http_server.py 49.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
The entry point of inference server. (SRT = SGLang Runtime)

Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
17
This file implements HTTP APIs for the inference engine via fastapi.
18
19
20
21
"""

import asyncio
import dataclasses
22
import json
23
24
25
import logging
import multiprocessing as multiprocessing
import os
26
import tempfile
27
28
29
import threading
import time
from http import HTTPStatus
30
from typing import Any, AsyncIterator, Callable, Dict, List, Optional, Union
31

32
33
import setproctitle

34
35
from sglang.srt.tracing.trace import process_tracing_init, trace_set_thread_info

36
37
38
# Fix a bug of Python threading
setattr(threading, "_register_atexit", lambda *args, **kwargs: None)

39
from contextlib import asynccontextmanager
40
from typing import AsyncGenerator
41
42

import numpy as np
43
44
45
46
import orjson
import requests
import uvicorn
import uvloop
47
from fastapi import Depends, FastAPI, HTTPException, Request, UploadFile
48
from fastapi.exceptions import RequestValidationError
49
50
51
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import ORJSONResponse, Response, StreamingResponse

52
from sglang.srt.disaggregation.utils import FAKE_BOOTSTRAP_HOST, DisaggregationMode
53
from sglang.srt.entrypoints.engine import _launch_subprocesses
54
55
56
57
from sglang.srt.entrypoints.openai.protocol import (
    ChatCompletionRequest,
    CompletionRequest,
    EmbeddingRequest,
58
    ErrorResponse,
59
60
    ModelCard,
    ModelList,
61
    ResponsesRequest,
62
63
64
65
66
67
68
69
    ScoringRequest,
    V1RerankReqInput,
)
from sglang.srt.entrypoints.openai.serving_chat import OpenAIServingChat
from sglang.srt.entrypoints.openai.serving_completions import OpenAIServingCompletion
from sglang.srt.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
from sglang.srt.entrypoints.openai.serving_rerank import OpenAIServingRerank
from sglang.srt.entrypoints.openai.serving_score import OpenAIServingScore
70
from sglang.srt.function_call.function_call_parser import FunctionCallParser
71
from sglang.srt.managers.io_struct import (
Lianmin Zheng's avatar
Lianmin Zheng committed
72
    AbortReq,
73
74
75
76
77
    CloseSessionReqInput,
    ConfigureLoggingReq,
    EmbeddingReqInput,
    GenerateReqInput,
    GetWeightsByNameReqInput,
78
    InitWeightsSendGroupForRemoteInstanceReqInput,
79
    InitWeightsUpdateGroupReqInput,
80
    LoadLoRAAdapterReqInput,
81
    OpenSessionReqInput,
82
    ParseFunctionCallReq,
83
    ProfileReqInput,
84
85
    ReleaseMemoryOccupationReqInput,
    ResumeMemoryOccupationReqInput,
86
    SendWeightsToRemoteInstanceReqInput,
Xihuai Wang's avatar
Xihuai Wang committed
87
    SeparateReasoningReqInput,
88
    SetInternalStateReq,
89
    SlowDownReqInput,
90
    UnloadLoRAAdapterReqInput,
91
92
    UpdateWeightFromDiskReqInput,
    UpdateWeightsFromDistributedReqInput,
93
    UpdateWeightsFromTensorReqInput,
94
    UpdateWeightVersionReqInput,
95
    VertexGenerateReqInput,
96
)
97
98
from sglang.srt.managers.multi_tokenizer_mixin import (
    MultiTokenizerManager,
99
    MultiTokenizerRouter,
100
    get_main_process_id,
101
    monkey_patch_uvicorn_multiprocessing,
102
103
104
    read_from_shared_memory,
    write_data_for_multi_tokenizer,
)
105
from sglang.srt.managers.template_manager import TemplateManager
106
from sglang.srt.managers.tokenizer_manager import ServerStatus, TokenizerManager
107
from sglang.srt.metrics.func_timer import enable_func_timer
108
from sglang.srt.parser.reasoning_parser import ReasoningParser
109
from sglang.srt.server_args import PortArgs, ServerArgs
110
111
112
113
from sglang.srt.utils import (
    add_api_key_middleware,
    add_prometheus_middleware,
    delete_directory,
114
    get_bool_env_var,
115
116
117
    kill_process_tree,
    set_uvicorn_logging_configs,
)
118
from sglang.srt.warmup import execute_warmups
119
120
121
122
123
124
from sglang.utils import get_exception_traceback
from sglang.version import __version__

logger = logging.getLogger(__name__)
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())

125
126
HEALTH_CHECK_TIMEOUT = int(os.getenv("SGLANG_HEALTH_CHECK_TIMEOUT", 20))

127
128
129
130

# Store global states
@dataclasses.dataclass
class _GlobalState:
131
132
133
    tokenizer_manager: Union[
        TokenizerManager, MultiTokenizerRouter, MultiTokenizerManager
    ]
134
    template_manager: TemplateManager
135
136
137
138
139
140
141
142
143
144
145
    scheduler_info: Dict


_global_state: Optional[_GlobalState] = None


def set_global_state(global_state: _GlobalState):
    global _global_state
    _global_state = global_state


146
147
148
149
150
151
152
async def init_multi_tokenizer() -> ServerArgs:
    """Read args information from shm and init tokenizer manager for current process"""
    pid = os.getpid()
    main_pid = get_main_process_id()
    logger.info(f"current worker_id: {pid}, main processID: {main_pid}")

    # Read configuration from shared memory
153
154
155
156
157
158
159
160
161
    port_args, server_args, scheduler_info = read_from_shared_memory(
        f"multi_tokenizer_args_{main_pid}"
    )
    server_args: ServerArgs

    # API key authentication is not supported in multi-tokenizer mode
    assert (
        server_args.api_key is None
    ), "API key is not supported in multi-tokenizer mode"
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

    port_args.tokenizer_ipc_name = (
        f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}"
    )

    # Launch multi-tokenizer manager process
    tokenizer_manager = MultiTokenizerManager(server_args, port_args)
    template_manager = TemplateManager()
    template_manager.initialize_templates(
        tokenizer_manager=tokenizer_manager,
        model_path=server_args.model_path,
        chat_template=server_args.chat_template,
        completion_template=server_args.completion_template,
    )
    # Register this tokenizer with the main tokenizer manager
    await tokenizer_manager.register_to_main_tokenizer_manager()

    tokenizer_manager.max_req_input_len = scheduler_info["max_req_input_len"]
    set_global_state(
        _GlobalState(
            tokenizer_manager=tokenizer_manager,
            template_manager=template_manager,
            scheduler_info=scheduler_info,
        )
    )
187
188
189
190
191
192
193

    if server_args.enable_trace:
        process_tracing_init(server_args.oltp_traces_endpoint, "sglang")
        if server_args.disaggregation_mode == "null":
            thread_label = f"MultiTokenizer-{tokenizer_manager.worker_id}"
            trace_set_thread_info(thread_label)

