- 02 Dec, 2022 1 commit
-
-
Haocong WANG authored
* wmma_op + unit test * add arch limitation to wmma test * change arch limitation * Refactor + Add all type unit test(int4 compile failed) * Add f32_16x16x16_bf16 unit test * Remote int4 related * delete deprecated test Co-authored-by:
Po Yen Chen <PoYen.Chen@amd.com> Co-authored-by:
Chao Liu <chao.liu2@amd.com>
-
- 30 Nov, 2022 2 commits
-
-
rocking5566 authored
* Use gemm_multiple_D instead * Add gemm bias relu quantization example * Add pure gemm quantization example * Add quantization of perchannel conv + bias + relu example * Refine the code * Rename multiplier to requant_scale * Rename the folder * Remove redundant comment * Rename the file. Prepare to add perchannel * Add conv perchannel instance * Move to quantization folder * Add conv perchannel client example * Apply Rangify constructor of HostTensorDescriptor & Tensor<> * Fix merge error
-
Qianfeng authored
* Refine the device batchnorm-backward base API templates and data type assignments * Remove duplicated kernel file * Add batchnorm backward instances and external API * Add batchnorm-backward profiler and tests * Add client example which uses batchnorm backward external API * Merge test/batchnorm_fwd and test/batchnorm_bwd into one directory * Loose the threshold for batchnorm-backward check_err()
-
- 29 Nov, 2022 2 commits
-
-
fsx950223 authored
-
Qianfeng authored
* Implemented batchnorm-backward Blockwise and Multiblock kernels * Add batchnorm-backward device op * Add batchnorm-backward host-reference op * Add batchnorm-backward example * Parameters renaming in batchnorm backward kernels and device op * Change in the example to loose the threshold for ScaleDiff checking * Add comments to explain the implementation of batchnorm-backward * Parameters renaming again in batchnorm backward kernels * Improve the expression calculation for performance * Add batchnorm backward to README * Add comments to explain inv-variance in batchnorm forward and backward * Renaming the batchnorm forward training and inferring examples * Add/update the comments for batchnorm-backward kernels * Renaming again * Add block_sync_lds between two consecutive blockwise reductions * Move common expression 1/N out of the static_for loops * Add dy_elementwise_op * Renaming in backward example again * Add checking for reduceDims in reference_batchnorm_backward * Update to comments and codes format * Rename in the comments * Remove common expression out of the loop in reference_batchnorm_backward_nhwc_c * Add block_sync_lds() between blockwise reduction again * Fix comments again * Remove int8 from batchnorm-forward instances since it is not needed for forward training and could fail test
-
- 25 Nov, 2022 1 commit
-
-
Qianfeng authored
* Update to device_batchnorm_forward base class to include all template parameters for problem description * Add batchnorm forward instances and external api * Add batchnorm forward profiler module which uses the external api * Add some comments in batchnorm_forward example to explain the dimensions in lengths[] * Replace the reference_batchnorm_forward_nhwc_c by generic reference_batchnorm_forward * Improvement to the batchnorm infer base API * Add batchnorm forward client example which shows using the batchnorm forward external API * Add test for batchnorm forward * Tuning the batchnorm profiler initialized values and error threshold * Add support for bhalf_t in instances/external api/tests * Add support for int8_t in instances/external api/tests * Add support for double in instances/external api/tests * Let ScaleDataType and BiasDataType be same as XDataType and YDataType when creating instances * Checking before running best instance in batchnorm_fwd_nhwc client example * Add checking for YElementwiseOp in batchnorm_forward external API * Add more types in batchnorm forward profiler * Add more test lengths Co-authored-by:rocking5566 <ChunYu.Lai@amd.com>
