http_server.py 28.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
The entry point of inference server. (SRT = SGLang Runtime)

Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
17
This file implements HTTP APIs for the inference engine via fastapi.
18
19
20
21
"""

import asyncio
import dataclasses
22
import json
23
24
25
26
27
28
import logging
import multiprocessing as multiprocessing
import os
import threading
import time
from http import HTTPStatus
Lianmin Zheng's avatar
Lianmin Zheng committed
29
from typing import AsyncIterator, Callable, Dict, Optional
30
31
32
33

# Fix a bug of Python threading
setattr(threading, "_register_atexit", lambda *args, **kwargs: None)

34
35
36
from contextlib import asynccontextmanager

import numpy as np
37
38
39
40
41
42
43
44
import orjson
import requests
import uvicorn
import uvloop
from fastapi import FastAPI, File, Form, Request, UploadFile
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import ORJSONResponse, Response, StreamingResponse

45
from sglang.srt.disaggregation.utils import FakeBootstrapHost
46
from sglang.srt.entrypoints.engine import _launch_subprocesses
YAMY's avatar
YAMY committed
47
from sglang.srt.function_call_parser import FunctionCallParser
48
49
50
51
52
53
54
55
from sglang.srt.managers.io_struct import (
    CloseSessionReqInput,
    ConfigureLoggingReq,
    EmbeddingReqInput,
    GenerateReqInput,
    GetWeightsByNameReqInput,
    InitWeightsUpdateGroupReqInput,
    OpenSessionReqInput,
56
    ParseFunctionCallReq,
57
    ProfileReqInput,
58
59
    ReleaseMemoryOccupationReqInput,
    ResumeMemoryOccupationReqInput,
Xihuai Wang's avatar
Xihuai Wang committed
60
    SeparateReasoningReqInput,
61
    SetInternalStateReq,
62
63
    UpdateWeightFromDiskReqInput,
    UpdateWeightsFromDistributedReqInput,
64
    UpdateWeightsFromTensorReqInput,
65
    VertexGenerateReqInput,
66
)
67
from sglang.srt.managers.tokenizer_manager import TokenizerManager
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from sglang.srt.metrics.func_timer import enable_func_timer
from sglang.srt.openai_api.adapter import (
    v1_batches,
    v1_cancel_batch,
    v1_chat_completions,
    v1_completions,
    v1_delete_file,
    v1_embeddings,
    v1_files_create,
    v1_retrieve_batch,
    v1_retrieve_file,
    v1_retrieve_file_content,
)
from sglang.srt.openai_api.protocol import ModelCard, ModelList
Xihuai Wang's avatar
Xihuai Wang committed
82
from sglang.srt.reasoning_parser import ReasoningParser
83
84
85
86
87
from sglang.srt.server_args import ServerArgs
from sglang.srt.utils import (
    add_api_key_middleware,
    add_prometheus_middleware,
    delete_directory,
88
    get_bool_env_var,
89
90
91
    kill_process_tree,
    set_uvicorn_logging_configs,
)
92
from sglang.srt.warmup import execute_warmups
93
94
95
96
97
98
99
100
101
102
from sglang.utils import get_exception_traceback
from sglang.version import __version__

logger = logging.getLogger(__name__)
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())


# Store global states
@dataclasses.dataclass
class _GlobalState:
103
    tokenizer_manager: TokenizerManager
104
105
106
107
108
109
110
111
112
113
114
    scheduler_info: Dict


_global_state: Optional[_GlobalState] = None


def set_global_state(global_state: _GlobalState):
    global _global_state
    _global_state = global_state


115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
@asynccontextmanager
async def lifespan(fast_api_app: FastAPI):
    server_args: ServerArgs = fast_api_app.server_args
    if server_args.warmups is not None:
        await execute_warmups(
            server_args.warmups.split(","), _global_state.tokenizer_manager
        )
        logger.info("Warmup ended")

    warmup_thread = getattr(fast_api_app, "warmup_thread", None)
    if warmup_thread is not None:
        warmup_thread.start()
    yield


# Fast API
131
132
133
134
app = FastAPI(
    lifespan=lifespan,
    openapi_url=None if get_bool_env_var("DISABLE_OPENAPI_DOC") else "/openapi.json",
)
135
136
137
138
139
140
141
142
143
144
145
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

HEALTH_CHECK_TIMEOUT = int(os.getenv("SGLANG_HEALTH_CHECK_TIMEOUT", 20))


146
147
148
149
150
151
152
153
154
155
156
157
158
##### Native API endpoints #####


@app.get("/health")
async def health() -> Response:
    """Check the health of the http server."""
    return Response(status_code=200)


@app.get("/health_generate")
async def health_generate(request: Request) -> Response:
    """Check the health of the inference server by generating one token."""