194
195
196
    return server_args


197
198
@asynccontextmanager
async def lifespan(fast_api_app: FastAPI):
199
    if not getattr(fast_api_app, "is_single_tokenizer_mode", False):
200
        # Initialize multi-tokenizer support for worker processes
201
202
203
204
205
206
207
208
209
        fast_api_app.server_args: ServerArgs = await init_multi_tokenizer()

        # only metrics middleware is supported in multi-tokenizer mode
        worker_pid = os.getpid()
        if fast_api_app.server_args.enable_metrics:
            add_prometheus_middleware(app)
            enable_func_timer()

        logger.info(f"Worker {worker_pid} added prometheus middleware")
210
211
212
213
214
215
216
217
218
        fast_api_app.warmup_thread = threading.Thread(
            target=_wait_and_warmup,
            args=(
                fast_api_app.server_args,
                None,  # pipe_finish_writer not needed in worker
                None,  # launch_callback not needed in worker
            ),
        )

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    # Initialize OpenAI serving handlers
    fast_api_app.state.openai_serving_completion = OpenAIServingCompletion(
        _global_state.tokenizer_manager, _global_state.template_manager
    )
    fast_api_app.state.openai_serving_chat = OpenAIServingChat(
        _global_state.tokenizer_manager, _global_state.template_manager
    )
    fast_api_app.state.openai_serving_embedding = OpenAIServingEmbedding(
        _global_state.tokenizer_manager, _global_state.template_manager
    )
    fast_api_app.state.openai_serving_score = OpenAIServingScore(
        _global_state.tokenizer_manager
    )
    fast_api_app.state.openai_serving_rerank = OpenAIServingRerank(
        _global_state.tokenizer_manager
    )

236
    server_args: ServerArgs = fast_api_app.server_args
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

    tool_server = None
    if server_args.tool_server == "demo":
        from sglang.srt.entrypoints.openai.tool_server import DemoToolServer

        tool_server = DemoToolServer()
    elif server_args.tool_server:
        from sglang.srt.entrypoints.openai.tool_server import MCPToolServer

        tool_server = MCPToolServer()
        await tool_server.add_tool_server(server_args.tool_server)

    try:
        from sglang.srt.entrypoints.openai.serving_responses import (
            OpenAIServingResponses,
        )

        fast_api_app.state.openai_serving_responses = OpenAIServingResponses(
            _global_state.tokenizer_manager,
            _global_state.template_manager,
            enable_prompt_tokens_details=True,
            enable_force_include_usage=True,
            tool_server=tool_server,
        )
    except Exception as e:
        import traceback

        traceback.print_exc()
        logger.warning(f"Can not initialize OpenAIServingResponses, error: {e}")

267
268
    if server_args.warmups is not None:
        await execute_warmups(
269
270
271
            server_args.disaggregation_mode,
            server_args.warmups.split(","),
            _global_state.tokenizer_manager,
272
273
274
275
276
277
        )
        logger.info("Warmup ended")

    warmup_thread = getattr(fast_api_app, "warmup_thread", None)
    if warmup_thread is not None:
        warmup_thread.start()
278
279
280
281
282
283
284
285
286

    try:
        yield
    finally:
        if server_args.tokenizer_worker_num > 1:
            pid = os.getpid()
            logger.info(f"uvicorn worker {pid} ending...")
            warmup_thread.join()
            logger.info(f"uvicorn worker {pid} ended.")
287
288
289


# Fast API
290
291
292
293
app = FastAPI(
    lifespan=lifespan,
    openapi_url=None if get_bool_env_var("DISABLE_OPENAPI_DOC") else "/openapi.json",
)
294
295
296
297
298
299
300
301
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

302

303
304
305
306
307
308
309
310
311
312
313
314
@app.exception_handler(HTTPException)
async def validation_exception_handler(request: Request, exc: HTTPException):
    """Enrich HTTP exception with status code and other details"""
    error = ErrorResponse(
        object="error",
        message=exc.detail,
        type=str(exc.status_code),
        code=exc.status_code,
    )
    return ORJSONResponse(content=error.model_dump(), status_code=exc.status_code)


315
316
317
318
# Custom exception handlers to change validation error status codes
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(request: Request, exc: RequestValidationError):
    """Override FastAPI's default 422 validation error with 400"""
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    exc_str = str(exc)
    errors_str = str(exc.errors())

    if errors_str and errors_str != exc_str:
        message = f"{exc_str} {errors_str}"
    else:
        message = exc_str

    err = ErrorResponse(
        message=message,
        type=HTTPStatus.BAD_REQUEST.phrase,
        code=HTTPStatus.BAD_REQUEST.value,
    )

333
334
    return ORJSONResponse(
        status_code=400,
335
        content=err.model_dump(),
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    )


async def validate_json_request(raw_request: Request):
    """Validate that the request content-type is application/json."""
    content_type = raw_request.headers.get("content-type", "").lower()
    media_type = content_type.split(";", maxsplit=1)[0]
    if media_type != "application/json":
        raise RequestValidationError(
            errors=[
                {
                    "loc": ["header", "content-type"],
                    "msg": "Unsupported Media Type: Only 'application/json' is allowed",
                    "type": "value_error",
                }
            ]
        )


355
356
357
358
359
360
##### Native API endpoints #####


@app.get("/health")
@app.get("/health_generate")
async def health_generate(request: Request) -> Response:
361
362
363
364
365
366
367
    """
    Check the health of the inference server by sending a special request to generate one token.

