commandr.py 13.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
ZhouXingg's avatar
ZhouXingg committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Copyright 2024 Cohere and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
32
# ==============================================================================
ZhouXingg's avatar
ZhouXingg committed
33

34
35
36
# Adapted from
# https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/commandr.py#L1

ZhouXingg's avatar
ZhouXingg committed
37
38
# This file is based on the LLama model definition file in transformers
"""PyTorch Cohere model."""
39

40
from typing import Iterable, Optional, Tuple
ZhouXingg's avatar
ZhouXingg committed
41
42
43
44
45

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn.parameter import Parameter
46
from transformers import PretrainedConfig
Yuanhan Zhang's avatar
Yuanhan Zhang committed
47
48
49
50
from vllm.distributed import (
    get_tensor_model_parallel_rank,
    get_tensor_model_parallel_world_size,
)
ZhouXingg's avatar
ZhouXingg committed
51
52
from vllm.model_executor.layers.rotary_embedding import get_rope

53
from sglang.srt.layers.activation import SiluAndMul
54
55
56
57
58
from sglang.srt.layers.linear import (
    MergedColumnParallelLinear,
    QKVParallelLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
59
from sglang.srt.layers.logits_processor import LogitsProcessor
60
from sglang.srt.layers.quantization.base_config import QuantizationConfig
Liangsheng Yin's avatar
Liangsheng Yin committed
61
from sglang.srt.layers.radix_attention import RadixAttention
62
from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding
63
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
64
from sglang.srt.model_loader.weight_utils import default_weight_loader
65
from sglang.srt.utils import set_weight_attrs
Liangsheng Yin's avatar
Liangsheng Yin committed
66

ZhouXingg's avatar
ZhouXingg committed
67
68
69
70
71
72
73

@torch.compile
def layer_norm_func(hidden_states, weight, variance_epsilon):
    input_dtype = hidden_states.dtype
    hidden_states = hidden_states.to(torch.float32)
    mean = hidden_states.mean(-1, keepdim=True)
    variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
74
    hidden_states = (hidden_states - mean) * torch.rsqrt(variance + variance_epsilon)
ZhouXingg's avatar
ZhouXingg committed
75
76
77
78
79
80
81
82
83
84
85
86
    hidden_states = weight.to(torch.float32) * hidden_states
    return hidden_states.to(input_dtype)


class LayerNorm(nn.Module):
    def __init__(self, param_shape=None, eps=1e-5):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(param_shape))
        self.variance_epsilon = eps
        set_weight_attrs(self.weight, {"weight_loader": self.weight_loader})

    def forward(self, hidden_states, residuals=None):
87
88
89
        hidden_states = layer_norm_func(
            hidden_states, self.weight, self.variance_epsilon
        )
ZhouXingg's avatar
ZhouXingg committed
90
91
92
93
94
95
96
97
98
        return hidden_states, residuals

    def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
        tp_rank = get_tensor_model_parallel_rank()
        shard_dim = 0 if param.dim() != 1 else None
        param_data = param.data
        if shard_dim is not None:
            shard_size = param_data.shape[shard_dim]
            start_idx = tp_rank * shard_size
99
            loaded_weight = loaded_weight.narrow(shard_dim, start_idx, shard_size)
ZhouXingg's avatar
ZhouXingg committed
100
101
102
103
104
105
106
107
108
        assert param_data.shape == loaded_weight.shape
        param_data.copy_(loaded_weight)