159
160
    sampling_params = {"max_new_tokens": 1, "temperature": 0.0}
    rid = f"HEALTH_CHECK_{time.time()}"
161

162
163
164
    if _global_state.tokenizer_manager.is_image_gen:
        raise NotImplementedError()
    elif _global_state.tokenizer_manager.is_generation:
165
        gri = GenerateReqInput(
166
167
168
169
            rid=rid,
            input_ids=[0],
            sampling_params=sampling_params,
            log_metrics=False,
170
171
172
        )
    else:
        gri = EmbeddingReqInput(
173
            rid=rid, input_ids=[0], sampling_params=sampling_params, log_metrics=False
174
175
        )

176
    async def gen():
177
        async for _ in _global_state.tokenizer_manager.generate_request(gri, request):
178
            break
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

    tic = time.time()
    task = asyncio.create_task(gen())
    while time.time() < tic + HEALTH_CHECK_TIMEOUT:
        await asyncio.sleep(1)
        if _global_state.tokenizer_manager.last_receive_tstamp > tic:
            task.cancel()
            _global_state.tokenizer_manager.rid_to_state.pop(rid, None)
            return Response(status_code=200)

    task.cancel()
    tic_time = time.strftime("%H:%M:%S", time.localtime(tic))
    last_receive_time = time.strftime(
        "%H:%M:%S", time.localtime(_global_state.tokenizer_manager.last_receive_tstamp)
    )
    logger.error(
        f"Health check failed. Server couldn't get a response from detokenizer for last "
        f"{HEALTH_CHECK_TIMEOUT} seconds. tic start time: {tic_time}. "
        f"last_heartbeat time: {last_receive_time}"
    )
    _global_state.tokenizer_manager.rid_to_state.pop(rid, None)
    return Response(status_code=503)
201
202
203
204
205
206


@app.get("/get_model_info")
async def get_model_info():
    """Get the model information."""
    result = {
207
208
209
        "model_path": _global_state.tokenizer_manager.model_path,
        "tokenizer_path": _global_state.tokenizer_manager.server_args.tokenizer_path,
        "is_generation": _global_state.tokenizer_manager.is_generation,
210
211
212
213
214
215
    }
    return result


@app.get("/get_server_info")
async def get_server_info():
216
    internal_states = await _global_state.tokenizer_manager.get_internal_state()
217
    return {
218
        **dataclasses.asdict(_global_state.tokenizer_manager.server_args),
219
        **_global_state.scheduler_info,
220
        **internal_states,
221
222
223
224
        "version": __version__,
    }


225
226
227
228
229
230
@app.api_route("/set_internal_state", methods=["POST", "PUT"])
async def set_internal_state(obj: SetInternalStateReq, request: Request):
    res = await _global_state.tokenizer_manager.set_internal_state(obj)
    return res


231
232
233
234
235
236
237
238
# fastapi implicitly converts json in the request to obj (dataclass)
@app.api_route("/generate", methods=["POST", "PUT"])
async def generate_request(obj: GenerateReqInput, request: Request):
    """Handle a generate request."""
    if obj.stream:

        async def stream_results() -> AsyncIterator[bytes]:
            try:
239
                async for out in _global_state.tokenizer_manager.generate_request(
240
241
242
243
244
245
246
                    obj, request
                ):
                    yield b"data: " + orjson.dumps(
                        out, option=orjson.OPT_NON_STR_KEYS
                    ) + b"\n\n"
            except ValueError as e:
                out = {"error": {"message": str(e)}}
247
                logger.error(f"Error: {e}")
248
249
250
251
252
253
254
255
                yield b"data: " + orjson.dumps(
                    out, option=orjson.OPT_NON_STR_KEYS
                ) + b"\n\n"
            yield b"data: [DONE]\n\n"

        return StreamingResponse(
            stream_results(),
            media_type="text/event-stream",
256
            background=_global_state.tokenizer_manager.create_abort_task(obj),
257
258
259
        )
    else:
        try:
260
            ret = await _global_state.tokenizer_manager.generate_request(
261
262
263
264
265
266
267
268
                obj, request
            ).__anext__()
            return ret
        except ValueError as e:
            logger.error(f"Error: {e}")
            return _create_error_response(e)