    If the server is running something, this request will be ignored, so it creates zero overhead.
    If the server is not running anything, this request will be run, so we know whether the server is healthy.
    """

368
369
370
    if _global_state.tokenizer_manager.gracefully_exit:
        logger.info("Health check request received during shutdown. Returning 503.")
        return Response(status_code=503)
371

Lianmin Zheng's avatar
Lianmin Zheng committed
372
    if _global_state.tokenizer_manager.server_status == ServerStatus.Starting:
373
374
        return Response(status_code=503)

375
376
    sampling_params = {"max_new_tokens": 1, "temperature": 0.0}
    rid = f"HEALTH_CHECK_{time.time()}"
377

378
    if _global_state.tokenizer_manager.is_image_gen:
379
380
        # Keep this branch for some internal use cases.
        raise NotImplementedError("Image generation is not supported yet.")
381
    elif _global_state.tokenizer_manager.is_generation:
382
        gri = GenerateReqInput(
383
384
385
386
            rid=rid,
            input_ids=[0],
            sampling_params=sampling_params,
            log_metrics=False,
387
        )
388
389
390
391
392
393
        if (
            _global_state.tokenizer_manager.server_args.disaggregation_mode
            != DisaggregationMode.NULL
        ):
            gri.bootstrap_host = FAKE_BOOTSTRAP_HOST
            gri.bootstrap_room = 0
394
395
    else:
        gri = EmbeddingReqInput(
396
            rid=rid, input_ids=[0], sampling_params=sampling_params, log_metrics=False
397
398
        )

399
    async def gen():
400
        async for _ in _global_state.tokenizer_manager.generate_request(gri, request):
401
            break
402
403

    task = asyncio.create_task(gen())
404
405
406
407

    # As long as we receive any response from the detokenizer/scheduler, we consider the server is healthy.
    tic = time.time()
    while time.time() < tic + HEALTH_CHECK_TIMEOUT:
408
409
410
411
        await asyncio.sleep(1)
        if _global_state.tokenizer_manager.last_receive_tstamp > tic:
            task.cancel()
            _global_state.tokenizer_manager.rid_to_state.pop(rid, None)
Lianmin Zheng's avatar
Lianmin Zheng committed
412
            _global_state.tokenizer_manager.server_status = ServerStatus.Up
413
414
415
416
417
418
419
420
421
422
423
424
425
            return Response(status_code=200)

    task.cancel()
    tic_time = time.strftime("%H:%M:%S", time.localtime(tic))
    last_receive_time = time.strftime(
        "%H:%M:%S", time.localtime(_global_state.tokenizer_manager.last_receive_tstamp)
    )
    logger.error(
        f"Health check failed. Server couldn't get a response from detokenizer for last "
        f"{HEALTH_CHECK_TIMEOUT} seconds. tic start time: {tic_time}. "
        f"last_heartbeat time: {last_receive_time}"
    )
    _global_state.tokenizer_manager.rid_to_state.pop(rid, None)
Lianmin Zheng's avatar
Lianmin Zheng committed
426
    _global_state.tokenizer_manager.server_status = ServerStatus.UnHealthy
427
    return Response(status_code=503)
428
429
430
431
432
433


@app.get("/get_model_info")
async def get_model_info():
    """Get the model information."""
    result = {
434
435
436
        "model_path": _global_state.tokenizer_manager.model_path,
        "tokenizer_path": _global_state.tokenizer_manager.server_args.tokenizer_path,
        "is_generation": _global_state.tokenizer_manager.is_generation,
437
        "preferred_sampling_params": _global_state.tokenizer_manager.server_args.preferred_sampling_params,
438
        "weight_version": _global_state.tokenizer_manager.server_args.weight_version,
439
440
441
442
    }
    return result


443
444
445
446
447
448
449
450
@app.get("/get_weight_version")
async def get_weight_version():
    """Get the current weight version."""
    return {
        "weight_version": _global_state.tokenizer_manager.server_args.weight_version
    }


451
452
@app.get("/get_server_info")
async def get_server_info():
453
454
455
456
    # Returns interna states per DP.
    internal_states: List[Dict[Any, Any]] = (
        await _global_state.tokenizer_manager.get_internal_state()
    )
457
    return {
458
        **dataclasses.asdict(_global_state.tokenizer_manager.server_args),
459
        **_global_state.scheduler_info,
460
        "internal_states": internal_states,
461
462
463
464
        "version": __version__,
    }


Liangsheng Yin's avatar
Liangsheng Yin committed
465
466
467
468
469
@app.get("/get_load")
async def get_load():
    return await _global_state.tokenizer_manager.get_load()


470
471
# example usage:
# curl -s -X POST http://localhost:30000/set_internal_state -H "Content-Type: application/json" -d '{"server_args": {"max_micro_batch_size": 8}}'
472
473
474
475
476
477
@app.api_route("/set_internal_state", methods=["POST", "PUT"])
async def set_internal_state(obj: SetInternalStateReq, request: Request):
    res = await _global_state.tokenizer_manager.set_internal_state(obj)
    return res


478
479
480
481
482
483
484
485
# fastapi implicitly converts json in the request to obj (dataclass)
@app.api_route("/generate", methods=["POST", "PUT"])
async def generate_request(obj: GenerateReqInput, request: Request):
    """Handle a generate request."""
    if obj.stream:

        async def stream_results() -> AsyncIterator[bytes]:
            try:
486
                async for out in _global_state.tokenizer_manager.generate_request(
487
488
489
490
491
492
493
                    obj, request
                ):
                    yield b"data: " + orjson.dumps(
                        out, option=orjson.OPT_NON_STR_KEYS
                    ) + b"\n\n"
            except ValueError as e:
                out = {"error": {"message": str(e)}}
494
                logger.error(f"[http_server] Error: {e}")
495
496
497
498
499
500
501
502
                yield b"data: " + orjson.dumps(
                    out, option=orjson.OPT_NON_STR_KEYS
                ) + b"\n\n"
            yield b"data: [DONE]\n\n"

        return StreamingResponse(
            stream_results(),
            media_type="text/event-stream",
503
            background=_global_state.tokenizer_manager.create_abort_task(obj),
504
505
506
        )
    else:
        try:
507
            ret = await _global_state.tokenizer_manager.generate_request(
508
509
510
511
                obj, request
            ).__anext__()
            return ret
        except ValueError as e:
512
            logger.error(f"[http_server] Error: {e}")
513
514
515
            return _create_error_response(e)


516
517
518
519
520
521
522
523
524
@app.api_route("/generate_from_file", methods=["POST"])
async def generate_from_file_request(file: UploadFile, request: Request):
    """Handle a generate request, this is purely to work with input_embeds."""
    content = await file.read()
    input_embeds = json.loads(content.decode("utf-8"))

    obj = GenerateReqInput(
        input_embeds=input_embeds,
        sampling_params={
525
            "temperature": 0.0,
526
527
528
529
530
            "max_new_tokens": 512,
        },
    )

    try:
531
532
533
        ret = await _global_state.tokenizer_manager.generate_request(
            obj, request
        ).__anext__()
534
535
536
537
538
539
        return ret
    except ValueError as e:
        logger.error(f"Error: {e}")
        return _create_error_response(e)


