"torch_spline_conv/old/spline_conv2.py" did not exist on "7452b08a0f80085ab28006ead663d89dbd8bf505"
w4afp8.py 11.3 KB
Newer Older
1
2
from __future__ import annotations

3
import logging
4
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional
5
6
7
8
9

import torch
from torch.nn import Module
from torch.nn.parameter import Parameter

10
11
from sglang.srt.distributed.parallel_state import get_moe_expert_parallel_world_size
from sglang.srt.layers.linear import LinearBase, UnquantizedLinearMethod
12
from sglang.srt.layers.quantization.base_config import (
13
    FusedMoEMethodBase,
14
15
16
17
    QuantizationConfig,
    QuantizeMethodBase,
)
from sglang.srt.layers.quantization.fp8 import Fp8LinearMethod
18
from sglang.srt.layers.quantization.unquant import UnquantizedLinearMethod
19
from sglang.srt.layers.quantization.utils import is_layer_skipped
20
21
from sglang.srt.utils import is_npu, set_weight_attrs

22
if TYPE_CHECKING:
23
    from sglang.srt.layers.moe import MoeRunnerConfig
24
25
26
27
    from sglang.srt.layers.moe.token_dispatcher import (
        CombineInput,
        StandardDispatchOutput,
    )
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
ACTIVATION_SCHEMES = ["static", "dynamic"]

logger = logging.getLogger(__name__)


class W4AFp8Config(QuantizationConfig):
    """Config class for MIXED_PRECISION W4AFp8."""

    def __init__(
        self,
        is_checkpoint_fp8_serialized: bool = True,
        is_checkpoint_w4afp8_serialized: bool = True,
        linear_activation_scheme: str = "dynamic",
        moe_activation_scheme: str = "static",
        ignored_layers: Optional[List[str]] = None,
        weight_block_size: Optional[List[int]] = None,
        group_size: int = 128,
    ) -> None:
        super().__init__()
        self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
        self.is_checkpoint_w4afp8_serialized = is_checkpoint_w4afp8_serialized
        if is_checkpoint_w4afp8_serialized:
            logger.warning("Detected w4afp8 checkpoint. Please note that")
        if moe_activation_scheme not in ACTIVATION_SCHEMES:
            raise ValueError(f"Unsupported activation scheme {moe_activation_scheme}")
        self.linear_activation_scheme = linear_activation_scheme
        self.moe_activation_scheme = moe_activation_scheme
        self.ignored_layers = ignored_layers or []
        self.weight_block_size = [128, 128]
        self.group_size = group_size

    @classmethod
    def get_name(cls) -> str:
        return "w4afp8"

    @classmethod
    def get_supported_act_dtypes(cls) -> List[torch.dtype]:
        return [torch.bfloat16, torch.float8_e4m3fn]

    @classmethod
    def get_min_capability(cls) -> int:
        return 90

    @classmethod
    def get_config_filenames(cls) -> List[str]:
        return []

    @classmethod
77
    def from_config(cls, config: Dict[str, Any]) -> W4AFp8Config:
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        quant_method = cls.get_from_keys(config, ["quant_method"])
        is_checkpoint_fp8_serialized = "fp8" in quant_method
        is_checkpoint_w4afp8_serialized = "w4afp8" in quant_method
        linear_activation_scheme = "dynamic"
        moe_activation_scheme = "static"
        weight_block_size = [128, 128]
        return cls(
            is_checkpoint_fp8_serialized=is_checkpoint_fp8_serialized,
            is_checkpoint_w4afp8_serialized=is_checkpoint_w4afp8_serialized,
            linear_activation_scheme=linear_activation_scheme,
            moe_activation_scheme=moe_activation_scheme,
            weight_block_size=weight_block_size,
        )

    def get_quant_method(
        self, layer: torch.nn.Module, prefix: str
94
95
    ) -> Optional[QuantizeMethodBase]:
        from sglang.srt.layers.linear import LinearBase
96
97
98
99
100
101
        from sglang.srt.layers.moe.fused_moe_triton import FusedMoE

        if isinstance(layer, LinearBase):
            if is_layer_skipped(prefix, self.ignored_layers):
                return UnquantizedLinearMethod()
            return Fp8LinearMethod(self)
102
        elif isinstance(layer, FusedMoE):
103
104
105
106
107
108
109
            return W4AFp8MoEMethod(self)
        return None

    def get_scaled_act_names(self) -> List[str]:
        return []


110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def interleave_scales(scales: torch.Tensor) -> torch.Tensor:
    """Interleave scales in groups of 4 similar to TRT-LLM implementation."""
    s_shape = scales.shape
    # Reshape to separate groups of 4
    alignment = 4 if s_shape[2] % 4 == 0 else 1
    scales_interleaved = scales.reshape(
        s_shape[0], s_shape[1], (s_shape[2] // alignment), alignment
    )
    # Permute dimensions to interleave
    scales_interleaved = scales_interleaved.permute(0, 2, 1, 3)
    # Reshape back to original dimensions but with interleaved values
    scales_interleaved = scales_interleaved.reshape(
        s_shape[0], s_shape[2] // alignment, s_shape[1] * alignment
    )
    return scales_interleaved.contiguous()

126

127
class W4AFp8MoEMethod(FusedMoEMethodBase):
128
129
130
131
132
    def __init__(self, quant_config: W4AFp8Config):
        self.quant_config = quant_config

    def create_weights(
        self,
133
        layer: Module,
134
        num_experts: int,
135
        hidden_size: int,
136
        intermediate_size_per_partition: int,
137
138
139
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
140
141
        from sglang.srt.layers.moe.fused_moe_triton import FusedMoeWeightScaleSupported

142
143
144
145
146
        assert "weight_loader" in extra_weight_attrs

        # Fused gate_up_proj (column parallel)
        w13_weight = torch.nn.Parameter(
            torch.empty(
147
                num_experts,
148
                intermediate_size_per_partition * 2,
149
150
151
152
153
154
155
156
157
158
159
                hidden_size // 2,
                dtype=torch.int8,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_weight", w13_weight)
        set_weight_attrs(w13_weight, extra_weight_attrs)

        # down_proj (row parallel)
        w2_weight = torch.nn.Parameter(
            torch.empty(
160
                num_experts,
161
                hidden_size,
162
                intermediate_size_per_partition // 2,
163
164
165
166
167
168
169
                dtype=torch.int8,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_weight", w2_weight)
        set_weight_attrs(w2_weight, extra_weight_attrs)

170
171
172
        extra_weight_attrs.update(
            {"quant_method": FusedMoeWeightScaleSupported.GROUP.value}
        )
173
174
        w13_weight_scale = torch.nn.Parameter(
            torch.zeros(
175
                num_experts,
176
                2 * intermediate_size_per_partition,
177
178
179
180
181
182
183
184
185
186
                hidden_size // self.quant_config.group_size,
                dtype=torch.float32,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_weight_scale_inv", w13_weight_scale)
        set_weight_attrs(w13_weight_scale, extra_weight_attrs)

        w2_weight_scale = torch.nn.Parameter(
            torch.zeros(
187
                num_experts,
188
                hidden_size,
189
                intermediate_size_per_partition // self.quant_config.group_size,
190
191
192
193
194
195
196
197
198
                dtype=torch.float32,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_weight_scale_inv", w2_weight_scale)
        set_weight_attrs(w2_weight_scale, extra_weight_attrs)

        # Input scales
        w13_input_scale = torch.nn.Parameter(
199
            torch.ones((num_experts, 2), dtype=torch.bfloat16),
200
201
202
203
204
205
            requires_grad=False,
        )
        layer.register_parameter("w13_input_scale", w13_input_scale)
        set_weight_attrs(w13_input_scale, extra_weight_attrs)

        w2_input_scale = torch.nn.Parameter(
206
            torch.ones(num_experts, dtype=torch.bfloat16),
207
208
209
210
211
212
213
214
215
            requires_grad=False,
        )
        layer.register_parameter("w2_input_scale", w2_input_scale)
        set_weight_attrs(w2_input_scale, extra_weight_attrs)

        # Pre-populate the strides
        device = layer.w13_weight.device

        self.a_strides1 = torch.full(
216
            (num_experts, 3),
217
218
219
220
221
            hidden_size,
            device=device,
            dtype=torch.int64,
        )
        self.c_strides1 = torch.full(
222
            (num_experts, 3),
223
            2 * intermediate_size_per_partition,
224
225
226
227
            device=device,
            dtype=torch.int64,
        )
        self.a_strides2 = torch.full(
228
            (num_experts, 3),
229
            intermediate_size_per_partition,
230
231
232
233
            device=device,
            dtype=torch.int64,
        )
        self.c_strides2 = torch.full(
234
            (num_experts, 3),
235
236
237
238
239
240
241
242
243
244
            hidden_size,
            device=device,
            dtype=torch.int64,
        )
        self.b_strides1 = self.a_strides1
        self.s_strides13 = self.c_strides1
        self.b_strides2 = self.a_strides2
        self.s_strides2 = self.c_strides2

        self.expert_offsets = torch.empty(
245
            (num_experts + 1), dtype=torch.int32, device=device
246
247
        )
        self.problem_sizes1 = torch.empty(
248
            (num_experts, 3), dtype=torch.int32, device=device
249
250
        )
        self.problem_sizes2 = torch.empty(
251
            (num_experts, 3), dtype=torch.int32, device=device
252
253
254
255
256
257
258
259
260
261
        )

        return

    def process_weights_after_loading(self, layer: Module) -> None:
        dtype = torch.bfloat16
        device = layer.w2_weight.device

        # Interleave w13_weight_scale (gate_up_proj)
        w13_weight_scale = layer.w13_weight_scale_inv.to(dtype)
262
        w13_weight_scale = interleave_scales(w13_weight_scale)
263
264
265
266
        layer.w13_weight_scale_inv = Parameter(w13_weight_scale, requires_grad=False)

        # Interleave w2_weight_scale (down_proj)
        w2_weight_scale = layer.w2_weight_scale_inv.to(dtype)
267
        w2_weight_scale = interleave_scales(w2_weight_scale)
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
        layer.w2_weight_scale_inv = Parameter(w2_weight_scale, requires_grad=False)

        # Process input scales
        w13_input_scale_max = layer.w13_input_scale.max().to(dtype).item()
        new_w13_input_scale = torch.tensor(
            [w13_input_scale_max],
            dtype=dtype,
            device=device,
        )
        layer.w13_input_scale = Parameter(new_w13_input_scale, requires_grad=False)

        w2_input_scale_max = layer.w2_input_scale.max().to(dtype).item()
        new_w2_input_scale = torch.tensor(
            [w2_input_scale_max], dtype=dtype, device=device
        )
        layer.w2_input_scale = Parameter(new_w2_input_scale, requires_grad=False)
284

285
286
287
288
289
    def create_moe_runner(
        self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
    ):
        self.moe_runner_config = moe_runner_config

290
291
    def apply(
        self,
292
        layer: Module,
293
294
295
        dispatch_output: StandardDispatchOutput,
    ) -> CombineInput:

Cheng Wan's avatar
Cheng Wan committed
296
        from sglang.srt.layers.moe.cutlass_w4a8_moe import cutlass_w4a8_moe
297
        from sglang.srt.layers.moe.token_dispatcher import StandardCombineInput
298

299
300
        x = dispatch_output.hidden_states
        topk_output = dispatch_output.topk_output
301

302
        topk_weights, topk_ids, _ = topk_output
303
304
305

        output = cutlass_w4a8_moe(
            x,
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
            layer.w13_weight,
            layer.w2_weight,
            layer.w13_weight_scale_inv,
            layer.w2_weight_scale_inv,
            topk_weights,
            topk_ids,
            self.a_strides1,
            self.b_strides1,
            self.c_strides1,
            self.a_strides2,
            self.b_strides2,
            self.c_strides2,
            self.s_strides13,
            self.s_strides2,
            self.expert_offsets,
            self.problem_sizes1,
            self.problem_sizes2,
            layer.w13_input_scale,
            layer.w2_input_scale,
        )
326
327
328
        if self.moe_runner_config.routed_scaling_factor is not None:
            output *= self.moe_runner_config.routed_scaling_factor
        return StandardCombineInput(hidden_states=output)