269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
@app.api_route("/generate_from_file", methods=["POST"])
async def generate_from_file_request(file: UploadFile, request: Request):
    """Handle a generate request, this is purely to work with input_embeds."""
    content = await file.read()
    input_embeds = json.loads(content.decode("utf-8"))

    obj = GenerateReqInput(
        input_embeds=input_embeds,
        sampling_params={
            "repetition_penalty": 1.2,
            "temperature": 0.2,
            "max_new_tokens": 512,
        },
    )

    try:
285
286
287
        ret = await _global_state.tokenizer_manager.generate_request(
            obj, request
        ).__anext__()
288
289
290
291
292
293
        return ret
    except ValueError as e:
        logger.error(f"Error: {e}")
        return _create_error_response(e)


294
295
296
297
@app.api_route("/encode", methods=["POST", "PUT"])
async def encode_request(obj: EmbeddingReqInput, request: Request):
    """Handle an embedding request."""
    try:
298
        ret = await _global_state.tokenizer_manager.generate_request(
299
300
301
302
303
304
305
306
307
308
309
            obj, request
        ).__anext__()
        return ret
    except ValueError as e:
        return _create_error_response(e)


@app.api_route("/classify", methods=["POST", "PUT"])
async def classify_request(obj: EmbeddingReqInput, request: Request):
    """Handle a reward model request. Now the arguments and return values are the same as embedding models."""
    try:
310
        ret = await _global_state.tokenizer_manager.generate_request(
311
312
313
314
315
316
317
            obj, request
        ).__anext__()
        return ret
    except ValueError as e:
        return _create_error_response(e)


318
@app.api_route("/flush_cache", methods=["GET", "POST"])
319
320
async def flush_cache():
    """Flush the radix cache."""
321
    ret = await _global_state.tokenizer_manager.flush_cache()
322
323
324
    return Response(
        content="Cache flushed.\nPlease check backend logs for more details. "
        "(When there are running or waiting requests, the operation will not be performed.)\n",
325
        status_code=200 if ret.success else HTTPStatus.BAD_REQUEST,
326
327
328
329
    )


@app.api_route("/start_profile", methods=["GET", "POST"])
330
async def start_profile_async(obj: Optional[ProfileReqInput] = None):
331
    """Start profiling."""
332
333
334
335
336
337
    if obj is None:
        obj = ProfileReqInput()

    await _global_state.tokenizer_manager.start_profile(
        obj.output_dir, obj.num_steps, obj.activities
    )
338
339
340
341
342
343
344
345
346
    return Response(
        content="Start profiling.\n",
        status_code=200,
    )


@app.api_route("/stop_profile", methods=["GET", "POST"])
async def stop_profile_async():
    """Stop profiling."""
347
    _global_state.tokenizer_manager.stop_profile()
348
349
350
351
352
353
    return Response(
        content="Stop profiling. This will take some time.\n",
        status_code=200,
    )


354
355
356
@app.api_route("/start_expert_distribution_record", methods=["GET", "POST"])
async def start_expert_distribution_record_async():
    """Start recording the expert distribution. Clear the previous record if any."""
357
    await _global_state.tokenizer_manager.start_expert_distribution_record()
358
359
360
361
362
363
364
365
366
    return Response(
        content="Start recording the expert distribution.\n",
        status_code=200,
    )


@app.api_route("/stop_expert_distribution_record", methods=["GET", "POST"])
async def stop_expert_distribution_record_async():
    """Stop recording the expert distribution."""
367
    await _global_state.tokenizer_manager.stop_expert_distribution_record()
368
369
370
371
372
373
374
375
376
    return Response(
        content="Stop recording the expert distribution.\n",
        status_code=200,
    )


@app.api_route("/dump_expert_distribution_record", methods=["GET", "POST"])
async def dump_expert_distribution_record_async():
    """Dump expert distribution record."""
377
    await _global_state.tokenizer_manager.dump_expert_distribution_record()
378
379
380
381
382
383
    return Response(
        content="Dump expert distribution record.\n",
        status_code=200,
    )