540
541
542
543
@app.api_route("/encode", methods=["POST", "PUT"])
async def encode_request(obj: EmbeddingReqInput, request: Request):
    """Handle an embedding request."""
    try:
544
        ret = await _global_state.tokenizer_manager.generate_request(
545
546
547
548
549
550
551
552
553
554
555
            obj, request
        ).__anext__()
        return ret
    except ValueError as e:
        return _create_error_response(e)


@app.api_route("/classify", methods=["POST", "PUT"])
async def classify_request(obj: EmbeddingReqInput, request: Request):
    """Handle a reward model request. Now the arguments and return values are the same as embedding models."""
    try:
556
        ret = await _global_state.tokenizer_manager.generate_request(
557
558
559
560
561
562
563
            obj, request
        ).__anext__()
        return ret
    except ValueError as e:
        return _create_error_response(e)


564
@app.api_route("/flush_cache", methods=["GET", "POST"])
565
566
async def flush_cache():
    """Flush the radix cache."""
567
    ret = await _global_state.tokenizer_manager.flush_cache()
568
569
570
    return Response(
        content="Cache flushed.\nPlease check backend logs for more details. "
        "(When there are running or waiting requests, the operation will not be performed.)\n",
571
        status_code=200 if ret.success else HTTPStatus.BAD_REQUEST,
572
573
574
    )


575
576
577
578
579
580
581
582
583
584
@app.api_route("/clear_hicache_storage_backend", methods=["GET", "POST"])
async def clear_hicache_storage_backend():
    """Clear the hierarchical cache storage backend."""
    ret = await _global_state.tokenizer_manager.clear_hicache_storage()
    return Response(
        content="Hierarchical cache storage backend cleared.\n",
        status_code=200 if ret.success else HTTPStatus.BAD_REQUEST,
    )


585
@app.api_route("/start_profile", methods=["GET", "POST"])
586
async def start_profile_async(obj: Optional[ProfileReqInput] = None):
587
    """Start profiling."""
588
589
590
591
    if obj is None:
        obj = ProfileReqInput()

    await _global_state.tokenizer_manager.start_profile(
592
        output_dir=obj.output_dir,
593
        start_step=obj.start_step,
594
595
596
597
        num_steps=obj.num_steps,
        activities=obj.activities,
        with_stack=obj.with_stack,
        record_shapes=obj.record_shapes,
598
        profile_by_stage=obj.profile_by_stage,
599
    )
600
601
602
603
604
605
606
607
608
    return Response(
        content="Start profiling.\n",
        status_code=200,
    )


@app.api_route("/stop_profile", methods=["GET", "POST"])
async def stop_profile_async():
    """Stop profiling."""
609
    await _global_state.tokenizer_manager.stop_profile()
610
611
612
613
614
615
    return Response(
        content="Stop profiling. This will take some time.\n",
        status_code=200,
    )


616
617
618
619
620
621
622
623
624
625
626
627
@app.api_route("/freeze_gc", methods=["GET", "POST"])
async def freeze_gc_async():
    """
    See engine.freeze_gc for more details.
    """
    await _global_state.tokenizer_manager.freeze_gc()
    return Response(
        content="Garbage collection frozen.\n",
        status_code=200,
    )


628
629
630
@app.api_route("/start_expert_distribution_record", methods=["GET", "POST"])
async def start_expert_distribution_record_async():
    """Start recording the expert distribution. Clear the previous record if any."""
631
    await _global_state.tokenizer_manager.start_expert_distribution_record()
632
633
634
635
636
637
638
639
640
    return Response(
        content="Start recording the expert distribution.\n",
        status_code=200,
    )


@app.api_route("/stop_expert_distribution_record", methods=["GET", "POST"])
async def stop_expert_distribution_record_async():
    """Stop recording the expert distribution."""
641
    await _global_state.tokenizer_manager.stop_expert_distribution_record()
642
643
644
645
646
647
648
649
650
    return Response(
        content="Stop recording the expert distribution.\n",
        status_code=200,
    )


@app.api_route("/dump_expert_distribution_record", methods=["GET", "POST"])
async def dump_expert_distribution_record_async():
    """Dump expert distribution record."""
651
    await _global_state.tokenizer_manager.dump_expert_distribution_record()
652
653
654
655
656
657
    return Response(
        content="Dump expert distribution record.\n",
        status_code=200,
    )


658
659
@app.post("/update_weights_from_disk")
async def update_weights_from_disk(obj: UpdateWeightFromDiskReqInput, request: Request):
660
661
662
    """Update the weights from disk inplace without re-launching the server."""
    success, message, num_paused_requests = (
        await _global_state.tokenizer_manager.update_weights_from_disk(obj, request)
663
    )
664
665
666
667
668
669

    # Update weight version if provided and weights update was successful
    if success and obj.weight_version is not None:
        _update_weight_version_if_provided(obj.weight_version)
        message += f" Weight version updated to {obj.weight_version}."

670
671
672
673
674
    content = {
        "success": success,
        "message": message,
        "num_paused_requests": num_paused_requests,
    }
675
676
677
678
679
680
681
682
683
684
685
686
    if success:
        return ORJSONResponse(
            content,
            status_code=HTTPStatus.OK,
        )
    else:
        return ORJSONResponse(
            content,
            status_code=HTTPStatus.BAD_REQUEST,
        )


687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
@app.post("/init_weights_send_group_for_remote_instance")
async def init_weights_send_group_for_remote_instance(
    obj: InitWeightsSendGroupForRemoteInstanceReqInput, request: Request
):
    success, message = (
        await _global_state.tokenizer_manager.init_weights_send_group_for_remote_instance(
            obj, request
        )
    )
    content = {"success": success, "message": message}
    if success:
        return ORJSONResponse(content, status_code=200)
    else:
        return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)


@app.post("/send_weights_to_remote_instance")
async def send_weights_to_remote_instance(
    obj: SendWeightsToRemoteInstanceReqInput, request: Request
):
    success, message = (
        await _global_state.tokenizer_manager.send_weights_to_remote_instance(
            obj, request
        )
    )
    content = {"success": success, "message": message}
    if success:
        return ORJSONResponse(content, status_code=200)
    else:
        return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)


