w4afp8.py 9.31 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import logging
from typing import Any, Dict, List, Optional

import torch
from torch.nn import Module
from torch.nn.parameter import Parameter

from sglang.srt.layers.linear import LinearBase, UnquantizedLinearMethod
from sglang.srt.layers.quantization.base_config import (
    QuantizationConfig,
    QuantizeMethodBase,
)
from sglang.srt.layers.quantization.fp8 import Fp8LinearMethod
from sglang.srt.layers.quantization.utils import is_layer_skipped
from sglang.srt.utils import set_weight_attrs

ACTIVATION_SCHEMES = ["static", "dynamic"]

logger = logging.getLogger(__name__)


class W4AFp8Config(QuantizationConfig):
    """Config class for MIXED_PRECISION W4AFp8."""

    def __init__(
        self,
        is_checkpoint_fp8_serialized: bool = True,
        is_checkpoint_w4afp8_serialized: bool = True,
        linear_activation_scheme: str = "dynamic",
        moe_activation_scheme: str = "static",
        ignored_layers: Optional[List[str]] = None,
        weight_block_size: Optional[List[int]] = None,
        group_size: int = 128,
    ) -> None:
        super().__init__()
        self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
        self.is_checkpoint_w4afp8_serialized = is_checkpoint_w4afp8_serialized
        if is_checkpoint_w4afp8_serialized:
            logger.warning("Detected w4afp8 checkpoint. Please note that")
        if moe_activation_scheme not in ACTIVATION_SCHEMES:
            raise ValueError(f"Unsupported activation scheme {moe_activation_scheme}")
        self.linear_activation_scheme = linear_activation_scheme
        self.moe_activation_scheme = moe_activation_scheme
        self.ignored_layers = ignored_layers or []
        self.weight_block_size = [128, 128]
        self.group_size = group_size

    @classmethod
    def get_name(cls) -> str:
        return "w4afp8"

    @classmethod
    def get_supported_act_dtypes(cls) -> List[torch.dtype]:
        return [torch.bfloat16, torch.float8_e4m3fn]

    @classmethod
    def get_min_capability(cls) -> int:
        return 90

    @classmethod
    def get_config_filenames(cls) -> List[str]:
        return []

    @classmethod
    def from_config(cls, config: Dict[str, Any]) -> "W4AFp8Config":
        quant_method = cls.get_from_keys(config, ["quant_method"])
        is_checkpoint_fp8_serialized = "fp8" in quant_method
        is_checkpoint_w4afp8_serialized = "w4afp8" in quant_method
        linear_activation_scheme = "dynamic"
        moe_activation_scheme = "static"
        weight_block_size = [128, 128]
        return cls(
            is_checkpoint_fp8_serialized=is_checkpoint_fp8_serialized,
            is_checkpoint_w4afp8_serialized=is_checkpoint_w4afp8_serialized,
            linear_activation_scheme=linear_activation_scheme,
            moe_activation_scheme=moe_activation_scheme,
            weight_block_size=weight_block_size,
        )

    def get_quant_method(
        self, layer: torch.nn.Module, prefix: str
    ) -> Optional["QuantizeMethodBase"]:
        from sglang.srt.layers.moe.fused_moe_triton import FusedMoE

        if isinstance(layer, LinearBase):
            if is_layer_skipped(prefix, self.ignored_layers):
                return UnquantizedLinearMethod()
            return Fp8LinearMethod(self)
        elif isinstance(layer, FusedMoE):
            return W4AFp8MoEMethod(self)
        return None

    def get_scaled_act_names(self) -> List[str]:
        return []


class W4AFp8MoEMethod:

    def __init__(self, quant_config: W4AFp8Config):
        self.quant_config = quant_config

    def create_weights(
        self,
        layer: Module,
        num_experts_per_partition: int,
        hidden_size: int,
        intermediate_size: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        assert "weight_loader" in extra_weight_attrs

        # Fused gate_up_proj (column parallel)
        w13_weight = torch.nn.Parameter(
            torch.empty(
                num_experts_per_partition,
                intermediate_size * 2,
                hidden_size // 2,
                dtype=torch.int8,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_weight", w13_weight)
        set_weight_attrs(w13_weight, extra_weight_attrs)

