run_gradio.py 7.72 KB
Newer Older
Zhekai Zhang's avatar
Zhekai Zhang committed
1
# Changed from https://github.com/GaParmar/img2img-turbo/blob/main/gradio_sketch2image.py
Muyang Li's avatar
Muyang Li committed
2
import os
Zhekai Zhang's avatar
Zhekai Zhang committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import random
import tempfile
import time

import GPUtil
import gradio as gr
import torch
from PIL import Image

from flux_pix2pix_pipeline import FluxPix2pixTurboPipeline
from nunchaku.models.safety_checker import SafetyChecker
from utils import get_args
from vars import DEFAULT_SKETCH_GUIDANCE, DEFAULT_STYLE_NAME, MAX_SEED, STYLES, STYLE_NAMES

blank_image = Image.new("RGB", (1024, 1024), (255, 255, 255))

args = get_args()

if args.precision == "bf16":
    pipeline = FluxPix2pixTurboPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
    pipeline = pipeline.to("cuda")
    pipeline.load_control_module(
        "mit-han-lab/svdquant-models", "flux.1-pix2pix-turbo-sketch2image.safetensors", alpha=DEFAULT_SKETCH_GUIDANCE
    )
else:
    assert args.precision == "int4"
    pipeline = FluxPix2pixTurboPipeline.from_pretrained(
        "black-forest-labs/FLUX.1-schnell",
        torch_dtype=torch.bfloat16,
        qmodel_path="mit-han-lab/svdquant-models/svdq-int4-flux.1-schnell.safetensors",
        qencoder_path="mit-han-lab/svdquant-models/svdq-w4a16-t5.pt" if args.use_qencoder else None,
    )
    pipeline = pipeline.to("cuda")
    pipeline.load_control_module(
        "mit-han-lab/svdquant-models",
        "flux.1-pix2pix-turbo-sketch2image.safetensors",
        svdq_lora_path="mit-han-lab/svdquant-models/svdq-flux.1-pix2pix-turbo-sketch2image.safetensors",
        alpha=DEFAULT_SKETCH_GUIDANCE,
    )
safety_checker = SafetyChecker("cuda", disabled=args.no_safety_checker)


def save_image(img):
    if isinstance(img, dict):
        img = img["composite"]
    temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
    img.save(temp_file.name)
    return temp_file.name


def run(image, prompt: str, prompt_template: str, sketch_guidance: float, seed: int) -> tuple[Image, str]:
    is_unsafe_prompt = False
    if not safety_checker(prompt):
        is_unsafe_prompt = True
        prompt = "A peaceful world."
    prompt = prompt_template.format(prompt=prompt)
    start_time = time.time()
    result_image = pipeline(
        image=image["composite"],
        image_type="sketch",
        alpha=sketch_guidance,
        prompt=prompt,
        generator=torch.Generator().manual_seed(int(seed)),
    ).images[0]

    latency = time.time() - start_time
    if latency < 1:
        latency = latency * 1000
        latency_str = f"{latency:.2f}ms"
    else:
        latency_str = f"{latency:.2f}s"
    if is_unsafe_prompt:
        latency_str += " (Unsafe prompt detected)"
    torch.cuda.empty_cache()
Muyang Li's avatar
Muyang Li committed
77
78
79
80
81
82
83
84
85
86
    if args.count_use:
        if os.path.exists("use_count.txt"):
            with open("use_count.txt", "r") as f:
                count = int(f.read())
        else:
            count = 0
        count += 1
        print(f"Use count: {count}")
        with open("use_count.txt", "w") as f:
            f.write(str(count))
Zhekai Zhang's avatar
Zhekai Zhang committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    return result_image, latency_str


with gr.Blocks(css_paths="assets/style.css", title=f"SVDQuant Sketch-to-Image Demo") as demo:
    with open("assets/description.html", "r") as f:
        DESCRIPTION = f.read()
    gpus = GPUtil.getGPUs()
    if len(gpus) > 0:
        gpu = gpus[0]
        memory = gpu.memoryTotal / 1024
        device_info = f"Running on {gpu.name} with {memory:.0f} GiB memory."
    else:
        device_info = "Running on CPU 🥶 This demo does not work on CPU."
    notice = f'<strong>Notice:</strong>&nbsp;We will replace unsafe prompts with a default prompt: "A peaceful world."'
    gr.HTML(DESCRIPTION.format(device_info=device_info, notice=notice))