-
- 20 Nov, 2022 1 commit
-
-
Adam Osewski authored
* FastGelu support for more data types. * AddFastGelu & FastGelu instances. * Client example. * clang-format * Remove unused stride variable. * Add new line at EOF. Co-authored-by:Adam Osewski <aosewski@amd.com>
-
- 17 Nov, 2022 1 commit
-
-
Anthony Chang authored
* workaround bf16 atten fwd issue on gfx908 * typo
-
- 15 Nov, 2022 4 commits
-
-
guangzlu authored
* fixed bug in softmax reference & add bf16 examples for batched_gemm_scale_softmax_gemm * added bf16 tests for batched_gemm_softmax_gemm_permute * changed format of device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instance.cpp * changed format device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instance.cpp * aligned annotations * modified CMakeLists for examples * add common example code of fp16/bf16 version for batched_gemm_scale_softmax_gemm_xdl * use macro to control the instances * added macro control into instances * clang-format some files * changed error tolerance for bf16 * changed index for 10_elementwise_normalization * fixed xdlops code bug in amd_xdlops.hpp Co-authored-by:Po Yen Chen <PoYen.Chen@amd.com>
-
ltqin authored
* start add example * add device dl * change launch kernel * change init data method * change example config * add config valid check * add instance for dl bwd * add instance to ckProfiler * reserver to profiler and cmakelist * add instance to ckProfiler2 * change instance f32 config * fix example return value Co-authored-by:
letaoqin <letaoqin@amd.com> Co-authored-by:
Po Yen Chen <PoYen.Chen@amd.com>
-
Po Yen Chen authored
-
Po Yen Chen authored
We can use this template to eliminate duplicated iterator computing logics. By providing return type to ck::accumulate_n(), we can avoid type conversion operations.
-
- 11 Nov, 2022 1 commit
-
-
Po Yen Chen authored
* Add missing ignore expression * Add missing include directive
-
- 10 Nov, 2022 4 commits
-
-
guangzlu authored
* add client example for elementwise_normalization * clang format elementwise_layernorm2d.cpp * changed some naming to make it more understandable * changed naming of input into ab_input * fixed bug for threadwise_x_store * add elementwise operation to reference
-
Po Yen Chen authored
* Rename example folder for GroupedConvFwdMultipleD * Unify example codes * Change target names * Add fp16 example for multiple d instance * Re-format common.hpp * Add interface 'DeviceGroupedConvFwd' * Use simpler interface * Move common conv params out * Rename conv fwd client example folder * Add missing include directive * Update grouped conv instance implementations * Simplify ckProfiler (grouped conv forward) * Use GroupedConvFwd to implement client example * Use greater groupe count in example * Add custom target to group examples * Add extra tag param to instance factory function * Use tag to differentiate factory functions * Add missing tag argument for factory function * Remove inheritance relationship * Remove no-longer used include directive * Add license in front of file
-
Po Yen Chen authored
* Remove redundant CMake setting * Extract common code from files * Rename folder 'convnd' to 'conv' * Use std::array<> to accept compile-time kwnown # of arguments * Fix compilation error of tuning parameter * In example, use same setting as unit-test * Remove no-longer used include directive * Add interface for grouped conv bwd weight * Add group support for conv bwd weight * Add grouped conv bwd weight example * Use group parameter in example * Rename example folder * Remove non-grouped version example source files * Rename device op template * Add group support to convolution backward weight * Remove debug messages * Use smaller group size in example * Use named variable as loop terminate condition * Prettify example output message * Enlarge used grid size * Allow real grid size exceeds expected grid size * Rename interface file * Add client example for group...
