Commit 741ec912 authored by Muyang Li's avatar Muyang Li
Browse files

increase the line thickness for better use experience

parent 4e668794
...@@ -3,11 +3,13 @@ from typing import Any, Callable, Optional, Union ...@@ -3,11 +3,13 @@ from typing import Any, Callable, Optional, Union
import torch import torch
import torchvision.transforms.functional as F import torchvision.transforms.functional as F
import torchvision.utils
from PIL import Image from PIL import Image
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline, FluxPipelineOutput, FluxTransformer2DModel from diffusers.pipelines.flux.pipeline_flux import FluxPipeline, FluxPipelineOutput, FluxTransformer2DModel
from einops import rearrange from einops import rearrange
from huggingface_hub import hf_hub_download from huggingface_hub import hf_hub_download
from peft.tuners import lora from peft.tuners import lora
from torch import nn
from nunchaku.models.flux import inject_pipeline, load_quantized_model from nunchaku.models.flux import inject_pipeline, load_quantized_model
from nunchaku.pipelines.flux import quantize_t5 from nunchaku.pipelines.flux import quantize_t5
...@@ -134,6 +136,21 @@ class FluxPix2pixTurboPipeline(FluxPipeline): ...@@ -134,6 +136,21 @@ class FluxPix2pixTurboPipeline(FluxPipeline):
image = image.resize((width, height), Image.LANCZOS) image = image.resize((width, height), Image.LANCZOS)
image_t = F.to_tensor(image) < 0.5 image_t = F.to_tensor(image) < 0.5
image_t = image_t.unsqueeze(0).to(self.dtype).to(device) image_t = image_t.unsqueeze(0).to(self.dtype).to(device)
kernel_size = 4
if hasattr(self, "erosion_kernel"):
erosion_kernel = self.erosion_kernel
else:
erosion_kernel = torch.ones(1, 1, kernel_size, kernel_size, dtype=self.dtype, device=device)
self.erosion_kernel = erosion_kernel
torchvision.utils.save_image(image_t[0], "before.png")
image_t = (
nn.functional.conv2d(image_t[:, :1], erosion_kernel, padding=kernel_size // 2) > kernel_size**2 - 0.1
)
image_t = torch.concat([image_t, image_t, image_t], dim=1).to(self.dtype)
torchvision.utils.save_image(image_t[0], "after.png")
image_t = (image_t - 0.5) * 2 image_t = (image_t - 0.5) * 2
# 4. Prepare latent variables # 4. Prepare latent variables
......
...@@ -117,7 +117,7 @@ with gr.Blocks(css_paths="assets/style.css", title=f"SVDQuant Sketch-to-Image De ...@@ -117,7 +117,7 @@ with gr.Blocks(css_paths="assets/style.css", title=f"SVDQuant Sketch-to-Image De
transforms=[], transforms=[],
canvas_size=(1024, 1024), canvas_size=(1024, 1024),
scale=1, scale=1,
brush=gr.Brush(default_size=1, colors=["#000000"], color_mode="fixed"), brush=gr.Brush(default_size=3, colors=["#000000"], color_mode="fixed"),
format="png", format="png",
layers=False, layers=False,
) )
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment