commandr.py 13.7 KB
Newer Older
ZhouXingg's avatar
ZhouXingg committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# coding=utf-8
# Copyright 2024 Cohere and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This file is based on the LLama model definition file in transformers
"""PyTorch Cohere model."""
from typing import List, Optional, Tuple

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn.parameter import Parameter
from transformers import CohereConfig

from vllm.model_executor.parallel_utils.parallel_state import (get_tensor_model_parallel_rank,
                              get_tensor_model_parallel_world_size)
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.linear import (LinearMethodBase,
                                               MergedColumnParallelLinear,
                                               QKVParallelLinear,
                                               RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
    VocabParallelEmbedding)
from vllm.model_executor.utils import set_weight_attrs
from vllm.model_executor.weight_utils import (default_weight_loader,
                                              hf_model_weights_iterator)

from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.managers.router.model_runner import InputMetadata


@torch.compile
def layer_norm_func(hidden_states, weight, variance_epsilon):
    input_dtype = hidden_states.dtype
    hidden_states = hidden_states.to(torch.float32)
    mean = hidden_states.mean(-1, keepdim=True)
    variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
    hidden_states = (hidden_states - mean) * torch.rsqrt(variance +
                                                         variance_epsilon)
    hidden_states = weight.to(torch.float32) * hidden_states
    return hidden_states.to(input_dtype)


class LayerNorm(nn.Module):

    def __init__(self, param_shape=None, eps=1e-5):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(param_shape))
        self.variance_epsilon = eps
        set_weight_attrs(self.weight, {"weight_loader": self.weight_loader})

    def forward(self, hidden_states, residuals=None):
        hidden_states = layer_norm_func(hidden_states, self.weight,
                                        self.variance_epsilon)
        return hidden_states, residuals

    def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
        tp_rank = get_tensor_model_parallel_rank()
        shard_dim = 0 if param.dim() != 1 else None
        param_data = param.data
        if shard_dim is not None:
            shard_size = param_data.shape[shard_dim]
            start_idx = tp_rank * shard_size
            loaded_weight = loaded_weight.narrow(shard_dim, start_idx,
                                                 shard_size)
        assert param_data.shape == loaded_weight.shape
        param_data.copy_(loaded_weight)


# Copied from transformers.models.llama.modeling_llama.LlamaMLP Llama->Cohere
class CohereMLP(nn.Module):

    def __init__(
        self,
        config,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_up_proj = MergedColumnParallelLinear(
            self.hidden_size,
            [self.intermediate_size] * 2,
            bias=False,
            linear_method=linear_method,
        )
        self.down_proj = RowParallelLinear(
            self.intermediate_size,
            self.hidden_size,
            bias=False,
            linear_method=linear_method,
        )
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


class CohereAttention(nn.Module):

    def __init__(
        self,
        config: CohereConfig,
        layer_id: int = 0,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        tp_size = get_tensor_model_parallel_world_size()
        self.config = config
        self.attention_dropout = config.attention_dropout
        self.hidden_size = config.hidden_size
        self.total_num_heads = config.num_attention_heads
        self.num_heads = self.total_num_heads // tp_size
        self.head_dim = self.hidden_size // self.total_num_heads
        self.total_num_kv_heads = config.num_key_value_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.max_position_embeddings = getattr(
            config, "model_max_length", None) or getattr(
                config, "max_position_embeddings", 8192)
        self.rope_theta = config.rope_theta
        self.rope_scaling = getattr(config, "rope_scaling", None)
        self.use_qk_norm = getattr(config, "use_qk_norm", False)
        self.qkv_proj = QKVParallelLinear(
            self.hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=False,
            linear_method=linear_method,
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            self.hidden_size,
            bias=False,
            linear_method=linear_method,
        )
        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=self.max_position_embeddings,
            base=self.rope_theta,
            rope_scaling=self.rope_scaling,
            is_neox_style=False,
        )
        self.attn = RadixAttention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            layer_id=layer_id,
        )
        if self.use_qk_norm:
            self.q_norm = LayerNorm(param_shape=(self.num_heads,
                                                 self.head_dim),
                                    eps=config.layer_norm_eps)
            self.k_norm = LayerNorm(param_shape=(self.num_kv_heads,
                                                 self.head_dim),
                                    eps=config.layer_norm_eps)