719
720
721
722
723
@app.post("/init_weights_update_group")
async def init_weights_update_group(
    obj: InitWeightsUpdateGroupReqInput, request: Request
):
    """Initialize the parameter update group."""
724
    success, message = await _global_state.tokenizer_manager.init_weights_update_group(
725
726
727
728
729
730
731
732
733
        obj, request
    )
    content = {"success": success, "message": message}
    if success:
        return ORJSONResponse(content, status_code=200)
    else:
        return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)


734
735
736
737
738
739
740
741
742
743
744
745
746
747
@app.post("/update_weights_from_tensor")
async def update_weights_from_tensor(
    obj: UpdateWeightsFromTensorReqInput, request: Request
):
    """Update the weights from tensor inplace without re-launching the server.
    Notes:
    1. Ensure that the model is on the correct device (e.g., GPU) before calling this endpoint. If the model is moved to the CPU unexpectedly, it may cause performance issues or runtime errors.
    2. HTTP will transmit only the metadata of the tensor, while the tensor itself will be directly copied to the model.
    3. Any binary data in the named tensors should be base64 encoded.
    """

    success, message = await _global_state.tokenizer_manager.update_weights_from_tensor(
        obj, request
    )
748
749
750
751
752
753

    # Update weight version if provided and weights update was successful
    if success and obj.weight_version is not None:
        _update_weight_version_if_provided(obj.weight_version)
        message += f" Weight version updated to {obj.weight_version}."

754
755
756
757
758
759
    content = {"success": success, "message": message}
    return ORJSONResponse(
        content, status_code=200 if success else HTTPStatus.BAD_REQUEST
    )


760
761
762
763
764
@app.post("/update_weights_from_distributed")
async def update_weights_from_distributed(
    obj: UpdateWeightsFromDistributedReqInput, request: Request
):
    """Update model parameter from distributed online."""
765
766
767
768
    success, message = (
        await _global_state.tokenizer_manager.update_weights_from_distributed(
            obj, request
        )
769
    )
770
771
772
773
774
775

    # Update weight version if provided and weights update was successful
    if success and obj.weight_version is not None:
        _update_weight_version_if_provided(obj.weight_version)
        message += f" Weight version updated to {obj.weight_version}."

776
777
778
779
780
781
782
    content = {"success": success, "message": message}
    if success:
        return ORJSONResponse(content, status_code=200)
    else:
        return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)


783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
@app.post("/update_weight_version")
async def update_weight_version(obj: UpdateWeightVersionReqInput, request: Request):
    """Update the weight version. This operation requires no active requests."""
    if obj.abort_all_requests:
        _global_state.tokenizer_manager.abort_request(abort_all=True)

    # Use a simple approach without the complex lock mechanism for now
    # since weight_version update is a simple operation that doesn't affect model weights
    try:
        # Update the weight version in server args (the single source of truth)
        _global_state.tokenizer_manager.server_args.weight_version = obj.new_version

        return ORJSONResponse(
            {
                "success": True,
                "message": f"Weight version updated to {obj.new_version}",
                "new_version": obj.new_version,
            },
            status_code=HTTPStatus.OK,
        )
    except Exception as e:
        return ORJSONResponse(
            {
                "success": False,
                "message": f"Failed to update weight version: {str(e)}",
            },
            status_code=HTTPStatus.BAD_REQUEST,
        )


813
814
815
816
@app.api_route("/get_weights_by_name", methods=["GET", "POST"])
async def get_weights_by_name(obj: GetWeightsByNameReqInput, request: Request):
    """Get model parameter by name."""
    try:
817
        ret = await _global_state.tokenizer_manager.get_weights_by_name(obj, request)
818
819
820
821
822
823
824
825
826
827
828
829
        if ret is None:
            return _create_error_response("Get parameter by name failed")
        else:
            return ORJSONResponse(ret, status_code=200)
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/release_memory_occupation", methods=["GET", "POST"])
async def release_memory_occupation(
    obj: ReleaseMemoryOccupationReqInput, request: Request
):
830
    """Release GPU memory occupation temporarily."""
831
    try:
832
        await _global_state.tokenizer_manager.release_memory_occupation(obj, request)
833
834
835
836
837
838
839
840
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/resume_memory_occupation", methods=["GET", "POST"])
async def resume_memory_occupation(
    obj: ResumeMemoryOccupationReqInput, request: Request
):
841
    """Resume GPU memory occupation."""
842
    try:
843
        await _global_state.tokenizer_manager.resume_memory_occupation(obj, request)
844
845
846
847
    except Exception as e:
        return _create_error_response(e)


848
849
850
851
852
853
854
855
856
857
858
859
860
@app.api_route("/slow_down", methods=["GET", "POST"])
async def slow_down(obj: SlowDownReqInput, request: Request):
    """Slow down the system deliberately. Only for testing. Example scenario:
    when we want to test performance of D in large-scale PD disaggregation and have no enough nodes for P,
    we can use this to slow down D to let it have enough running sequences, and then disable slowdown
    to let it run in full batch size.
    """
    try:
        await _global_state.tokenizer_manager.slow_down(obj, request)
    except Exception as e:
        return _create_error_response(e)


861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
@app.api_route("/load_lora_adapter", methods=["POST"])
async def load_lora_adapter(obj: LoadLoRAAdapterReqInput, request: Request):
    """Load a new LoRA adapter without re-launching the server."""
    result = await _global_state.tokenizer_manager.load_lora_adapter(obj, request)

    if result.success:
        return ORJSONResponse(
            result,
            status_code=HTTPStatus.OK,
        )
    else:
        return ORJSONResponse(
            result,
            status_code=HTTPStatus.BAD_REQUEST,
        )


@app.api_route("/unload_lora_adapter", methods=["POST"])
async def unload_lora_adapter(obj: UnloadLoRAAdapterReqInput, request: Request):
    """Load a new LoRA adapter without re-launching the server."""
    result = await _global_state.tokenizer_manager.unload_lora_adapter(obj, request)

    if result.success:
        return ORJSONResponse(
            result,
            status_code=HTTPStatus.OK,
        )
    else:
        return ORJSONResponse(
            result,
            status_code=HTTPStatus.BAD_REQUEST,
        )


895
896
897
898
@app.api_route("/open_session", methods=["GET", "POST"])
async def open_session(obj: OpenSessionReqInput, request: Request):
    """Open a session, and return its unique session id."""
    try:
899
        session_id = await _global_state.tokenizer_manager.open_session(obj, request)
900
901
902
903
904
905
906
907
908
909
910
        if session_id is None:
            raise Exception(
                "Failed to open the session. Check if a session with the same id is still open."
            )
        return session_id
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/close_session", methods=["GET", "POST"])
async def close_session(obj: CloseSessionReqInput, request: Request):
911
    """Close the session."""
912
    try:
913
        await _global_state.tokenizer_manager.close_session(obj, request)
914
915
916
917
918
919
920
        return Response(status_code=200)
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/configure_logging", methods=["GET", "POST"])
async def configure_logging(obj: ConfigureLoggingReq, request: Request):
921
    """Configure the request logging options."""
922
    _global_state.tokenizer_manager.configure_logging(obj)
923
924
925
    return Response(status_code=200)


