"docs/git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "a3cc641f78bd0c4a749e8ad03141d7fdb76eec1c"
Unverified Commit d8b41e1c authored by ltqin's avatar ltqin Committed by GitHub
Browse files

Example contraction splitk (#430)

* start split k

* add base device class

* add example after merge develop

* add gridwise gemm

* add b matrix split k

* split=1

* change name for kb

* not bias result right

* bias only add once

* fix register spill

* regular code

* add fp32 example

* fix for 64bit index

* fix CheckValidity of gridwise
parent 39abb470
add_example_executable(example_splitk_gemm_bias_e_permute_xdl_fp16 splitk_gemm_bias_e_permute_xdl_fp16.cpp)
add_example_executable(example_splitk_gemm_bias_e_permute_xdl_fp32 splitk_gemm_bias_e_permute_xdl_fp32.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F16;
using DDataType = F16;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F16;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 1;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Add;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto ABSpec = ck::tensor_operation::device::TensorSpecialization::Packed;
static constexpr auto DESpec = ck::tensor_operation::device::TensorSpecialization::Default;
// clang-format off
using DeviceOpInstanceKKNN = ck::tensor_operation::device::
//############################################| NumDimG| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| Gemm| A| B| DE| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle|CBlockTransferClusterLengths| CBlockTransfer|
//############################################| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Spacialization| Spacialization| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################################| | | | | | | | | | | Operation| Operation| Operation| | | | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceSplitKContractionMultipleD_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, F16, F16, F32, F16, DsDataType, F16, AElementOp, BElementOp, CDEElementOp, GemmSpec, ABSpec, ABSpec, DESpec, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>;
// clang-format on
using DeviceOpInstance = DeviceOpInstanceKKNN;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template <ck::index_t NumDimG,
ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename EDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
ck::enable_if_t<NumDimG == 2 && NumDimM == 2 && NumDimN == 2 && NumDimK == 1, bool> =
false>
struct ReferenceContraction_G2_M2_N2_K1 : public ck::tensor_operation::device::BaseOperator
{
// Argument
struct Argument : public ck::tensor_operation::device::BaseArgument
{
Argument(const Tensor<ADataType>& a_gs_ms_ks,
const Tensor<BDataType>& b_gs_ns_ks,
Tensor<EDataType>& e_gs_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: a_gs_ms_ks_{a_gs_ms_ks},
b_gs_ns_ks_{b_gs_ns_ks},
e_gs_ms_ns_{e_gs_ms_ns},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
}
const Tensor<ADataType>& a_gs_ms_ks_;
const Tensor<BDataType>& b_gs_ns_ks_;
Tensor<EDataType>& e_gs_ms_ns_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
struct Invoker : public ck::tensor_operation::device::BaseInvoker
{
using Argument = ReferenceContraction_G2_M2_N2_K1::Argument;
float Run(const Argument& arg)
{
auto f_ms_ns = [&](auto g0, auto g1, auto m0, auto m1, auto n0, auto n1) {
const int K0 = arg.a_gs_ms_ks_.mDesc.GetLengths()[4];
AccDataType v_acc = 0;
for(int k0 = 0; k0 < K0; ++k0)
{
AccDataType v_a;
AccDataType v_b;
arg.a_element_op_(
v_a,
ck::type_convert<const AccDataType>(arg.a_gs_ms_ks_(g0, g1, m0, m1, k0)));
arg.b_element_op_(
v_b,
ck::type_convert<const AccDataType>(arg.b_gs_ns_ks_(g0, g1, n0, n1, k0)));
v_acc += v_a * v_b;
}
AccDataType v_c;
arg.cde_element_op_(v_c, v_acc);
arg.e_gs_ms_ns_(g0, g1, m0, m1, n0, n1) = v_c;
};
make_ParallelTensorFunctor(f_ms_ns,
arg.e_gs_ms_ns_.mDesc.GetLengths()[0],
arg.e_gs_ms_ns_.mDesc.GetLengths()[1],
arg.e_gs_ms_ns_.mDesc.GetLengths()[2],
arg.e_gs_ms_ns_.mDesc.GetLengths()[3],
arg.e_gs_ms_ns_.mDesc.GetLengths()[4],
arg.e_gs_ms_ns_.mDesc.GetLengths()[5])(
std::thread::hardware_concurrency());
return 0;
}
float Run(const ck::tensor_operation::device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const ck::tensor_operation::device::BaseArgument*) override
{
return true;
}
static auto MakeArgument(const Tensor<ADataType>& a_gs_ms_ks,
const Tensor<BDataType>& b_gs_ns_ks,
Tensor<EDataType>& e_gs_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{
a_gs_ms_ks, b_gs_ns_ks, e_gs_ms_ns, a_element_op, b_element_op, cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<ck::tensor_operation::device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceContraction_G2_M2_N2_K1"