    def _apply_qk_norm(self, q, k):
        q = q.view(*q.shape[:-1], -1, self.head_dim)
        k = k.view(*k.shape[:-1], -1, self.head_dim)
        q, _ = self.q_norm(q)
        k, _ = self.k_norm(k)
        q = q.view(*q.shape[:-2], -1)
        k = k.view(*k.shape[:-2], -1)
        return q, k

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        if self.use_qk_norm:
            q, k = self._apply_qk_norm(q, k)
        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v, input_metadata)
        output, _ = self.o_proj(attn_output)
        return output


class CohereDecoderLayer(nn.Module):

    def __init__(self,
                 config: CohereConfig,
                 layer_id: int = 0,
                 linear_method: Optional[LinearMethodBase] = None):
        super().__init__()
        self.hidden_size = config.hidden_size

        self.self_attn = CohereAttention(config, layer_id=layer_id, linear_method=linear_method)

        self.mlp = CohereMLP(config, linear_method=linear_method)
        self.input_layernorm = LayerNorm(param_shape=(config.hidden_size),
                                         eps=config.layer_norm_eps)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        input_metadata: InputMetadata,
        residual: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        residual = hidden_states
        hidden_states, residual = self.input_layernorm(hidden_states, residual)
        hidden_states_attention = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            input_metadata=input_metadata,
        )
        hidden_states_mlp = self.mlp(hidden_states)
        # Add everything together
        hidden_states = residual + hidden_states_attention + hidden_states_mlp

        return hidden_states, residual


class CohereModel(nn.Module):

    def __init__(
        self,
        config: CohereConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        self.config = config
        self.vocab_size = config.vocab_size
        self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
                                                   config.hidden_size)
        self.layers = nn.ModuleList([
            CohereDecoderLayer(config, i, linear_method=linear_method)
            for i in range(config.num_hidden_layers)
        ])
        self.norm = LayerNorm(param_shape=(config.hidden_size),
                              eps=config.layer_norm_eps)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        hidden_states = self.embed_tokens(input_ids)
        residual = None
        for i in range(len(self.layers)):
            layer = self.layers[i]
            hidden_states, residual = layer(
                positions,
                hidden_states,
                input_metadata,
                residual,
            )
        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states


class CohereForCausalLM(nn.Module):

    def __init__(
        self,
        config: CohereConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ) -> None:
        super().__init__()
        self.config = config
        self.linear_method = linear_method
        self.logits_processor = LogitsProcessor(config)
        self.model = CohereModel(config, linear_method)

    @torch.no_grad()
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        hidden_states = self.model(input_ids, positions, input_metadata,)
        return self.logits_processor(
            input_ids, hidden_states, self.model.embed_tokens.weight, input_metadata
        )

    def load_weights(
        self,
        model_name_or_path: str,
        cache_dir: Optional[str] = None,
        load_format: str = "auto",
        revision: Optional[str] = None,
    ):
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
        params_dict = dict(self.named_parameters())
        loaded_params = set()
        for name, loaded_weight in hf_model_weights_iterator(
                model_name_or_path, cache_dir, load_format, revision):
            for param_name, shard_name, shard_id in stacked_params_mapping:
                if shard_name not in name:
                    continue
                name = name.replace(shard_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # lm_head is not used in vllm as it is tied with embed_token.
                # To prevent errors, skip loading lm_head.weight.
                if "lm_head.weight" in name:
                    continue
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)
            loaded_params.add(name)


EntryClass = CohereForCausalLM