Lianmin Zheng's avatar
Lianmin Zheng committed
926
927
928
929
@app.post("/abort_request")
async def abort_request(obj: AbortReq, request: Request):
    """Abort a request."""
    try:
930
931
932
        _global_state.tokenizer_manager.abort_request(
            rid=obj.rid, abort_all=obj.abort_all
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
933
934
935
936
937
        return Response(status_code=200)
    except Exception as e:
        return _create_error_response(e)


938
939
@app.post("/parse_function_call")
async def parse_function_call_request(obj: ParseFunctionCallReq, request: Request):
YAMY's avatar
YAMY committed
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
    """
    A native API endpoint to parse function calls from a text.
    """
    # 1) Initialize the parser based on the request body
    parser = FunctionCallParser(tools=obj.tools, tool_call_parser=obj.tool_call_parser)

    # 2) Call the non-stream parsing method (non-stream)
    normal_text, calls = parser.parse_non_stream(obj.text)

    # 3) Organize the response content
    response_data = {
        "normal_text": normal_text,
        "calls": [
            call.model_dump() for call in calls
        ],  # Convert pydantic objects to dictionaries
    }

    return ORJSONResponse(content=response_data, status_code=200)


Xihuai Wang's avatar
Xihuai Wang committed
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
@app.post("/separate_reasoning")
async def separate_reasoning_request(obj: SeparateReasoningReqInput, request: Request):
    """
    A native API endpoint to separate reasoning from a text.
    """
    # 1) Initialize the parser based on the request body
    parser = ReasoningParser(model_type=obj.reasoning_parser)

    # 2) Call the non-stream parsing method (non-stream)
    reasoning_text, normal_text = parser.parse_non_stream(obj.text)

    # 3) Organize the response content
    response_data = {
        "reasoning_text": reasoning_text,
        "text": normal_text,
    }

    return ORJSONResponse(content=response_data, status_code=200)


980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
@app.post("/pause_generation")
async def pause_generation(request: Request):
    """Pause generation."""
    await _global_state.tokenizer_manager.pause_generation()
    return ORJSONResponse(
        content={"message": "Generation paused successfully.", "status": "ok"},
        status_code=200,
    )


@app.post("/continue_generation")
async def continue_generation(request: Request):
    """Continue generation."""
    await _global_state.tokenizer_manager.continue_generation()
    return ORJSONResponse(
        content={"message": "Generation continued successfully.", "status": "ok"},
        status_code=200,
    )


1000
1001
1002
##### OpenAI-compatible API endpoints #####


1003
1004
1005
1006
1007
1008
@app.post("/v1/completions", dependencies=[Depends(validate_json_request)])
async def openai_v1_completions(request: CompletionRequest, raw_request: Request):
    """OpenAI-compatible text completion endpoint."""
    return await raw_request.app.state.openai_serving_completion.handle_request(
        request, raw_request
    )
1009
1010


1011
1012
1013
1014
1015
1016
1017
1018
@app.post("/v1/chat/completions", dependencies=[Depends(validate_json_request)])
async def openai_v1_chat_completions(
    request: ChatCompletionRequest, raw_request: Request
):
    """OpenAI-compatible chat completion endpoint."""
    return await raw_request.app.state.openai_serving_chat.handle_request(
        request, raw_request
    )
1019
1020


1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
@app.post(
    "/v1/embeddings",
    response_class=ORJSONResponse,
    dependencies=[Depends(validate_json_request)],
)
async def openai_v1_embeddings(request: EmbeddingRequest, raw_request: Request):
    """OpenAI-compatible embeddings endpoint."""
    return await raw_request.app.state.openai_serving_embedding.handle_request(
        request, raw_request
    )
1031
1032
1033


@app.get("/v1/models", response_class=ORJSONResponse)
1034
1035
async def available_models():
    """Show available models. OpenAI-compatible endpoint."""
1036
    served_model_names = [_global_state.tokenizer_manager.served_model_name]
1037
1038
    model_cards = []
    for served_model_name in served_model_names:
1039
1040
1041
1042
1043
1044
1045
        model_cards.append(
            ModelCard(
                id=served_model_name,
                root=served_model_name,
                max_model_len=_global_state.tokenizer_manager.model_config.context_len,
            )
        )
1046
1047
1048
    return ModelList(data=model_cards)


1049
1050
1051
1052
@app.get("/v1/models/{model:path}", response_class=ORJSONResponse)
async def retrieve_model(model: str):
    """Retrieves a model instance, providing basic information about the model."""
    served_model_names = [_global_state.tokenizer_manager.served_model_name]
1053

1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
    if model not in served_model_names:
        return ORJSONResponse(
            status_code=404,
            content={
                "error": {
                    "message": f"The model '{model}' does not exist",
                    "type": "invalid_request_error",
                    "param": "model",
                    "code": "model_not_found",
                }
            },
        )
1066

1067
1068
1069
1070
1071
    return ModelCard(
        id=model,
        root=model,
        max_model_len=_global_state.tokenizer_manager.model_config.context_len,
    )
1072
1073


1074
1075
1076
1077
1078
1079
1080
1081
@app.post("/v1/score", dependencies=[Depends(validate_json_request)])
async def v1_score_request(request: ScoringRequest, raw_request: Request):
    """Endpoint for the decoder-only scoring API. See Engine.score() for detailed documentation."""
    return await raw_request.app.state.openai_serving_score.handle_request(
        request, raw_request
    )


1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
@app.post("/v1/responses", dependencies=[Depends(validate_json_request)])
async def v1_responses_request(request: dict, raw_request: Request):
    """Endpoint for the responses API with reasoning support."""

    request_obj = ResponsesRequest(**request)
    result = await raw_request.app.state.openai_serving_responses.create_responses(
        request_obj, raw_request
    )

    # Handle streaming responses
    if isinstance(result, AsyncGenerator):
        return StreamingResponse(
            result,
            media_type="text/event-stream",
            headers={"Cache-Control": "no-cache", "Connection": "keep-alive"},
        )

    return result


@app.get("/v1/responses/{response_id}")
async def v1_retrieve_responses(response_id: str, raw_request: Request):
    """Retrieve a response by ID."""
    return await raw_request.app.state.openai_serving_responses.retrieve_responses(
        response_id
    )


