main.py 17.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import argparse
import os
import shutil
import time

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models

19
20
import numpy as np

21
try:
22
    from apex.parallel import DistributedDataParallel as DDP
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    from apex.fp16_utils import *
except ImportError:
    raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.")

model_names = sorted(name for name in models.__dict__
                     if name.islower() and not name.startswith("__")
                     and callable(models.__dict__[name]))

parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR',
                    help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
                    choices=model_names,
                    help='model architecture: ' +
                    ' | '.join(model_names) +
                    ' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
                    help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
46
                    metavar='N', help='mini-batch size per process (default: 256)')
47
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
48
                    metavar='LR', help='Initial learning rate.  Will be scaled by <global batch size>/256: args.lr = args.lr*float(args.batch_size*args.world_size)/256.  A warmup schedule will also be applied over the first 5 epochs.')
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                    help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
                    metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
                    metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                    help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
                    help='use pre-trained model')

parser.add_argument('--fp16', action='store_true',
                    help='Run model fp16 mode.')
64
65
parser.add_argument('--static-loss-scale', type=float, default=1,
                    help='Static loss scale, positive power of 2 values can improve fp16 convergence.')
66
67
parser.add_argument('--prof', dest='prof', action='store_true',
                    help='Only run 10 iterations for profiling.')
68
parser.add_argument('--deterministic', action='store_true')
69

70
parser.add_argument("--local_rank", default=0, type=int)
jjsjann123's avatar
jjsjann123 committed
71
72
parser.add_argument('--sync_bn', action='store_true',
                    help='enabling apex sync BN.')
73
74
75

cudnn.benchmark = True

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
def fast_collate(batch):
    imgs = [img[0] for img in batch]
    targets = torch.tensor([target[1] for target in batch], dtype=torch.int64)
    w = imgs[0].size[0]
    h = imgs[0].size[1]
    tensor = torch.zeros( (len(imgs), 3, h, w), dtype=torch.uint8 )
    for i, img in enumerate(imgs):
        nump_array = np.asarray(img, dtype=np.uint8)
        tens = torch.from_numpy(nump_array)
        if(nump_array.ndim < 3):
            nump_array = np.expand_dims(nump_array, axis=-1)
        nump_array = np.rollaxis(nump_array, 2)

        tensor[i] += torch.from_numpy(nump_array)
        
    return tensor, targets

93
94
best_prec1 = 0
args = parser.parse_args()
mcarilli's avatar
mcarilli committed
95

96
97
98
99
100
if args.deterministic:
    cudnn.benchmark = False
    cudnn.deterministic = True
    torch.manual_seed(args.local_rank)

101
102
103
def main():
    global best_prec1, args

104
105
106
107
    args.distributed = False
    if 'WORLD_SIZE' in os.environ:
        args.distributed = int(os.environ['WORLD_SIZE']) > 1

108
    args.gpu = 0
109
    args.world_size = 1
110

111
    if args.distributed:
112
        args.gpu = args.local_rank % torch.cuda.device_count()
113
        torch.cuda.set_device(args.gpu)
114
115
116
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
        args.world_size = torch.distributed.get_world_size()
117
118
119
120
121
122
123
124
125
126
127
128

    if args.fp16:
        assert torch.backends.cudnn.enabled, "fp16 mode requires cudnn backend to be enabled."

    # create model
    if args.pretrained:
        print("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch]()

jjsjann123's avatar
jjsjann123 committed
129
130
131
132
133
    if args.sync_bn:
        import apex
        print("using apex synced BN")
        model = apex.parallel.convert_syncbn_model(model)

134
135
136
137
    model = model.cuda()
    if args.fp16:
        model = network_to_half(model)
    if args.distributed:
mcarilli's avatar
mcarilli committed
138
139
140
141
142
        # By default, apex.parallel.DistributedDataParallel overlaps communication with 
        # computation in the backward pass.
        # model = DDP(model)
        # delay_allreduce delays all communication to the end of the backward pass.
        model = DDP(model, delay_allreduce=True)
143
144
145
146
147
148
149
150
151
152

    global model_params, master_params
    if args.fp16:
        model_params, master_params = prep_param_lists(model)
    else:
        master_params = list(model.parameters())

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda()

153
154
    # Scale learning rate based on global batch size
    args.lr = args.lr*float(args.batch_size*args.world_size)/256. 
155
156
157
158
    optimizer = torch.optim.SGD(master_params, args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