# Copied from transformers.models.llama.modeling_llama.LlamaMLP Llama->Cohere
class CohereMLP(nn.Module):
    def __init__(
        self,
        config,
109
        quant_config: Optional[QuantizationConfig] = None,
ZhouXingg's avatar
ZhouXingg committed
110
111
112
113
114
115
116
117
118
    ):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_up_proj = MergedColumnParallelLinear(
            self.hidden_size,
            [self.intermediate_size] * 2,
            bias=False,
119
            quant_config=quant_config,
ZhouXingg's avatar
ZhouXingg committed
120
121
122
123
124
        )
        self.down_proj = RowParallelLinear(
            self.intermediate_size,
            self.hidden_size,
            bias=False,
125
            quant_config=quant_config,
ZhouXingg's avatar
ZhouXingg committed
126
127
128
129
130
131
132
133
134
135
136
137
138
        )
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


class CohereAttention(nn.Module):
    def __init__(
        self,
139
        config: PretrainedConfig,
ZhouXingg's avatar
ZhouXingg committed
140
        layer_id: int = 0,
141
        quant_config: Optional[QuantizationConfig] = None,
ZhouXingg's avatar
ZhouXingg committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    ):
        super().__init__()
        tp_size = get_tensor_model_parallel_world_size()
        self.config = config
        self.attention_dropout = config.attention_dropout
        self.hidden_size = config.hidden_size
        self.total_num_heads = config.num_attention_heads
        self.num_heads = self.total_num_heads // tp_size
        self.head_dim = self.hidden_size // self.total_num_heads
        self.total_num_kv_heads = config.num_key_value_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.max_position_embeddings = getattr(
165
166
            config, "model_max_length", None
        ) or getattr(config, "max_position_embeddings", 8192)
ZhouXingg's avatar
ZhouXingg committed
167
168
169
170
171
172
173
174
175
        self.rope_theta = config.rope_theta
        self.rope_scaling = getattr(config, "rope_scaling", None)
        self.use_qk_norm = getattr(config, "use_qk_norm", False)
        self.qkv_proj = QKVParallelLinear(
            self.hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=False,
176
            quant_config=quant_config,
ZhouXingg's avatar
ZhouXingg committed
177
178
179
180
181
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            self.hidden_size,
            bias=False,
182
            quant_config=quant_config,
ZhouXingg's avatar
ZhouXingg committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        )
        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=self.max_position_embeddings,
            base=self.rope_theta,
            rope_scaling=self.rope_scaling,
            is_neox_style=False,
        )
        self.attn = RadixAttention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            layer_id=layer_id,
        )
        if self.use_qk_norm:
200
201
202
203
204
205
206
            self.q_norm = LayerNorm(
                param_shape=(self.num_heads, self.head_dim), eps=config.layer_norm_eps
            )
            self.k_norm = LayerNorm(
                param_shape=(self.num_kv_heads, self.head_dim),
                eps=config.layer_norm_eps,
            )
ZhouXingg's avatar
ZhouXingg committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220

    def _apply_qk_norm(self, q, k):
        q = q.view(*q.shape[:-1], -1, self.head_dim)
        k = k.view(*k.shape[:-1], -1, self.head_dim)
        q, _ = self.q_norm(q)
        k, _ = self.k_norm(k)
        q = q.view(*q.shape[:-2], -1)
        k = k.view(*k.shape[:-2], -1)
        return q, k

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
221
        forward_batch: ForwardBatch,
ZhouXingg's avatar
ZhouXingg committed
222
223
224
225
226
227
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        if self.use_qk_norm:
            q, k = self._apply_qk_norm(q, k)
        q, k = self.rotary_emb(positions, q, k)
228
        attn_output = self.attn(q, k, v, forward_batch)
ZhouXingg's avatar
ZhouXingg committed
229
230
231
232
233
        output, _ = self.o_proj(attn_output)
        return output


class CohereDecoderLayer(nn.Module):
234
235
236
237
    def __init__(
        self,
        config: PretrainedConfig,
        layer_id: int = 0,
238
        quant_config: Optional[QuantizationConfig] = None,
239
    ):
ZhouXingg's avatar
ZhouXingg committed
240
241
242
        super().__init__()
        self.hidden_size = config.hidden_size

243
        self.self_attn = CohereAttention(
244
            config, layer_id=layer_id, quant_config=quant_config
245
        )
ZhouXingg's avatar
ZhouXingg committed
246

247
        self.mlp = CohereMLP(config, quant_config=quant_config)
248
249
250
        self.input_layernorm = LayerNorm(
            param_shape=(config.hidden_size), eps=config.layer_norm_eps
        )
ZhouXingg's avatar
ZhouXingg committed
251
252
253
254
255