    with gr.Row(elem_id="main_row"):
        with gr.Column(elem_id="column_input"):
            gr.Markdown("## INPUT", elem_id="input_header")
            with gr.Group():
                canvas = gr.Sketchpad(
                    value=blank_image,
                    height=640,
                    image_mode="RGB",
                    sources=["upload", "clipboard"],
                    type="pil",
                    label="Sketch",
                    show_label=False,
                    show_download_button=True,
                    interactive=True,
                    transforms=[],
                    canvas_size=(1024, 1024),
                    scale=1,
                    brush=gr.Brush(default_size=1, colors=["#000000"], color_mode="fixed"),
                    format="png",
                    layers=False,
                )
                with gr.Row():
                    prompt = gr.Text(label="Prompt", placeholder="Enter your prompt", scale=6)
                    run_button = gr.Button("Run", scale=1, elem_id="run_button")
            download_sketch = gr.DownloadButton("Download Sketch", scale=1, elem_id="download_sketch")
            with gr.Row():
                style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, scale=1)
                prompt_template = gr.Textbox(
                    label="Prompt Style Template", value=STYLES[DEFAULT_STYLE_NAME], scale=2, max_lines=1
                )

            with gr.Row():
                sketch_guidance = gr.Slider(
                    label="Sketch Guidance",
                    show_label=True,
                    minimum=0,
                    maximum=1,
                    value=DEFAULT_SKETCH_GUIDANCE,
                    step=0.01,
                    scale=5,
                )
            with gr.Row():
                seed = gr.Slider(label="Seed", show_label=True, minimum=0, maximum=MAX_SEED, value=233, step=1, scale=4)
                randomize_seed = gr.Button("Random Seed", scale=1, min_width=50, elem_id="random_seed")

        with gr.Column(elem_id="column_output"):
            gr.Markdown("## OUTPUT", elem_id="output_header")
            with gr.Group():
                result = gr.Image(
                    format="png",
                    height=640,
                    image_mode="RGB",
                    type="pil",
                    label="Result",
                    show_label=False,
                    show_download_button=True,
                    interactive=False,
                    elem_id="output_image",
                )
                latency_result = gr.Text(label="Inference Latency", show_label=True)

            download_result = gr.DownloadButton("Download Result", elem_id="download_result")
            gr.Markdown("### Instructions")
            gr.Markdown("**1**. Enter a text prompt (e.g. a cat)")
            gr.Markdown("**2**. Start sketching")
            gr.Markdown("**3**. Change the image style using a style template")
            gr.Markdown("**4**. Adjust the effect of sketch guidance using the slider (typically between 0.2 and 0.4)")
            gr.Markdown("**5**. Try different seeds to generate different results")

    run_inputs = [canvas, prompt, prompt_template, sketch_guidance, seed]
    run_outputs = [result, latency_result]

    randomize_seed.click(
        lambda: random.randint(0, MAX_SEED),
        inputs=[],
        outputs=seed,
        api_name=False,
        queue=False,
    ).then(run, inputs=run_inputs, outputs=run_outputs, api_name=False)

    style.change(
        lambda x: STYLES[x],
        inputs=[style],
        outputs=[prompt_template],
        api_name=False,
        queue=False,
    ).then(fn=run, inputs=run_inputs, outputs=run_outputs, api_name=False)
    gr.on(
        triggers=[prompt.submit, run_button.click, canvas.change],
        fn=run,
        inputs=run_inputs,
        outputs=run_outputs,
        api_name=False,
    )

    download_sketch.click(fn=save_image, inputs=canvas, outputs=download_sketch)
    download_result.click(fn=save_image, inputs=result, outputs=download_result)

if __name__ == "__main__":
    demo.queue().launch(debug=True, share=True)