        # down_proj (row parallel)
        w2_weight = torch.nn.Parameter(
            torch.empty(
                num_experts_per_partition,
                hidden_size,
                intermediate_size // 2,
                dtype=torch.int8,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_weight", w2_weight)
        set_weight_attrs(w2_weight, extra_weight_attrs)

        w13_weight_scale = torch.nn.Parameter(
            torch.zeros(
                num_experts_per_partition,
                2 * intermediate_size,
                hidden_size // self.quant_config.group_size,
                dtype=torch.float32,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_weight_scale_inv", w13_weight_scale)
        set_weight_attrs(w13_weight_scale, extra_weight_attrs)

        w2_weight_scale = torch.nn.Parameter(
            torch.zeros(
                num_experts_per_partition,
                hidden_size,
                intermediate_size // self.quant_config.group_size,
                dtype=torch.float32,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_weight_scale_inv", w2_weight_scale)
        set_weight_attrs(w2_weight_scale, extra_weight_attrs)

        # Input scales
        w13_input_scale = torch.nn.Parameter(
            torch.ones((num_experts_per_partition, 2), dtype=torch.bfloat16),
            requires_grad=False,
        )
        layer.register_parameter("w13_input_scale", w13_input_scale)
        set_weight_attrs(w13_input_scale, extra_weight_attrs)

        w2_input_scale = torch.nn.Parameter(
            torch.ones(num_experts_per_partition, dtype=torch.bfloat16),
            requires_grad=False,
        )
        layer.register_parameter("w2_input_scale", w2_input_scale)
        set_weight_attrs(w2_input_scale, extra_weight_attrs)

        # Pre-populate the strides
        device = layer.w13_weight.device

        self.a_strides1 = torch.full(
            (num_experts_per_partition, 3),
            hidden_size,
            device=device,
            dtype=torch.int64,
        )
        self.c_strides1 = torch.full(
            (num_experts_per_partition, 3),
            2 * intermediate_size,
            device=device,
            dtype=torch.int64,
        )
        self.a_strides2 = torch.full(
            (num_experts_per_partition, 3),
            intermediate_size,
            device=device,
            dtype=torch.int64,
        )
        self.c_strides2 = torch.full(
            (num_experts_per_partition, 3),
            hidden_size,
            device=device,
            dtype=torch.int64,
        )
        self.b_strides1 = self.a_strides1
        self.s_strides13 = self.c_strides1
        self.b_strides2 = self.a_strides2
        self.s_strides2 = self.c_strides2

        self.expert_offsets = torch.empty(
            (num_experts_per_partition + 1), dtype=torch.int32, device=device
        )
        self.problem_sizes1 = torch.empty(
            (num_experts_per_partition, 3), dtype=torch.int32, device=device
        )
        self.problem_sizes2 = torch.empty(
            (num_experts_per_partition, 3), dtype=torch.int32, device=device
        )

        return

    def _interleave_scales(self, scales: torch.Tensor) -> torch.Tensor:
        """Interleave scales in groups of 4 similar to TRT-LLM implementation."""
        s_shape = scales.shape
        # Reshape to separate groups of 4
        scales_interleaved = scales.reshape(
            s_shape[0], s_shape[1], (s_shape[2] // 4), 4
        )
        # Permute dimensions to interleave
        scales_interleaved = scales_interleaved.permute(0, 2, 1, 3)
        # Reshape back to original dimensions but with interleaved values
        scales_interleaved = scales_interleaved.reshape(
            s_shape[0], s_shape[2] // 4, s_shape[1] * 4
        )
        return scales_interleaved.contiguous()

    def process_weights_after_loading(self, layer: Module) -> None:
        dtype = torch.bfloat16
        device = layer.w2_weight.device

        # Interleave w13_weight_scale (gate_up_proj)
        w13_weight_scale = layer.w13_weight_scale_inv.to(dtype)
        w13_weight_scale = self._interleave_scales(w13_weight_scale)
        layer.w13_weight_scale_inv = Parameter(w13_weight_scale, requires_grad=False)

        # Interleave w2_weight_scale (down_proj)
        w2_weight_scale = layer.w2_weight_scale_inv.to(dtype)
        w2_weight_scale = self._interleave_scales(w2_weight_scale)
        layer.w2_weight_scale_inv = Parameter(w2_weight_scale, requires_grad=False)

        # Process input scales
        w13_input_scale_max = layer.w13_input_scale.max().to(dtype).item()
        new_w13_input_scale = torch.tensor(
            [w13_input_scale_max],
            dtype=dtype,
            device=device,
        )
        layer.w13_input_scale = Parameter(new_w13_input_scale, requires_grad=False)

        w2_input_scale_max = layer.w2_input_scale.max().to(dtype).item()
        new_w2_input_scale = torch.tensor(
            [w2_input_scale_max], dtype=dtype, device=device
        )
        layer.w2_input_scale = Parameter(new_w2_input_scale, requires_grad=False)