@app.post("/v1/responses/{response_id}/cancel")
async def v1_cancel_responses(response_id: str, raw_request: Request):
    """Cancel a background response."""
    return await raw_request.app.state.openai_serving_responses.cancel_responses(
        response_id
    )


1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
@app.api_route(
    "/v1/rerank", methods=["POST", "PUT"], dependencies=[Depends(validate_json_request)]
)
async def v1_rerank_request(request: V1RerankReqInput, raw_request: Request):
    """Endpoint for reranking documents based on query relevance."""
    return await raw_request.app.state.openai_serving_rerank.handle_request(
        request, raw_request
    )


1128
1129
1130
1131
1132
1133
1134
1135
## SageMaker API
@app.get("/ping")
async def sagemaker_health() -> Response:
    """Check the health of the http server."""
    return Response(status_code=200)


@app.post("/invocations")
1136
1137
1138
1139
1140
1141
1142
async def sagemaker_chat_completions(
    request: ChatCompletionRequest, raw_request: Request
):
    """OpenAI-compatible chat completion endpoint."""
    return await raw_request.app.state.openai_serving_chat.handle_request(
        request, raw_request
    )
1143
1144


1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
## Vertex AI API
@app.post(os.environ.get("AIP_PREDICT_ROUTE", "/vertex_generate"))
async def vertex_generate(vertex_req: VertexGenerateReqInput, raw_request: Request):
    if not vertex_req.instances:
        return []
    inputs = {}
    for input_key in ("text", "input_ids", "input_embeds"):
        if vertex_req.instances[0].get(input_key):
            inputs[input_key] = [
                instance.get(input_key) for instance in vertex_req.instances
            ]
            break
    image_data = [
        instance.get("image_data")
        for instance in vertex_req.instances
        if instance.get("image_data") is not None
    ] or None
    req = GenerateReqInput(
        **inputs,
        image_data=image_data,
        **(vertex_req.parameters or {}),
    )
    ret = await generate_request(req, raw_request)
1168
1169
    if isinstance(ret, Response):
        return ret
1170
1171
1172
    return ORJSONResponse({"predictions": ret})


1173
1174
1175
1176
1177
1178
def _update_weight_version_if_provided(weight_version: Optional[str]) -> None:
    """Update weight version if provided."""
    if weight_version is not None:
        _global_state.tokenizer_manager.server_args.weight_version = weight_version


1179
1180
1181
1182
1183
1184
1185
1186
1187
def _create_error_response(e):
    return ORJSONResponse(
        {"error": {"message": str(e)}}, status_code=HTTPStatus.BAD_REQUEST
    )


def launch_server(
    server_args: ServerArgs,
    pipe_finish_writer: Optional[multiprocessing.connection.Connection] = None,
1188
    launch_callback: Optional[Callable[[], None]] = None,
1189
1190
1191
1192
1193
1194
1195
1196
):
    """
    Launch SRT (SGLang Runtime) Server.

    The SRT server consists of an HTTP server and an SRT engine.

    - HTTP server: A FastAPI server that routes requests to the engine.
    - The engine consists of three components:
1197
        1. TokenizerManager: Tokenizes the requests and sends them to the scheduler.
1198
1199
1200
1201
        2. Scheduler (subprocess): Receives requests from the Tokenizer Manager, schedules batches, forwards them, and sends the output tokens to the Detokenizer Manager.
        3. DetokenizerManager (subprocess): Detokenizes the output tokens and sends the result back to the Tokenizer Manager.

    Note:
1202
    1. The HTTP server, Engine, and TokenizerManager both run in the main process.
1203
    2. Inter-process communication is done through IPC (each process uses a different port) via the ZMQ library.
1204
    """
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
    if server_args.tokenizer_worker_num > 1:
        port_args = PortArgs.init_new(server_args)
        port_args.tokenizer_worker_ipc_name = (
            f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}"
        )
        tokenizer_manager, template_manager, scheduler_info = _launch_subprocesses(
            server_args=server_args, port_args=port_args
        )
    else:
        tokenizer_manager, template_manager, scheduler_info = _launch_subprocesses(
            server_args=server_args,
        )

1218
1219
1220
1221
1222
1223
        if server_args.enable_trace:
            process_tracing_init(server_args.oltp_traces_endpoint, "sglang")
            if server_args.disaggregation_mode == "null":
                thread_label = "Tokenizer"
                trace_set_thread_info(thread_label)

1224
1225
    set_global_state(
        _GlobalState(
1226
            tokenizer_manager=tokenizer_manager,
1227
            template_manager=template_manager,
1228
1229
1230
1231
            scheduler_info=scheduler_info,
        )
    )

1232
    if server_args.tokenizer_worker_num > 1:
1233
1234
1235
1236
        multi_tokenizer_args_shm = write_data_for_multi_tokenizer(
            port_args,
            server_args,
            scheduler_info,
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
        )
    else:
        # Add api key authorization
        if server_args.api_key:
            add_api_key_middleware(app, server_args.api_key)

        # Add prometheus middleware
        if server_args.enable_metrics:
            add_prometheus_middleware(app)
            enable_func_timer()

        # Send a warmup request - we will create the thread launch it
        # in the lifespan after all other warmups have fired.
        warmup_thread = threading.Thread(
            target=_wait_and_warmup,
            args=(
                server_args,
                pipe_finish_writer,
                launch_callback,
            ),
        )
        app.warmup_thread = warmup_thread
1259
1260
1261
1262

    try:
        # Update logging configs
        set_uvicorn_logging_configs()
1263
        app.server_args = server_args
1264
        # Listen for HTTP requests
1265
1266
1267
1268
1269
1270
1271
1272
        if server_args.tokenizer_worker_num > 1:
            from uvicorn.config import LOGGING_CONFIG

            LOGGING_CONFIG["loggers"]["sglang.srt.entrypoints.http_server"] = {
                "handlers": ["default"],
                "level": "INFO",
                "propagate": False,
            }
1273
1274
1275

            monkey_patch_uvicorn_multiprocessing()

