run_gradio.py 8.07 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
# Changed from https://github.com/GaParmar/img2img-turbo/blob/main/gradio_sketch2image.py
Muyang Li's avatar
Muyang Li committed
2
import os
Zhekai Zhang's avatar
Zhekai Zhang committed
3
4
5
6
7
import random
import tempfile
import time

import GPUtil
8
import numpy as np
Zhekai Zhang's avatar
Zhekai Zhang committed
9
10
11
12
13
14
import torch
from PIL import Image

from flux_pix2pix_pipeline import FluxPix2pixTurboPipeline
from nunchaku.models.safety_checker import SafetyChecker
from utils import get_args
15
16
17
18
from vars import DEFAULT_SKETCH_GUIDANCE, DEFAULT_STYLE_NAME, MAX_SEED, STYLE_NAMES, STYLES

# import gradio last to avoid conflicts with other imports
import gradio as gr
Zhekai Zhang's avatar
Zhekai Zhang committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

blank_image = Image.new("RGB", (1024, 1024), (255, 255, 255))

args = get_args()

if args.precision == "bf16":
    pipeline = FluxPix2pixTurboPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
    pipeline = pipeline.to("cuda")
    pipeline.load_control_module(
        "mit-han-lab/svdquant-models", "flux.1-pix2pix-turbo-sketch2image.safetensors", alpha=DEFAULT_SKETCH_GUIDANCE
    )
else:
    assert args.precision == "int4"
    pipeline = FluxPix2pixTurboPipeline.from_pretrained(
        "black-forest-labs/FLUX.1-schnell",
        torch_dtype=torch.bfloat16,
35
        qmodel_path="mit-han-lab/svdq-int4-flux.1-schnell",
Zhekai Zhang's avatar
Zhekai Zhang committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
        qencoder_path="mit-han-lab/svdquant-models/svdq-w4a16-t5.pt" if args.use_qencoder else None,
    )
    pipeline = pipeline.to("cuda")
    pipeline.load_control_module(
        "mit-han-lab/svdquant-models",
        "flux.1-pix2pix-turbo-sketch2image.safetensors",
        svdq_lora_path="mit-han-lab/svdquant-models/svdq-flux.1-pix2pix-turbo-sketch2image.safetensors",
        alpha=DEFAULT_SKETCH_GUIDANCE,
    )
safety_checker = SafetyChecker("cuda", disabled=args.no_safety_checker)


def save_image(img):
    if isinstance(img, dict):
        img = img["composite"]
    temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
    img.save(temp_file.name)
    return temp_file.name


def run(image, prompt: str, prompt_template: str, sketch_guidance: float, seed: int) -> tuple[Image, str]:
57
58
59
60
61
    image_numpy = np.array(image["composite"].convert("RGB"))

    if prompt.strip() == "" and np.sum(image_numpy != 255) <= 100:
        return image["composite"], "Please input the prompt or draw something."

Zhekai Zhang's avatar
Zhekai Zhang committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    is_unsafe_prompt = False
    if not safety_checker(prompt):
        is_unsafe_prompt = True
        prompt = "A peaceful world."
    prompt = prompt_template.format(prompt=prompt)
    start_time = time.time()
    result_image = pipeline(
        image=image["composite"],
        image_type="sketch",
        alpha=sketch_guidance,
        prompt=prompt,
        generator=torch.Generator().manual_seed(int(seed)),
    ).images[0]

    latency = time.time() - start_time
    if latency < 1:
        latency = latency * 1000
        latency_str = f"{latency:.2f}ms"
    else:
        latency_str = f"{latency:.2f}s"
    if is_unsafe_prompt:
        latency_str += " (Unsafe prompt detected)"
    torch.cuda.empty_cache()
Muyang Li's avatar
Muyang Li committed
85
86
87
88
89
90
91
92
93
94
    if args.count_use:
        if os.path.exists("use_count.txt"):
            with open("use_count.txt", "r") as f:
                count = int(f.read())
        else:
            count = 0
        count += 1
        print(f"Use count: {count}")
        with open("use_count.txt", "w") as f:
            f.write(str(count))
Zhekai Zhang's avatar
Zhekai Zhang committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    return result_image, latency_str