159
    # Optionally resume from a checkpoint
160
    if args.resume:
161
162
163
164
165
166
167
168
        # Use a local scope to avoid dangling references
        def resume():
            if os.path.isfile(args.resume):
                print("=> loading checkpoint '{}'".format(args.resume))
                checkpoint = torch.load(args.resume, map_location = lambda storage, loc: storage.cuda(args.gpu))
                args.start_epoch = checkpoint['epoch']
                best_prec1 = checkpoint['best_prec1']
                model.load_state_dict(checkpoint['state_dict'])
169
170
171
172
                if args.fp16:
                    saved_master_params = checkpoint['master_params']
                    for master, saved in zip(master_params, saved_master_params):
                        master.data.copy_(saved.data) 
173
174
175
176
177
178
                optimizer.load_state_dict(checkpoint['optimizer'])
                print("=> loaded checkpoint '{}' (epoch {})"
                      .format(args.resume, checkpoint['epoch']))
            else:
                print("=> no checkpoint found at '{}'".format(args.resume))
        resume()
179
180
181
182
183
184
185

    # Data loading code
    traindir = os.path.join(args.data, 'train')
    valdir = os.path.join(args.data, 'val')

    if(args.arch == "inception_v3"):
        crop_size = 299
186
        val_size = 320 # I chose this value arbitrarily, we can adjust.
187
188
189
190
191
192
193
194
195
    else:
        crop_size = 224
        val_size = 256

    train_dataset = datasets.ImageFolder(
        traindir,
        transforms.Compose([
            transforms.RandomResizedCrop(crop_size),
            transforms.RandomHorizontalFlip(),
Michael Carilli's avatar
Michael Carilli committed
196
197
            # transforms.ToTensor(), Too slow
            # normalize,
198
        ]))
199
200
201
202
    val_dataset = datasets.ImageFolder(valdir, transforms.Compose([
            transforms.Resize(val_size),
            transforms.CenterCrop(crop_size),
        ]))
203

204
205
    train_sampler = None
    val_sampler = None
206
207
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
208
        val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
209
210
211

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
212
        num_workers=args.workers, pin_memory=True, sampler=train_sampler, collate_fn=fast_collate)
213
214

    val_loader = torch.utils.data.DataLoader(
215
        val_dataset,
216
        batch_size=args.batch_size, shuffle=False,
217
        num_workers=args.workers, pin_memory=True,
218
        sampler=val_sampler,
219
        collate_fn=fast_collate)
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

    if args.evaluate:
        validate(val_loader, model, criterion)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch)
        if args.prof:
            break
        # evaluate on validation set
        prec1 = validate(val_loader, model, criterion)

        # remember best prec@1 and save checkpoint
237
        if args.local_rank == 0:
238
239
            is_best = prec1 > best_prec1
            best_prec1 = max(prec1, best_prec1)
240
241
242
243
244
245
246
247
248
249
250
251
252
            # Use local scope to avoid dangling references
            def create_and_save_checkpoint():
                checkpoint_dict = {
                    'epoch': epoch + 1,
                    'arch': args.arch,
                    'state_dict': model.state_dict(),
                    'best_prec1': best_prec1,
                    'optimizer' : optimizer.state_dict(),
                }
                if args.fp16:
                    checkpoint_dict['master_params'] = master_params
                save_checkpoint(checkpoint_dict, is_best)
            create_and_save_checkpoint()
253
254
255
256
257

class data_prefetcher():
    def __init__(self, loader):
        self.loader = iter(loader)
        self.stream = torch.cuda.Stream()
258
259
        self.mean = torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]).cuda().view(1,3,1,1)
        self.std = torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]).cuda().view(1,3,1,1)
260
261
262
        if args.fp16:
            self.mean = self.mean.half()
            self.std = self.std.half()
263
264
265
266
267
268
269
270
271
272
273
274
        self.preload()

    def preload(self):
        try:
            self.next_input, self.next_target = next(self.loader)
        except StopIteration:
            self.next_input = None
            self.next_target = None
            return
        with torch.cuda.stream(self.stream):
            self.next_input = self.next_input.cuda(async=True)
            self.next_target = self.next_target.cuda(async=True)
275
276
277
278
279
280
            if args.fp16:
                self.next_input = self.next_input.half()
            else:
                self.next_input = self.next_input.float()
            self.next_input = self.next_input.sub_(self.mean).div_(self.std)
            
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    def next(self):
        torch.cuda.current_stream().wait_stream(self.stream)
        input = self.next_input
        target = self.next_target
        self.preload()
        return input, target


def train(train_loader, model, criterion, optimizer, epoch):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to train mode
    model.train()
    end = time.time()

    prefetcher = data_prefetcher(train_loader)
    input, target = prefetcher.next()
    i = -1
    while input is not None:
        i += 1

306
307
        adjust_learning_rate(optimizer, epoch, i, len(train_loader))