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
256
        forward_batch: ForwardBatch,
ZhouXingg's avatar
ZhouXingg committed
257
258
259
260
261
262
263
264
        residual: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        residual = hidden_states
        hidden_states, residual = self.input_layernorm(hidden_states, residual)
        hidden_states_attention = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
265
            forward_batch=forward_batch,
ZhouXingg's avatar
ZhouXingg committed
266
267
268
269
270
271
272
273
274
275
276
        )
        hidden_states_mlp = self.mlp(hidden_states)
        # Add everything together
        hidden_states = residual + hidden_states_attention + hidden_states_mlp

        return hidden_states, residual


class CohereModel(nn.Module):
    def __init__(
        self,
277
        config: PretrainedConfig,
278
        quant_config: Optional[QuantizationConfig] = None,
ZhouXingg's avatar
ZhouXingg committed
279
280
281
282
    ):
        super().__init__()
        self.config = config
        self.vocab_size = config.vocab_size
283
284
285
286
287
        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size, config.hidden_size
        )
        self.layers = nn.ModuleList(
            [
288
                CohereDecoderLayer(config, i, quant_config=quant_config)
289
290
291
292
293
294
                for i in range(config.num_hidden_layers)
            ]
        )
        self.norm = LayerNorm(
            param_shape=(config.hidden_size), eps=config.layer_norm_eps
        )
ZhouXingg's avatar
ZhouXingg committed
295
296
297
298
299

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
300
        forward_batch: ForwardBatch,
ZhouXingg's avatar
ZhouXingg committed
301
302
303
304
305
306
307
308
    ) -> torch.Tensor:
        hidden_states = self.embed_tokens(input_ids)
        residual = None
        for i in range(len(self.layers)):
            layer = self.layers[i]
            hidden_states, residual = layer(
                positions,
                hidden_states,
309
                forward_batch,
ZhouXingg's avatar
ZhouXingg committed
310
311
312
313
314
315
316
317
318
                residual,
            )
        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states


class CohereForCausalLM(nn.Module):
    def __init__(
        self,
319
        config: PretrainedConfig,
320
        quant_config: Optional[QuantizationConfig] = None,
ZhouXingg's avatar
ZhouXingg committed
321
322
323
    ) -> None:
        super().__init__()
        self.config = config
324
        self.quant_config = quant_config
ZhouXingg's avatar
ZhouXingg committed
325
        self.logits_processor = LogitsProcessor(config)
326
        self.model = CohereModel(config, quant_config)
ZhouXingg's avatar
ZhouXingg committed
327
328
329
330
331
332

    @torch.no_grad()
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
333
        forward_batch: ForwardBatch,
ZhouXingg's avatar
ZhouXingg committed
334
    ) -> torch.Tensor:
335
336
337
        hidden_states = self.model(
            input_ids,
            positions,
338
            forward_batch,
339
        )
340
        return self.logits_processor(
341
            input_ids, hidden_states, self.model.embed_tokens, forward_batch
ZhouXingg's avatar
ZhouXingg committed
342
343
        )

344
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
ZhouXingg's avatar
ZhouXingg committed
345
346
347
348
349
350
351
352
353
354
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
        params_dict = dict(self.named_parameters())
        loaded_params = set()
355
        for name, loaded_weight in weights:
ZhouXingg's avatar
ZhouXingg committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
            for param_name, shard_name, shard_id in stacked_params_mapping:
                if shard_name not in name:
                    continue
                name = name.replace(shard_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # lm_head is not used in vllm as it is tied with embed_token.
                # To prevent errors, skip loading lm_head.weight.
                if "lm_head.weight" in name:
                    continue
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
376
                weight_loader = getattr(param, "weight_loader", default_weight_loader)
ZhouXingg's avatar
ZhouXingg committed
377
378
379
380
381
                weight_loader(param, loaded_weight)
            loaded_params.add(name)


EntryClass = CohereForCausalLM