384
385
@app.post("/update_weights_from_disk")
async def update_weights_from_disk(obj: UpdateWeightFromDiskReqInput, request: Request):
386
387
388
    """Update the weights from disk inplace without re-launching the server."""
    success, message, num_paused_requests = (
        await _global_state.tokenizer_manager.update_weights_from_disk(obj, request)
389
    )
390
391
392
393
394
    content = {
        "success": success,
        "message": message,
        "num_paused_requests": num_paused_requests,
    }
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    if success:
        return ORJSONResponse(
            content,
            status_code=HTTPStatus.OK,
        )
    else:
        return ORJSONResponse(
            content,
            status_code=HTTPStatus.BAD_REQUEST,
        )


@app.post("/init_weights_update_group")
async def init_weights_update_group(
    obj: InitWeightsUpdateGroupReqInput, request: Request
):
    """Initialize the parameter update group."""
412
    success, message = await _global_state.tokenizer_manager.init_weights_update_group(
413
414
415
416
417
418
419
420
421
        obj, request
    )
    content = {"success": success, "message": message}
    if success:
        return ORJSONResponse(content, status_code=200)
    else:
        return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)


422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
@app.post("/update_weights_from_tensor")
async def update_weights_from_tensor(
    obj: UpdateWeightsFromTensorReqInput, request: Request
):
    """Update the weights from tensor inplace without re-launching the server.
    Notes:
    1. Ensure that the model is on the correct device (e.g., GPU) before calling this endpoint. If the model is moved to the CPU unexpectedly, it may cause performance issues or runtime errors.
    2. HTTP will transmit only the metadata of the tensor, while the tensor itself will be directly copied to the model.
    3. Any binary data in the named tensors should be base64 encoded.
    """

    success, message = await _global_state.tokenizer_manager.update_weights_from_tensor(
        obj, request
    )
    content = {"success": success, "message": message}
    return ORJSONResponse(
        content, status_code=200 if success else HTTPStatus.BAD_REQUEST
    )


442
443
444
445
446
@app.post("/update_weights_from_distributed")
async def update_weights_from_distributed(
    obj: UpdateWeightsFromDistributedReqInput, request: Request
):
    """Update model parameter from distributed online."""
447
448
449
450
    success, message = (
        await _global_state.tokenizer_manager.update_weights_from_distributed(
            obj, request
        )
451
452
453
454
455
456
457
458
459
460
461
462
    )
    content = {"success": success, "message": message}
    if success:
        return ORJSONResponse(content, status_code=200)
    else:
        return ORJSONResponse(content, status_code=HTTPStatus.BAD_REQUEST)


@app.api_route("/get_weights_by_name", methods=["GET", "POST"])
async def get_weights_by_name(obj: GetWeightsByNameReqInput, request: Request):
    """Get model parameter by name."""
    try:
463
        ret = await _global_state.tokenizer_manager.get_weights_by_name(obj, request)
464
465
466
467
468
469
470
471
472
473
474
475
        if ret is None:
            return _create_error_response("Get parameter by name failed")
        else:
            return ORJSONResponse(ret, status_code=200)
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/release_memory_occupation", methods=["GET", "POST"])
async def release_memory_occupation(
    obj: ReleaseMemoryOccupationReqInput, request: Request
):
476
    """Release GPU memory occupation temporarily."""
477
    try:
478
        await _global_state.tokenizer_manager.release_memory_occupation(obj, request)
479
480
481
482
483
484
485
486
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/resume_memory_occupation", methods=["GET", "POST"])
async def resume_memory_occupation(
    obj: ResumeMemoryOccupationReqInput, request: Request
):
487
    """Resume GPU memory occupation."""
488
    try:
489
        await _global_state.tokenizer_manager.resume_memory_occupation(obj, request)
490
491
492
493
494
495
496
497
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/open_session", methods=["GET", "POST"])
async def open_session(obj: OpenSessionReqInput, request: Request):
    """Open a session, and return its unique session id."""
    try:
498
        session_id = await _global_state.tokenizer_manager.open_session(obj, request)
499
500
501
502
503
504
505
506
507
508
509
        if session_id is None:
            raise Exception(
                "Failed to open the session. Check if a session with the same id is still open."
            )
        return session_id
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/close_session", methods=["GET", "POST"])
async def close_session(obj: CloseSessionReqInput, request: Request):
510
    """Close the session."""
511
    try:
512
        await _global_state.tokenizer_manager.close_session(obj, request)
513
514
515
516
517
518
519
        return Response(status_code=200)
    except Exception as e:
        return _create_error_response(e)


