master_params
    if args.fp16:
        model_params, master_params = prep_param_lists(model)
    else:
        master_params = list(model.parameters())

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()

136
137
    # Scale learning rate based on global batch size
    args.lr = args.lr*float(args.batch_size*args.world_size)/256. 
138
139
140
141
    optimizer = torch.optim.SGD(master_params, args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

142
    # Optionally resume from a checkpoint
143
    if args.resume:
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        # Use a local scope to avoid dangling references
        def resume():
            if os.path.isfile(args.resume):
                print("=> loading checkpoint '{}'".format(args.resume))
                checkpoint = torch.load(args.resume, map_location = lambda storage, loc: storage.cuda(args.gpu))
                args.start_epoch = checkpoint['epoch']
                best_prec1 = checkpoint['best_prec1']
                model.load_state_dict(checkpoint['state_dict'])
                saved_master_params = checkpoint['master_params']
                for master, saved in zip(master_params, saved_master_params):
                    master.data.copy_(saved.data) 
                optimizer.load_state_dict(checkpoint['optimizer'])
                print("=> loaded checkpoint '{}' (epoch {})"
                      .format(args.resume, checkpoint['epoch']))
            else:
                print("=> no checkpoint found at '{}'".format(args.resume))
        resume()
161
162
163
164
165
166
167

    # Data loading code
    traindir = os.path.join(args.data, 'train')
    valdir = os.path.join(args.data, 'val')

    if(args.arch == "inception_v3"):
        crop_size = 299
168
        val_size = 320 # I chose this value arbitrarily, we can adjust.
169
170
171
172
173
174
175
176
177
    else:
        crop_size = 224
        val_size = 256

    train_dataset = datasets.ImageFolder(
        traindir,
        transforms.Compose([
            transforms.RandomResizedCrop(crop_size),
            transforms.RandomHorizontalFlip(),
Michael Carilli's avatar
Michael Carilli committed
178
179
            # transforms.ToTensor(), Too slow
            # normalize,
180
        ]))
181
182
183
184
    val_dataset = datasets.ImageFolder(valdir, transforms.Compose([
            transforms.Resize(val_size),
            transforms.CenterCrop(crop_size),
        ]))
185

186
187
    train_sampler = None
    val_sampler = None
188
189
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
190
        val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
191
192
193

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
194
        num_workers=args.workers, pin_memory=True, sampler=train_sampler, collate_fn=fast_collate)
195
196

    val_loader = torch.utils.data.DataLoader(
197
        val_dataset,
198
        batch_size=args.batch_size, shuffle=False,
199
        num_workers=args.workers, pin_memory=True,
200
        sampler=val_sampler,
201
        collate_fn=fast_collate)
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

    if args.evaluate:
        validate(val_loader, model, criterion)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch)
        if args.prof:
            break
        # evaluate on validation set
        prec1 = validate(val_loader, model, criterion)

        # remember best prec@1 and save checkpoint
219
        if args.local_rank == 0:
220
221
222
223
224
225
226
227
            is_best = prec1 > best_prec1
            best_prec1 = max(prec1, best_prec1)
            save_checkpoint({
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': model.state_dict(),
                'best_prec1': best_prec1,
                'optimizer' : optimizer.state_dict(),
228
                'master_params': master_params, 
229
230
231
232
233
234
            }, is_best)

class data_prefetcher():
    def __init__(self, loader):
        self.loader = iter(loader)
        self.stream = torch.cuda.Stream()
235
236
        self.mean = torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]).cuda().view(1,3,1,1)
        self.std = torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]).cuda().view(1,3,1,1)
237
238
239
        if args.fp16:
            self.mean = self.mean.half()
            self.std = self.std.half()
240
241
242
243
244
245
246
247
248
249
250
251
        self.preload()

    def preload(self):
        try:
            self.next_input, self.next_target = next(self.loader)
        except StopIteration:
            self.next_input = None
            self.next_target = None
            return
        with torch.cuda.stream(self.stream):
            self.next_input = self.next_input.cuda(async=True)
            self.next_target = self.next_target.cuda(async=True)
252
253
254
255
256
257
            if args.fp16:
                self.next_input = self.next_input.half()
            else:
                self.next_input = self.next_input.float()
            self.next_input = self.next_input.sub_(self.mean).div_(self.std)
            
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    def next(self):
        torch.cuda.current_stream().wait_stream(self.stream)
        input = self.next_input
        target = self.next_target
        self.preload()
        return input, target


def train(train_loader, model, criterion, optimizer, epoch):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to train mode
    model.train()
    end = time.time()

    prefetcher = data_prefetcher(train_loader)
    input, target = prefetcher.next()
    i = -1
    while input is not None:
        i += 1

283
284
        adjust_learning_rate(optimizer, epoch, i, len(train_loader))