-
Po Yen Chen authored
* Remove interface 'DeviceGroupedConvBwdData' * Remove no-longer needed include directive * Rename client example folder
-
- 03 Nov, 2022 1 commit
-
-
guangzlu authored
* add fused addition lyernorm * add fused addition lyernorm * changed CMakelist * removed annotates * modified descriptor of C * fixed bug in gridwise add layernorm * format the files * modified name from add&layernorm into elementwise&layernorm * created fused elementwise layernorm branch * change input into tuple type * add sweep once to reduce load & read of C from global memory * modified Argument api * modified way to malloc c in global memory * changed gamma and beta to m_k_desc * fixed bug when sweep once and move CDataType when define device level struct * add src dim for gamma and beta * implement optimization for coalesced * delete a annotation line * fixed some bug to meet the requirements of ck * add bandwidth computing in example, and fixed the time unit * move device_elementwise_layernorm_impl.hpp into device/impl * fixed bug in device_elementwise_layernorm_impl.hpp * changed name from layernorm into normalization * clang-format the changed files * changed the names * moved immidiate results into lds, it become faster in non-sweeponce cases * changed naming of C into X to make the defination more clear * changed naming in example * add tests for elementwise normalization * move example_elementwise_layernorm_blockwise into folder 44_elementwise_normalization * move test_elementwise_layernorm_fp16 into new folder * move elementwise_normalization_instances into a new folder * add more tests in test_elementwise_layernorm_fp16.cpp * added some corner cases in test * fixed method to compute lds size for matrix X * changed name of 44_elementwise_normalization into 45_elementwise_normalization * modified some comments * modified some other confused comments * reduce redundant tests in test_elementwise_layernorm_fp16.cpp
-
- 02 Nov, 2022 6 commits
-
-
rocking5566 authored
* Sync the naming * Sync the test of layernorm with groupnorm * Sync the naming * Minor change for comment and log * [What] Add saveMean and SaveInvVariance in the interface. [Why] These can optimize the backward
-
Anthony Chang authored
-
Po Yen Chen authored
* Improve example reusability * Remove no-longer used file * Rename folder of grouped_conv_bwd_data example * Add normal grouped conv bwd example * Add interface 'DeviceGroupedConvBwdData' * Prettify comment of device op type arguments * Add grouped conv2d/conv3d backward data fp16 instances * Fix wrong template argument * Add grouped_conv2d_bwd_data client example * Use simpler expression to calculate memory size * Fix formating * Remove grouped_conv3d_bw_data instances Underlying device operator is not ready to handle 3D input * Remove no-longer necessary include directive * Add missing include directive * Use more realistic conv param in example
-
Rostyslav Geyyer authored
* Add gridwise gemm pipeline v1/v2 selector * Pipeline selector working, test-wise add pipeline options to one instance * Add gemm instances * Add debug info to DeviceGemmXdl * Add debug info to DeviceGemmXdl_CShuffle * Add debug info to DeviceGemmXdl_CShuffle and instances to gemm_add_add_fastgelu * Minor fix * Add debug info to DeviceBatchedGemmXdl and instances to batched_gemm * set up inter-wave configuration * use defualt loop scheduling for supported gemm ops for blanket-applying interwave scheduling for all supported gemm ops, define macro CK_EXPERIMENTAL_DEFAULT_TO_INTER_WAVE_SCHEDULING=1. this should be discouraged though as it is not covered by CI * Add enum PipelineVersion * Update instances * Format * Fix the merge conflict * Add flags to disable added instances * Test disable flag check * Disable flag check * Enable the instances Co-authored-by:Anthony Chang <ac.chang@outlook.com>
-
Adam Osewski authored