@app.api_route("/configure_logging", methods=["GET", "POST"])
async def configure_logging(obj: ConfigureLoggingReq, request: Request):
520
    """Configure the request logging options."""
521
    _global_state.tokenizer_manager.configure_logging(obj)
522
523
524
    return Response(status_code=200)


525
526
@app.post("/parse_function_call")
async def parse_function_call_request(obj: ParseFunctionCallReq, request: Request):
YAMY's avatar
YAMY committed
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
    """
    A native API endpoint to parse function calls from a text.
    """
    # 1) Initialize the parser based on the request body
    parser = FunctionCallParser(tools=obj.tools, tool_call_parser=obj.tool_call_parser)

    # 2) Call the non-stream parsing method (non-stream)
    normal_text, calls = parser.parse_non_stream(obj.text)

    # 3) Organize the response content
    response_data = {
        "normal_text": normal_text,
        "calls": [
            call.model_dump() for call in calls
        ],  # Convert pydantic objects to dictionaries
    }

    return ORJSONResponse(content=response_data, status_code=200)


Xihuai Wang's avatar
Xihuai Wang committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
@app.post("/separate_reasoning")
async def separate_reasoning_request(obj: SeparateReasoningReqInput, request: Request):
    """
    A native API endpoint to separate reasoning from a text.
    """
    # 1) Initialize the parser based on the request body
    parser = ReasoningParser(model_type=obj.reasoning_parser)

    # 2) Call the non-stream parsing method (non-stream)
    reasoning_text, normal_text = parser.parse_non_stream(obj.text)

    # 3) Organize the response content
    response_data = {
        "reasoning_text": reasoning_text,
        "text": normal_text,
    }

    return ORJSONResponse(content=response_data, status_code=200)


567
568
569
570
571
##### OpenAI-compatible API endpoints #####


@app.post("/v1/completions")
async def openai_v1_completions(raw_request: Request):
572
    return await v1_completions(_global_state.tokenizer_manager, raw_request)
573
574
575
576


@app.post("/v1/chat/completions")
async def openai_v1_chat_completions(raw_request: Request):
577
    return await v1_chat_completions(_global_state.tokenizer_manager, raw_request)
578
579
580
581


@app.post("/v1/embeddings", response_class=ORJSONResponse)
async def openai_v1_embeddings(raw_request: Request):
582
    response = await v1_embeddings(_global_state.tokenizer_manager, raw_request)
583
584
585
586
587
588
    return response


@app.get("/v1/models", response_class=ORJSONResponse)
def available_models():
    """Show available models."""
589
    served_model_names = [_global_state.tokenizer_manager.served_model_name]
590
591
    model_cards = []
    for served_model_name in served_model_names:
592
593
594
595
596
597
598
        model_cards.append(
            ModelCard(
                id=served_model_name,
                root=served_model_name,
                max_model_len=_global_state.tokenizer_manager.model_config.context_len,
            )
        )
599
600
601
602
603
604
    return ModelList(data=model_cards)


@app.post("/v1/files")
async def openai_v1_files(file: UploadFile = File(...), purpose: str = Form("batch")):
    return await v1_files_create(
605
        file, purpose, _global_state.tokenizer_manager.server_args.file_storage_path
606
607
608
609
610
611
612
613
614
615
616
    )


@app.delete("/v1/files/{file_id}")
async def delete_file(file_id: str):
    # https://platform.openai.com/docs/api-reference/files/delete
    return await v1_delete_file(file_id)


@app.post("/v1/batches")
async def openai_v1_batches(raw_request: Request):
617
    return await v1_batches(_global_state.tokenizer_manager, raw_request)
618
619
620
621
622


@app.post("/v1/batches/{batch_id}/cancel")
async def cancel_batches(batch_id: str):
    # https://platform.openai.com/docs/api-reference/batch/cancel
623
    return await v1_cancel_batch(_global_state.tokenizer_manager, batch_id)
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642


@app.get("/v1/batches/{batch_id}")
async def retrieve_batch(batch_id: str):
    return await v1_retrieve_batch(batch_id)


@app.get("/v1/files/{file_id}")
async def retrieve_file(file_id: str):
    # https://platform.openai.com/docs/api-reference/files/retrieve
    return await v1_retrieve_file(file_id)