with gr.Blocks(css_paths="assets/style.css", title=f"SVDQuant Sketch-to-Image Demo") as demo:
    with open("assets/description.html", "r") as f:
        DESCRIPTION = f.read()
    gpus = GPUtil.getGPUs()
    if len(gpus) > 0:
        gpu = gpus[0]
        memory = gpu.memoryTotal / 1024
        device_info = f"Running on {gpu.name} with {memory:.0f} GiB memory."
    else:
        device_info = "Running on CPU 🥶 This demo does not work on CPU."
    notice = f'<strong>Notice:</strong>&nbsp;We will replace unsafe prompts with a default prompt: "A peaceful world."'
    gr.HTML(DESCRIPTION.format(device_info=device_info, notice=notice))

    with gr.Row(elem_id="main_row"):
        with gr.Column(elem_id="column_input"):
            gr.Markdown("## INPUT", elem_id="input_header")
            with gr.Group():
                canvas = gr.Sketchpad(
                    value=blank_image,
                    height=640,
                    image_mode="RGB",
                    sources=["upload", "clipboard"],
                    type="pil",
                    label="Sketch",
                    show_label=False,
                    show_download_button=True,
                    interactive=True,
                    transforms=[],
                    canvas_size=(1024, 1024),
                    scale=1,
128
                    brush=gr.Brush(default_size=3, colors=["#000000"], color_mode="fixed"),
Zhekai Zhang's avatar
Zhekai Zhang committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
                    format="png",
                    layers=False,
                )
                with gr.Row():
                    prompt = gr.Text(label="Prompt", placeholder="Enter your prompt", scale=6)
                    run_button = gr.Button("Run", scale=1, elem_id="run_button")
            download_sketch = gr.DownloadButton("Download Sketch", scale=1, elem_id="download_sketch")
            with gr.Row():
                style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, scale=1)
                prompt_template = gr.Textbox(
                    label="Prompt Style Template", value=STYLES[DEFAULT_STYLE_NAME], scale=2, max_lines=1
                )

            with gr.Row():
                sketch_guidance = gr.Slider(
                    label="Sketch Guidance",
                    show_label=True,
                    minimum=0,
                    maximum=1,
                    value=DEFAULT_SKETCH_GUIDANCE,
                    step=0.01,
                    scale=5,
                )
            with gr.Row():
                seed = gr.Slider(label="Seed", show_label=True, minimum=0, maximum=MAX_SEED, value=233, step=1, scale=4)
                randomize_seed = gr.Button("Random Seed", scale=1, min_width=50, elem_id="random_seed")

        with gr.Column(elem_id="column_output"):
            gr.Markdown("## OUTPUT", elem_id="output_header")
            with gr.Group():
                result = gr.Image(
                    format="png",
                    height=640,
                    image_mode="RGB",
                    type="pil",
                    label="Result",
                    show_label=False,
                    show_download_button=True,
                    interactive=False,
                    elem_id="output_image",
                )
                latency_result = gr.Text(label="Inference Latency", show_label=True)

            download_result = gr.DownloadButton("Download Result", elem_id="download_result")
            gr.Markdown("### Instructions")
            gr.Markdown("**1**. Enter a text prompt (e.g. a cat)")
            gr.Markdown("**2**. Start sketching")
            gr.Markdown("**3**. Change the image style using a style template")
            gr.Markdown("**4**. Adjust the effect of sketch guidance using the slider (typically between 0.2 and 0.4)")
            gr.Markdown("**5**. Try different seeds to generate different results")

    run_inputs = [canvas, prompt, prompt_template, sketch_guidance, seed]
    run_outputs = [result, latency_result]

    randomize_seed.click(
        lambda: random.randint(0, MAX_SEED),
        inputs=[],
        outputs=seed,
        api_name=False,
        queue=False,
    ).then(run, inputs=run_inputs, outputs=run_outputs, api_name=False)

    style.change(
        lambda x: STYLES[x],
        inputs=[style],
        outputs=[prompt_template],
        api_name=False,
        queue=False,
    ).then(fn=run, inputs=run_inputs, outputs=run_outputs, api_name=False)
    gr.on(
        triggers=[prompt.submit, run_button.click, canvas.change],
        fn=run,
        inputs=run_inputs,
        outputs=run_outputs,
        api_name=False,
    )

    download_sketch.click(fn=save_image, inputs=canvas, outputs=download_sketch)
    download_result.click(fn=save_image, inputs=result, outputs=download_result)
208
209
    gr.Markdown("MIT Accessibility: https://accessibility.mit.edu/", elem_id="accessibility")

Zhekai Zhang's avatar
Zhekai Zhang committed
210
211
212

if __name__ == "__main__":
    demo.queue().launch(debug=True, share=True)