* Add reduction across all dims cases. * host softmax: handle all reduce * Test cases when reduced dim is not innermost axis. * Fix syntax. * Test non innermost dim for fp32 and int8 * Group test suites wrt NumReduceDim. * Additionally test failing cases. * Throw error when Rank or NumReduceDims doesn't match arguments. * Check reducedDims has correct values * Move don't reuse DeviceReduceMultiblock IsSupportedArgument method. Instead implement own. (in fact just get rid of one check to enable reduction across inner dimensions). * Reorganize unit tests to better cover use scenarios. * Test input validation * Test reduction of inner dimensions with custom op instances. * Refactor fp32 and int8 unit tests. * Fix FP32 instance template parameters. * Add more instances. * Instances with InSrcVectorDim=0. * Do not initialize and copy data when arg not supported. * ckProfiler Softmax use instance factory. * Refactor device softmax IsSupported. * Additionally add non-polymorphic api functions * Split softmax instances into multiple files. * Fix profiler. * Reorganize tests to reuse profiler and cover edge cases. * Clang-format * I8 Softmax instances along with UT. * Reuse type alias definitions from instance factory header. * Clean included headers * Fix variable names. * Add missing checks in Argument constructor. Co-authored-by:
Adam Osewski <aosewski@amd.com> Co-authored-by:
Anthony Chang <ac.chang@outlook.com>
-
rocking5566 authored
* Add conv2d requant example * Fix bash error * Rename example * 1. Rename gemm quantization 2. shares the requantization lambda function with conv * Refine declare type * Add conv bias relu quantization exmaple * clang format * Fix compile error due to merge develop * Fix CI error * Extract quantization post operation into another file * Support quantization for non piecewise linear function * Add instance for conv quantization * Add convolution quantization factory * Add convolution quantization client example * Add more instances with different template parameters * clang format * Sync the naming with the develop
-
- 31 Oct, 2022 1 commit
-
-
ltqin authored
* add device of dl * fix k1 of GridwiseGemmDl_km_kn_mn_v1r3 * init version for dl conv * add example(init) * result right * disable elementwise operation * check parameters * add fp32,int8 example and change check code * change deive file and class name * add check vector access of C * add instance * add to ckProfiler * add Filter1x1Pad0 instances * fix ignore error * fix for CI Co-authored-by:letaoqin <letaoqin@amd.com>
-
- 28 Oct, 2022 1 commit
-
-
Qianfeng authored
* Update to the batchnorm-forward API and base class * Fix leeked header including in gridwise_set_buffer_value.hpp * Add kernels and device file for batchnorm-forward welford supporting both blockwise and multi-block reduction * Update to the batchnorm-forward example to use the new batchnorm-forward device interface * Change the batchnorm-forward reference to use sequential welford method * Change to assign the workspace into four buffers in the host layer * Use GetReduceCountPerThread functor to replace the initial count for Blockwise and Multiblock welford * Tiny correction and remove un-used file under example/34_batchnorm * Renaming in the kernel arguments * Explicitly use ck::math::sqrt in batchnorm-forward kernels * Add some comments to some kernels * Tiny fix * Generalize the data types in reference_batchnorm_forward_nhwc_c * Use ck::ignore to mark un-used parameters * Move GetReduceCountPerThread functor codes from kernel to device * Remove some un-used codes in device_batchnorm_forward_impl.hpp * Tiny fix in batchnorm_forward example * Move GetReduceCountPerThread() to welford_helper.hpp * Use seperate data type for Scale and Bias * Renaming in device Op * Tiny fix in forward example * Updata to batchnorm-infer (type spliting, renaming) * Add time and bandwidth measurement to the batchnorm-forward example * Add support of elementwise operation for batchnorm forward output * Reduce object copying by passing object as reference type * Tiny change for performance * Updates for performance again * Some Renamings * Add GetActualVariance template parameter for ThreadwiseWelfordMerge * Tiny update in reference batchnorm forward nhwc/c * Move batchnorm multiblock kernel files to grid/batchnorm_multiblock sub-directory * Fuse mean and bias in the normalization calculation Co-authored-by:
root <root@dc-smc-18.amd.com> Co-authored-by:
rocking5566 <ChunYu.Lai@amd.com>
-
- 27 Oct, 2022 1 commit
-
-
Anthony Chang authored
* reopen masking att instance due to CI is upgraded * re-enable instances previously failed on 9110 * enable ksize-kpadding pair validity test * add non-masked attention+permute test; expose masking boolean to attention kernel handles * disable bench * fix test * move files * bulk rename batched_gemm_masking_scale_softmax_gemm_permute to batched_gemm_softmax_gemm_permute * format * amend rename * disable bench in test * add mask/no-mask test for non-permute attention kernels * disable broken kernel instance * example working add non-permuted problem statement evaluating whether overhead comes from permutation or the extra kernel arg * interface for bias addition without implementing it * test and profiler running * tidy * mask type determined by enum class * unify example code * move masking specialization to its own header * align formats * extract helper functions * experiment merging dims for attn w/ permute; shows perf parity with attn wo/ permute * add tensor specialization to template args since tensor spec packed shows perf parity when permutation isn't needed remove redundant template args comment on 'packed' tensor specialization * grouped attention with input/output permute example * format * clean up * refactor acc0 tile visitor Co-authored-by:
shaojiewang <wsjmessi@163.com> Co-authored-by:
Chao Liu <chao.liu2@amd.com>
-
- 25 Oct, 2022 3 commits
-
-
Qianfeng authored
* Simplify the macros for declaring and defining the add_device_reduce_instance_xxxx() instances * Change the types of lengths and strides from std::vector to std::array for the reduction device interfaces * Remove DeviceSoftmaxImpl's depending on DeviceReduceMultiblock * Split the cpp and hpp files for reduction instances to enable more parallel compiling * Remove the using of macros for declaring reduction instances and instance references * Update to add_device_reduce_instance_xxxx templated functions * Use ReduceOperation+InElementwiseOp+AccElementwiseOp to repace the ReduceOpId in defining add_reduce_instance_xxxx() templates * Change return format
-
guangzlu authored
* add fused addition lyernorm * add fused addition lyernorm * changed CMakelist * removed annotates * modified descriptor of C * fixed bug in gridwise add layernorm * format the files * modified name from add&layernorm into elementwise&layernorm * created fused elementwise layernorm branch * change input into tuple type * add sweep once to reduce load & read of C from global memory * modified Argument api * modified way to malloc c in global memory * changed gamma and beta to m_k_desc * fixed bug when sweep once and move CDataType when define device level struct * add src dim for gamma and beta * implement optimization for coalesced * delete a annotation line * fixed some bug to meet the requirements of ck * add bandwidth computing in example, and fixed the time unit * move device_elementwise_layernorm_impl.hpp into device/impl * fixed bug in device_elementwise_layernorm_impl.hpp * changed name from layernorm into normalization * clang-format the changed files * changed the names * moved immidiate results into lds, it become faster in non-sweeponce cases * changed naming of C into X to make the defination more clear * changed naming in example * add tests for elementwise normalization * move example_elementwise_layernorm_blockwise into folder 44_elementwise_normalization * move test_elementwise_layernorm_fp16 into new folder * move elementwise_normalization_instances into a new folder * add more tests in test_elementwise_layernorm_fp16.cpp * added some corner cases in test * fixed method to compute lds size for matrix X * changed name of 44_elementwise_normalization into 45_elementwise_normalization * modified some comments * modified some other confused comments * reduce redundant tests in test_elementwise_layernorm_fp16.cpp
-
- 13 Oct, 2022 2 commits
-
-
Adam Osewski authored
* Move kernel implementation files under impl directory. * Update examples paths. * Update device kernel impl include paths. * Update tensor operation instances include paths. * Update profiler and tests include paths. * Clang-format * Update include paths for batched gemm reduce * Refactor UnitTest ConvNDBwdWeight. * Refactor fwd and bwd data convND UT. * Fix used test macro. * Fix include path. * Fix include paths. * Fix include paths in profiler and tests. * Fix include paths. Co-authored-by:Adam Osewski <aosewski@amd.com>
-
rocking5566 authored
* Fix bug of profiler for layernorm * 1. Rename layernorm into normalization 2. Decouple softmax from normalization * clang-format
-
- 11 Oct, 2022 1 commit
-
-
ltqin authored
* start split k * add base device class * add example after merge develop * add gridwise gemm * add b matrix split k * split=1 * change name for kb * not bias result right * bias only add once * fix register spill * regular code * add fp32 example * fix for 64bit index * fix CheckValidity of gridwise
-
- 07 Oct, 2022 1 commit
-
-
Shaojie WANG authored
* use another instance to check the efficiency * optimize group layer norm * 1. coalesce load/store data for gridwise layer norm welford. 2. move a sqrt and divison into a outer static loop * add more instances to layernorm * add 2 more test cases * remove ignore in generating tuple of vector Co-authored-by:Chao Liu <chao.liu2@amd.com>