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        if args.prof:
            if i > 10:
                break
        # measure data loading time
        data_time.update(time.time() - end)

        input_var = Variable(input)
        target_var = Variable(target)

        # compute output
        output = model(input_var)
        loss = criterion(output, target_var)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output.data, target, topk=(1, 5))

        if args.distributed:
            reduced_loss = reduce_tensor(loss.data)
            prec1 = reduce_tensor(prec1)
            prec5 = reduce_tensor(prec5)
        else:
            reduced_loss = loss.data

        losses.update(to_python_float(reduced_loss), input.size(0))
        top1.update(to_python_float(prec1), input.size(0))
        top5.update(to_python_float(prec5), input.size(0))

312
        loss = loss*args.static_loss_scale
313
314
315
316
317
        # compute gradient and do SGD step
        if args.fp16:
            model.zero_grad()
            loss.backward()
            model_grads_to_master_grads(model_params, master_params)
318
            if args.static_loss_scale != 1:
319
                for param in master_params:
320
                    param.grad.data = param.grad.data/args.static_loss_scale
321
322
323
324
325
326
327
            optimizer.step()
            master_params_to_model_params(model_params, master_params)
        else:
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

328
        torch.cuda.synchronize()
329
330
331
332
333
334
        # measure elapsed time
        batch_time.update(time.time() - end)

        end = time.time()
        input, target = prefetcher.next()

335
        if args.local_rank == 0 and i % args.print_freq == 0 and i > 1:
336
337
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
338
                  'Speed {3:.3f} ({4:.3f})\t'
339
340
341
342
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
343
344
345
346
                   epoch, i, len(train_loader),
                   args.world_size * args.batch_size / batch_time.val,
                   args.world_size * args.batch_size / batch_time.avg,
                   batch_time=batch_time,
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
                   data_time=data_time, loss=losses, top1=top1, top5=top5))


def validate(val_loader, model, criterion):
    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to evaluate mode
    model.eval()

    end = time.time()

    prefetcher = data_prefetcher(val_loader)
    input, target = prefetcher.next()
    i = -1
    while input is not None:
        i += 1

        target = target.cuda(async=True)
        input_var = Variable(input)
        target_var = Variable(target)

        # compute output
        with torch.no_grad():
            output = model(input_var)
            loss = criterion(output, target_var)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output.data, target, topk=(1, 5))

379
380
381
382
383
384
        if args.distributed:
            reduced_loss = reduce_tensor(loss.data)
            prec1 = reduce_tensor(prec1)
            prec5 = reduce_tensor(prec5)
        else:
            reduced_loss = loss.data
385
386
387
388
389
390
391
392
393

        losses.update(to_python_float(reduced_loss), input.size(0))
        top1.update(to_python_float(prec1), input.size(0))
        top5.update(to_python_float(prec5), input.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

394
        if args.local_rank == 0 and i % args.print_freq == 0:
395
396
            print('Test: [{0}/{1}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
397
                  'Speed {2:.3f} ({3:.3f})\t'
398
399
400
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
401
402
403
404
                   i, len(val_loader),
                   args.world_size * args.batch_size / batch_time.val,
                   args.world_size * args.batch_size / batch_time.avg,
                   batch_time=batch_time, loss=losses,
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
                   top1=top1, top5=top5))

        input, target = prefetcher.next()

    print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
          .format(top1=top1, top5=top5))

    return top1.avg


def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, 'model_best.pth.tar')


class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


439
440
441
442
443
444
445
446
447
def adjust_learning_rate(optimizer, epoch, step, len_epoch):
    """LR schedule that should yield 76% converged accuracy with batch size 256"""
    factor = epoch // 30

    if epoch >= 80:
        factor = factor + 1

    lr = args.lr*(0.1**factor)

Michael Carilli's avatar
Michael Carilli committed
448
449
450
    """Warmup"""
    if epoch < 5:
        lr = lr*float(1 + step + epoch*len_epoch)/(5.*len_epoch)
451

Michael Carilli's avatar
Michael Carilli committed
452
453
    # if(args.local_rank == 0):
    #     print("epoch = {}, step = {}, lr = {}".format(epoch, step, lr))
454

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr


def accuracy(output, target, topk=(1,)):
    """Computes the precision@k for the specified values of k"""
    maxk = max(topk)
    batch_size = target.size(0)

    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    correct = pred.eq(target.view(1, -1).expand_as(pred))

    res = []
    for k in topk:
        correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
        res.append(correct_k.mul_(100.0 / batch_size))
    return res


def reduce_tensor(tensor):
    rt = tensor.clone()
    dist.all_reduce(rt, op=dist.reduce_op.SUM)
    rt /= args.world_size
    return rt

if __name__ == '__main__':
    main()