1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
            uvicorn.run(
                "sglang.srt.entrypoints.http_server:app",
                host=server_args.host,
                port=server_args.port,
                log_level=server_args.log_level_http or server_args.log_level,
                timeout_keep_alive=5,
                loop="uvloop",
                workers=server_args.tokenizer_worker_num,
            )
        else:
1286
            app.is_single_tokenizer_mode = True
1287
1288
1289
1290
1291
1292
1293
1294
            uvicorn.run(
                app,
                host=server_args.host,
                port=server_args.port,
                log_level=server_args.log_level_http or server_args.log_level,
                timeout_keep_alive=5,
                loop="uvloop",
            )
1295
    finally:
1296
        if server_args.tokenizer_worker_num > 1:
1297
1298
            multi_tokenizer_args_shm.unlink()
            _global_state.tokenizer_manager.socket_mapping.clear_all_sockets()
1299
1300
        else:
            warmup_thread.join()
1301
1302


Zilin Zhu's avatar
Zilin Zhu committed
1303
def _execute_server_warmup(
1304
1305
1306
    server_args: ServerArgs,
    pipe_finish_writer: Optional[multiprocessing.connection.Connection],
):
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
    headers = {}
    url = server_args.url()
    if server_args.api_key:
        headers["Authorization"] = f"Bearer {server_args.api_key}"

    # Wait until the server is launched
    success = False
    for _ in range(120):
        time.sleep(1)
        try:
            res = requests.get(url + "/get_model_info", timeout=5, headers=headers)
            assert res.status_code == 200, f"{res=}, {res.text=}"
            success = True
            break
        except (AssertionError, requests.exceptions.RequestException):
            last_traceback = get_exception_traceback()
            pass

    if not success:
        if pipe_finish_writer is not None:
            pipe_finish_writer.send(last_traceback)
        logger.error(f"Initialization failed. warmup error: {last_traceback}")
        kill_process_tree(os.getpid())
Zilin Zhu's avatar
Zilin Zhu committed
1330
        return success
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343

    model_info = res.json()

    # Send a warmup request
    request_name = "/generate" if model_info["is_generation"] else "/encode"
    max_new_tokens = 8 if model_info["is_generation"] else 1
    json_data = {
        "sampling_params": {
            "temperature": 0,
            "max_new_tokens": max_new_tokens,
        },
    }
    if server_args.skip_tokenizer_init:
fzyzcjy's avatar
fzyzcjy committed
1344
        json_data["input_ids"] = [[10, 11, 12] for _ in range(server_args.dp_size)]
fzyzcjy's avatar
fzyzcjy committed
1345
1346
1347
        # TODO Workaround the bug that embedding errors for list of size 1
        if server_args.dp_size == 1:
            json_data["input_ids"] = json_data["input_ids"][0]
1348
    else:
fzyzcjy's avatar
fzyzcjy committed
1349
        json_data["text"] = ["The capital city of France is"] * server_args.dp_size
fzyzcjy's avatar
fzyzcjy committed
1350
1351
1352
        # TODO Workaround the bug that embedding errors for list of size 1
        if server_args.dp_size == 1:
            json_data["text"] = json_data["text"][0]
1353

1354
1355
1356
1357
1358
1359
1360
1361
    # Debug dumping
    if server_args.debug_tensor_dump_input_file:
        json_data.pop("text", None)
        json_data["input_ids"] = np.load(
            server_args.debug_tensor_dump_input_file
        ).tolist()
        json_data["sampling_params"]["max_new_tokens"] = 0

1362
    try:
1363
1364
1365
1366
1367
1368
1369
        if server_args.disaggregation_mode == "null":
            res = requests.post(
                url + request_name,
                json=json_data,
                headers=headers,
                timeout=600,
            )
1370
            assert res.status_code == 200, f"{res}"
1371
1372
            _global_state.tokenizer_manager.server_status = ServerStatus.Up

1373
        else:
1374
            logger.info(f"Start of pd disaggregation warmup ...")
1375
1376
1377
1378
1379
1380
            json_data = {
                "sampling_params": {
                    "temperature": 0.0,
                    "max_new_tokens": 8,
                    "ignore_eos": True,
                },
Byron Hsu's avatar
Byron Hsu committed
1381
                "bootstrap_host": [FAKE_BOOTSTRAP_HOST] * server_args.dp_size,
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
                # This is a hack to ensure fake transfer is enabled during prefill warmup
                # ensure each dp rank has a unique bootstrap_room during prefill warmup
                "bootstrap_room": [
                    i * (2**63 // server_args.dp_size) + (i % server_args.tp_size)
                    for i in range(server_args.dp_size)
                ],
                "input_ids": [[0, 1, 2, 3]] * server_args.dp_size,
            }
            res = requests.post(
                url + request_name,
                json=json_data,
                headers=headers,
                timeout=1800,  # because of deep gemm precache is very long if not precache.
            )
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
            if res.status_code == 200:
                logger.info(
                    f"End of prefill disaggregation mode warmup with status {res.status_code}, resp: {res.json()}"
                )
                _global_state.tokenizer_manager.server_status = ServerStatus.Up
            else:
                logger.info(
                    "Prefill disaggregation mode warm Up Failed, status code: {}".format(
                        res.status_code
                    )
                )
                _global_state.tokenizer_manager.server_status = ServerStatus.UnHealthy
1408

1409
1410
1411
1412
1413
1414
    except Exception:
        last_traceback = get_exception_traceback()
        if pipe_finish_writer is not None:
            pipe_finish_writer.send(last_traceback)
        logger.error(f"Initialization failed. warmup error: {last_traceback}")
        kill_process_tree(os.getpid())
Zilin Zhu's avatar
Zilin Zhu committed
1415
        return False
1416
1417

    # Debug print
1418
    # logger.info(f"warmup request returns: {res.json()=}")
Zilin Zhu's avatar
Zilin Zhu committed
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
    return success


def _wait_and_warmup(
    server_args: ServerArgs,
    pipe_finish_writer: Optional[multiprocessing.connection.Connection],
    launch_callback: Optional[Callable[[], None]] = None,
):
    if not server_args.skip_server_warmup:
        if not _execute_server_warmup(
            server_args,
            pipe_finish_writer,
        ):
            return
1433
1434
    else:
        _global_state.tokenizer_manager.server_status = ServerStatus.Up
1435
1436

    logger.info("The server is fired up and ready to roll!")
1437

1438
1439
1440
1441
1442
    if pipe_finish_writer is not None:
        pipe_finish_writer.send("ready")

    if server_args.delete_ckpt_after_loading:
        delete_directory(server_args.model_path)
1443
1444
1445
1446
1447
1448

    if server_args.debug_tensor_dump_input_file:
        kill_process_tree(os.getpid())

    if launch_callback is not None:
        launch_callback()