@app.get("/v1/files/{file_id}/content")
async def retrieve_file_content(file_id: str):
    # https://platform.openai.com/docs/api-reference/files/retrieve-contents
    return await v1_retrieve_file_content(file_id)


643
644
645
646
647
648
649
650
651
652
653
654
## SageMaker API
@app.get("/ping")
async def sagemaker_health() -> Response:
    """Check the health of the http server."""
    return Response(status_code=200)


@app.post("/invocations")
async def sagemaker_chat_completions(raw_request: Request):
    return await v1_chat_completions(_global_state.tokenizer_manager, raw_request)


655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
## Vertex AI API
@app.post(os.environ.get("AIP_PREDICT_ROUTE", "/vertex_generate"))
async def vertex_generate(vertex_req: VertexGenerateReqInput, raw_request: Request):
    if not vertex_req.instances:
        return []
    inputs = {}
    for input_key in ("text", "input_ids", "input_embeds"):
        if vertex_req.instances[0].get(input_key):
            inputs[input_key] = [
                instance.get(input_key) for instance in vertex_req.instances
            ]
            break
    image_data = [
        instance.get("image_data")
        for instance in vertex_req.instances
        if instance.get("image_data") is not None
    ] or None
    req = GenerateReqInput(
        **inputs,
        image_data=image_data,
        **(vertex_req.parameters or {}),
    )
    ret = await generate_request(req, raw_request)
    return ORJSONResponse({"predictions": ret})


681
682
683
684
685
686
687
688
689
def _create_error_response(e):
    return ORJSONResponse(
        {"error": {"message": str(e)}}, status_code=HTTPStatus.BAD_REQUEST
    )


def launch_server(
    server_args: ServerArgs,
    pipe_finish_writer: Optional[multiprocessing.connection.Connection] = None,
690
    launch_callback: Optional[Callable[[], None]] = None,
691
692
693
694
695
696
697
698
):
    """
    Launch SRT (SGLang Runtime) Server.

    The SRT server consists of an HTTP server and an SRT engine.

    - HTTP server: A FastAPI server that routes requests to the engine.
    - The engine consists of three components:
699
        1. TokenizerManager: Tokenizes the requests and sends them to the scheduler.
700
701
702
703
        2. Scheduler (subprocess): Receives requests from the Tokenizer Manager, schedules batches, forwards them, and sends the output tokens to the Detokenizer Manager.
        3. DetokenizerManager (subprocess): Detokenizes the output tokens and sends the result back to the Tokenizer Manager.

    Note:
704
    1. The HTTP server, Engine, and TokenizerManager both run in the main process.
705
    2. Inter-process communication is done through IPC (each process uses a different port) via the ZMQ library.
706
    """
707
    tokenizer_manager, scheduler_info = _launch_subprocesses(server_args=server_args)
708
709
    set_global_state(
        _GlobalState(
710
            tokenizer_manager=tokenizer_manager,
711
712
713
714
715
716
717
718
719
720
721
722
723
            scheduler_info=scheduler_info,
        )
    )

    # Add api key authorization
    if server_args.api_key:
        add_api_key_middleware(app, server_args.api_key)

    # Add prometheus middleware
    if server_args.enable_metrics:
        add_prometheus_middleware(app)
        enable_func_timer()

724
725
726
    # Send a warmup request - we will create the thread launch it
    # in the lifespan after all other warmups have fired.
    warmup_thread = threading.Thread(
727
728
729
730
        target=_wait_and_warmup,
        args=(
            server_args,
            pipe_finish_writer,
731
            _global_state.tokenizer_manager.image_token_id,
732
            launch_callback,
733
734
        ),
    )
735
    app.warmup_thread = warmup_thread
736
737
738
739

    try:
        # Update logging configs
        set_uvicorn_logging_configs()
740
        app.server_args = server_args
741
742
743
744
745
746
747
748
749
750
        # Listen for HTTP requests
        uvicorn.run(
            app,
            host=server_args.host,
            port=server_args.port,
            log_level=server_args.log_level_http or server_args.log_level,
            timeout_keep_alive=5,
            loop="uvloop",
        )
    finally:
751
        warmup_thread.join()
752
753