-
- 22 Sep, 2022 1 commit
-
-
Chao Liu authored
* fix * fix * add instance
-
- 21 Sep, 2022 1 commit
-
-
zjing14 authored
-
- 20 Sep, 2022 4 commits
-
-
Chao Liu authored
* fix build * fix build
-
Shaojie WANG authored
* add lower triangle bmm * init code for tile skipping * functionality right with lower triangle mask * add decoder lower triangular mask calculation * use 7*13 group * fix n2 compute error * attention with lower triangle mask with tile skipping * add template to distinguish masking kernel * rename template and remove default template value * remove lower triangle gemm reference struct * add some comments on example * add 10 instance for masking bmm + scale + softmax + bmm + permute kernels * add test * add test file * add gtest for bmm masking scale softmax bmm permute * clang-format * fix compile error * check lef bottom corner for tile skipping * fix error: check left bottom corner for tile skipping * add k padding * add test and instance for MNK padding * passing a mask struct * fix instances * delete used comments * format Co-authored-by:
danyao12 <yaodan@dc-smc-13.amd.com> Co-authored-by:
Chao Liu <chao.liu2@amd.com>
-
rocking5566 authored
* Add groupnorm example by layernorm 1. Reference is not ready 2. shape of gamma and beta need to be fix * Let shape of gamma and beta can be same as x * Modify test, instance and client example * [What] Fix bug of layernorm for greater than 2 dimension. [Why] We need to get upper length from merge transform instead of embed transform. * Add reference for groupnorm * Fuse sigmoid after groupnorm * [What] Rename original layernorm into layernorm2d [Why] Prepare to add groupnorm using layernorm5d * clang-format * Add groupnorm test * Refine error message * Add groupnorm ckProfiler * Test groupnorm kernel from device_instance * update example * upadte profiler * Fix test naming * Fix argc number * Move descriptor and sweeponce to argument for quick debugging Co-authored-by:Chao Liu <chao.liu2@amd.com>
-
Po Yen Chen authored
* Add example folder for 'DeviceElementwise' * Re-structure example files * Move common parts into common.hpp * Use more strict input * Add more helper methods in 'DeviceElementwise' * Use more specific method to write example * Allow specify problem through command line argument * Allow specify problem 'axes' through command line argument * Add check to template type argument * Add transpose_shape() to generalize shape permute * Generalize transpose utility functions * Use better name for tensor indices * Add checks in helper functions * Remove debug messages * Refine error message for check_err() * Generalize variable naming in example code * Add device op 'DevicePermute' This device op is clone of 'DeviceElementwise' * Use 'DevicePermute' device op in example * Remove 'elementwise' from identifiers * Remove 'elementwise' from file paths * Remove base class of 'DevicePermute' * Let 'DevicePermute' inherit from 'BaseOperator' * Add simple type traits to validate device op type * Add static_assert() to check type constraints * Create 'DevicePermuteBase' to generate methods * Use indirect base type to generate methods * Remove 'is_device_op<>' type traits * Only accept single-input-single-output for 'DervicePermute' * Simplify 'DevicePermute' interface * Re-format 'DeviceElementwise' * Use CRTP to generate overridden virtual method * Remove unnecessary include directives * Distinguish input & output shape in 'DevicePermute' * Passing 'axes' to 'DevicePermute' * Use more reasonable return value for Invoker::Run() * Add 'GridwisePermute' kernel This kernel is a clone of 'GridwiseElementwise_1D' * Remove no-longer used type argument * Check if input/output shape meet the requirement * Remove no-longer used method * Remove never-entered-if-clause * Change problem description for 'DevicePermute' * Transform descriptor into 3 dimensions * Add debug code the verify result * Add comment to indicate template argument location * Add N/H/WPerBlock template parameter to 'DevicePermute' * Rename 'GridwisePermute' to 'GridwiseCopy' * Check tensor descriptor dimensions in 'GridwiseElementwise_1D' * Add missing include directive * Add 'BlockSize' parameter to 'DevicePermute' * Remove no-longer used method * Add 'BlockToTileMap' for 'GridwiseCopy' * Use the normal Block2TileMap convention * Rename 'BlockToTileMap' as 'Block2TileMap' * Fix most of compilation errors * Let 'Block2TileMap' map block to 