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
        if args.prof:
            if i > 10:
                break
        # measure data loading time
        data_time.update(time.time() - end)

        input_var = Variable(input)
        target_var = Variable(target)

        # compute output
        output = model(input_var)
        loss = criterion(output, target_var)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output.data, target, topk=(1, 5))

        if args.distributed:
            reduced_loss = reduce_tensor(loss.data)
            prec1 = reduce_tensor(prec1)
            prec5 = reduce_tensor(prec5)
        else:
            reduced_loss = loss.data

        losses.update(to_python_float(reduced_loss), input.size(0))
        top1.update(to_python_float(prec1), input.size(0))
        top5.update(to_python_float(prec5), input.size(0))

335
        loss = loss*args.static_loss_scale
336
337
338
339
340
        # compute gradient and do SGD step
        if args.fp16:
            model.zero_grad()
            loss.backward()
            model_grads_to_master_grads(model_params, master_params)
341
            if args.static_loss_scale != 1:
342
                for param in master_params:
343
                    param.grad.data = param.grad.data/args.static_loss_scale
344
345
346
347
348
349
350
            optimizer.step()
            master_params_to_model_params(model_params, master_params)
        else:
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

351
        torch.cuda.synchronize()
352
353
354
355
356
357
        # measure elapsed time
        batch_time.update(time.time() - end)

        end = time.time()
        input, target = prefetcher.next()

358
        if args.local_rank == 0 and i % args.print_freq == 0 and i > 1:
359
360
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
361
                  'Speed {3:.3f} ({4:.3f})\t'
362
363
364
365
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
366
367
368
369
                   epoch, i, len(train_loader),
                   args.world_size * args.batch_size / batch_time.val,
                   args.world_size * args.batch_size / batch_time.avg,
                   batch_time=batch_time,
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
                   data_time=data_time, loss=losses, top1=top1, top5=top5))


def validate(val_loader, model, criterion):
    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to evaluate mode
    model.eval()

    end = time.time()

    prefetcher = data_prefetcher(val_loader)
    input, target = prefetcher.next()
    i = -1
    while input is not None:
        i += 1

        target = target.cuda(async=True)
        input_var = Variable(input)
        target_var = Variable(target)

        # compute output
        with torch.no_grad():
            output = model(input_var)
            loss = criterion(output, target_var)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output.data, target, topk=(1, 5))

402
403
404
405
406
407
        if args.distributed:
            reduced_loss = reduce_tensor(loss.data)
            prec1 = reduce_tensor(prec1)
            prec5 = reduce_tensor(prec5)
        else:
            reduced_loss = loss.data
408
409
410
411
412
413
414
415
416

        losses.update(to_python_float(reduced_loss), input.size(0))
        top1.update(to_python_float(prec1), input.size(0))
        top5.update(to_python_float(prec5), input.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

417
        if args.local_rank == 0 and i % args.print_freq == 0:
418
419
            print('Test: [{0}/{1}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
420
                  'Speed {2:.3f} ({3:.3f})\t'
421
422
423
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
424
425
426
427
                   i, len(val_loader),
                   args.world_size * args.batch_size / batch_time.val,
                   args.world_size * args.batch_size / batch_time.avg,
                   batch_time=batch_time, loss=losses,
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
                   top1=top1, top5=top5))

        input, target = prefetcher.next()

    print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
          .format(top1=top1, top5=top5))

    return top1.avg


def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, 'model_best.pth.tar')


class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


462
463
464
465
466
467
468
469
470
def adjust_learning_rate(optimizer, epoch, step, len_epoch):
    """LR schedule that should yield 76% converged accuracy with batch size 256"""
    factor = epoch // 30

    if epoch >= 80:
        factor = factor + 1

    lr = args.lr*(0.1**factor)

Michael Carilli's avatar
Michael Carilli committed
471
472
473
    """Warmup"""
    if epoch < 5:
        lr = lr*float(1 + step + epoch*len_epoch)/(5.*len_epoch)
474

Michael Carilli's avatar
Michael Carilli committed
475
476
    # if(args.local_rank == 0):
    #     print("epoch = {}, step = {}, lr = {}".format(epoch, step, lr))
477

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr


def accuracy(output, target, topk=(1,)):
    """Computes the precision@k for the specified values of k"""
    maxk = max(topk)
    batch_size = target.size(0)

    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    correct = pred.eq(target.view(1, -1).expand_as(pred))

    res = []
    for k in topk:
        correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
        res.append(correct_k.mul_(100.0 / batch_size))
    return res


def reduce_tensor(tensor):
    rt = tensor.clone()
    dist.all_reduce(rt, op=dist.reduce_op.SUM)
    rt /= args.world_size
    return rt

if __name__ == '__main__':
    main()