754
755
756
757
758
759
def _wait_and_warmup(
    server_args: ServerArgs,
    pipe_finish_writer: Optional[multiprocessing.connection.Connection],
    image_token_text: str,
    launch_callback: Optional[Callable[[], None]] = None,
):
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
    headers = {}
    url = server_args.url()
    if server_args.api_key:
        headers["Authorization"] = f"Bearer {server_args.api_key}"

    # Wait until the server is launched
    success = False
    for _ in range(120):
        time.sleep(1)
        try:
            res = requests.get(url + "/get_model_info", timeout=5, headers=headers)
            assert res.status_code == 200, f"{res=}, {res.text=}"
            success = True
            break
        except (AssertionError, requests.exceptions.RequestException):
            last_traceback = get_exception_traceback()
            pass

    if not success:
        if pipe_finish_writer is not None:
            pipe_finish_writer.send(last_traceback)
        logger.error(f"Initialization failed. warmup error: {last_traceback}")
        kill_process_tree(os.getpid())
        return

    model_info = res.json()

    # Send a warmup request
    request_name = "/generate" if model_info["is_generation"] else "/encode"
    max_new_tokens = 8 if model_info["is_generation"] else 1
    json_data = {
        "sampling_params": {
            "temperature": 0,
            "max_new_tokens": max_new_tokens,
        },
    }
    if server_args.skip_tokenizer_init:
fzyzcjy's avatar
fzyzcjy committed
797
        json_data["input_ids"] = [[10, 11, 12] for _ in range(server_args.dp_size)]
fzyzcjy's avatar
fzyzcjy committed
798
799
800
        # TODO Workaround the bug that embedding errors for list of size 1
        if server_args.dp_size == 1:
            json_data["input_ids"] = json_data["input_ids"][0]
801
    else:
fzyzcjy's avatar
fzyzcjy committed
802
        json_data["text"] = ["The capital city of France is"] * server_args.dp_size
fzyzcjy's avatar
fzyzcjy committed
803
804
805
        # TODO Workaround the bug that embedding errors for list of size 1
        if server_args.dp_size == 1:
            json_data["text"] = json_data["text"][0]
806

807
808
809
810
811
812
813
814
    # Debug dumping
    if server_args.debug_tensor_dump_input_file:
        json_data.pop("text", None)
        json_data["input_ids"] = np.load(
            server_args.debug_tensor_dump_input_file
        ).tolist()
        json_data["sampling_params"]["max_new_tokens"] = 0

815
    try:
816
817
818
819
820
821
822
823
824
        if server_args.disaggregation_mode == "null":
            res = requests.post(
                url + request_name,
                json=json_data,
                headers=headers,
                timeout=600,
            )
            assert res.status_code == 200, f"{res}"
        else:
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
            logger.info(f"Start of prefill warmup ...")
            json_data = {
                "sampling_params": {
                    "temperature": 0.0,
                    "max_new_tokens": 8,
                    "ignore_eos": True,
                },
                "bootstrap_host": [FakeBootstrapHost] * server_args.dp_size,
                # This is a hack to ensure fake transfer is enabled during prefill warmup
                # ensure each dp rank has a unique bootstrap_room during prefill warmup
                "bootstrap_room": [
                    i * (2**63 // server_args.dp_size) + (i % server_args.tp_size)
                    for i in range(server_args.dp_size)
                ],
                "input_ids": [[0, 1, 2, 3]] * server_args.dp_size,
            }
            res = requests.post(
                url + request_name,
                json=json_data,
                headers=headers,
                timeout=1800,  # because of deep gemm precache is very long if not precache.
            )
            logger.info(
                f"End of prefill warmup with status {res.status_code}, resp: {res.json()}"
            )

851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
    except Exception:
        last_traceback = get_exception_traceback()
        if pipe_finish_writer is not None:
            pipe_finish_writer.send(last_traceback)
        logger.error(f"Initialization failed. warmup error: {last_traceback}")
        kill_process_tree(os.getpid())
        return

    # Debug print
    # logger.info(f"{res.json()=}")

    logger.info("The server is fired up and ready to roll!")
    if pipe_finish_writer is not None:
        pipe_finish_writer.send("ready")

    if server_args.delete_ckpt_after_loading:
        delete_directory(server_args.model_path)
868
869
870
871
872
873

    if server_args.debug_tensor_dump_input_file:
        kill_process_tree(os.getpid())

    if launch_callback is not None:
        launch_callback()