2d coordinate * Allow data transfer in 'GridwiseCopy' * Fix wrong output descriptor for 2nd blockwise copy * Rename 'GridwiseCopy' as 'GridwisePermute' * Remove '1d' in identifiers * Remove commented-out codes * Remove 'MPerThread' template parameter * Seperate template parameters * Unify variable namming convention * Use more verbose way to create expressions * Add template parameter 'InBlockLdsExtraW' * Release the constraint on In/OutGridDesc * Use date type directly as template argument * Re-arrange template arguments for blockwise copy * Remove no-longer used template parameters * Embed layout in the variable names * Add GridwisePermute::CheckValidity() * Extract local types as template parameters * Rename local type alias * Add more template parameters (vector width related) * Calculate new SrcVectorDim/DstVectorDim after merge descriptor dimensions * Fill tensor values start from 1 * Re-formate example code * Avoid too-large block id * Add comment * Make sure 'SrcVectorDim' is not same as 'DstVectorDim' * Add check for the 'VectorDim' & 'ScalarPerVector' template params * Let 'DstVectorDim' equals 'SrcVectorDim' after transpose out grid desc * Remove no-longer used template parameter 'NPerBlock' * Fix wrong descriptor creation logics * Specify problem in each examples * Use better example name * Add new example 'example_permute_NxHxW_fp32' * Add example for demonstrating bundle multiple elems in tensor * Add support to permute multiple elements together * Change the default problem size * Add span<> class template * Use span<> to generalize check_err() interface * Fix ambiguous ctor call * Avoid create necessary objects * Use helper functions to simplify example code * Add example for 4xfp16 permute * Disable failed-to-compile example * Add check for the NUM_ELEMS_IN_BUNDLE * Remove redundant parameter in helper lambda function * Add check for the input tensor type's byte-size * Check scalar-per-vector with padded length * Use more verbose name to avoid name collision * Use fixed 'VectorDim' & 'ScalarPerVector' for LDS * Embed shape info in name of descriptor constructor * Rename example folder '36_permute' into '37_permute' * Avoid using too-large LDS in kernel code * Remove redundant example * Usw switch() to group similar codes * Add const to the span<> type arguement * Simply initialize tensor with floating point values * Use fp16 as data type in all examples * Enlarge tensor size in example * Enalrge N-dim in example * Add check for the bundled type in example * Use more stricter error threshold * Remove global load/store loop in kernel code * Measure execution time by default * Use faster device op config for example 'NxHxW_fp16' * Use faster device op config for example '1xHxW_fp16' * Use faster device op config for example 'HxWx4_fp16' * Remove cmd arg parsing logics * Rename functions * Extract bundle permutation logic out * Simplify permute bundle example * Add Tensor<>::GetElementSpaceSizeInBytes() * Add Tensor<>::data() * Use new methods to simplify code * Use type alias to replace duplicated code * Use existing method to shorten code * Allow FillUniformDistribution accept range arugment * Intialize random values in range * Add Tensor<>::size() * Use more meaningful names in permute bundle example * Use more meaningful names in permute element examples * Use rangified copy() to copy elements * Use function return value directly to eliminate variables * Add to_array() conversion tool to eliminate more variables * Add Tensor<>::AsSpan<>() to create view of tensor values * Use AsSpan() to shorten check_err() calls * Remove no-longer-used 'using' directives * Move 'using' directive to proper code position * Remove redudant variables * Remove useless static_assert() * Add check for range types * Declare variable right before first use * Move long return type as tailing return type * Add BaseInvokerCRTP<> class template to generate method * Create new base type for 'DervicePermute' implementations * Move 'NumDim' template param to the first * Rename 'DevicePermute' to 'DevicePermuteImpl' * Add 'noexcept' specifier to CRTP generated method * Move 'Block2TileMap' definition into 'GridwisePermute' * Use type alias to reduce code * Unify naming style in 'DevicePermute' * Add comments in 'GridwisePermute' * Rename permute example folder * Use std::cerr to report error * Use larger shape in examples * Rename '38_permute' to '39_permute' * Make sure we use unsigned type for shape & indices * Remove opt-ed out assertion * Remove template BaseInvokerCRTP<>
-