<< std::endl;
// clang-format on
return str.str();
}
};
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
int split_k = 1;
ck::index_t G0 = 1;
ck::index_t G1 = 2;
ck::index_t M0 = 4;
ck::index_t M1 = 256;
ck::index_t N0 = 16;
ck::index_t N1 = 128;
ck::index_t K0 = 64 * 2;
// A[G0, G1, M0, M1, K0]
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M0, M1, K0};
std::vector<ck::index_t> a_gs_ms_ks_strides{G1 * M0 * M1 * K0, M0 * M1 * K0, M1 * K0, K0, 1};
// B[G0, G1, N0, N1, K0]
std::vector<ck::index_t> b_gs_ns_ks_lengths{G0, G1, N0, N1, K0};
std::vector<ck::index_t> b_gs_ns_ks_strides{G1 * N0 * N1 * K0, N0 * N1 * K0, N1 * K0, K0, 1};
// D[G0, G1, M0, N0, M1, N1]
std::vector<ck::index_t> d_gs_ms_ns_lengths{G0, G1, M0, M1, N0, N1};
std::vector<ck::index_t> d_gs_ms_ns_strides{G1 * N0 * N1, N0 * N1, 0, 0, N1, 1};
// E[G0, G1, M0, N0, M1, N1]
std::vector<ck::index_t> e_gs_ms_ns_lengths{G0, G1, M0, M1, N0, N1};
std::vector<ck::index_t> e_gs_ms_ns_strides{
G1 * M0 * N0 * M1 * N1, M0 * N0 * M1 * N1, N0 * M1 * N1, N1, M1 * N1, 1};
if(argc == 1)
{
// use default case
}
else if(argc == 5)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
split_k = std::stoi(argv[4]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
exit(0);
}
Tensor<ADataType> a_gs_ms_ks(
std::vector<std::size_t>(a_gs_ms_ks_lengths.begin(), a_gs_ms_ks_lengths.end()),
std::vector<std::size_t>(a_gs_ms_ks_strides.begin(), a_gs_ms_ks_strides.end()));
Tensor<BDataType> b_gs_ns_ks(
std::vector<std::size_t>(b_gs_ns_ks_lengths.begin(), b_gs_ns_ks_lengths.end()),
std::vector<std::size_t>(b_gs_ns_ks_strides.begin(), b_gs_ns_ks_strides.end()));
Tensor<DDataType> d_gs_ms_ns(
std::vector<std::size_t>(d_gs_ms_ns_lengths.begin(), d_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(d_gs_ms_ns_strides.begin(), d_gs_ms_ns_strides.end()));
Tensor<EDataType> e_gs_ms_ns_host_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
Tensor<EDataType> e_gs_ms_ns_device_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b_gs_ns_ks: " << b_gs_ns_ks.mDesc << std::endl;
std::cout << "d_gs_ms_ns: " << d_gs_ms_ns.mDesc << std::endl;
std::cout << "e_gs_ms_ns: " << e_gs_ms_ns_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
case 2:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_gs_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(DDataType) * d_gs_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) *
e_gs_ms_ns_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_gs_ms_ks.mData.data());
b_device_buf.ToDevice(b_gs_ns_ks.mData.data());
d_device_buf.ToDevice(d_gs_ms_ns.mData.data());
// set zero
e_device_buf.SetZero();
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
// device operation
auto op = DeviceOpInstance{};
auto invoker = op.MakeInvoker();
auto argument = op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b_gs_ns_ks_lengths,
b_gs_ns_ks_strides,
std::array<std::vector<ck::index_t>, 1>{d_gs_ms_ns_lengths},
std::array<std::vector<ck::index_t>, 1>{d_gs_ms_ns_strides},
e_gs_ms_ns_lengths,
e_gs_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op,
split_k);
if(!op.IsSupportedArgument(argument))
{
std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t G = std::accumulate(e_gs_ms_ns_lengths.begin(),
e_gs_ms_ns_lengths.begin() + NumDimG,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t M = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimG,
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM,
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = std::accumulate(a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM,
a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t flop = std::size_t(2) * G * M * N * K;
std::size_t num_btype = sizeof(ADataType) * G * M * K + sizeof(BDataType) * G * K * N +
sizeof(DDataType) * G * M * N + sizeof(EDataType) * G * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< op.GetTypeString() << std::endl;
e_device_buf.FromDevice(e_gs_ms_ns_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_ms_ns_host_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
using ReferenceOpInstance = ReferenceContraction_G2_M2_N2_K1<NumDimG,
NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
CShuffleDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceOpInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_gs_ms_ks, b_gs_ns_ks, c_ms_ns_host_result, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
e_gs_ms_ns_host_result.ForEach([&](auto&, auto idx) {
cde_element_op(e_gs_ms_ns_host_result(idx), c_ms_ns_host_result(idx), d_gs_ms_ns(idx));
});
return ck::utils::check_err(e_gs_ms_ns_device_result.mData, e_gs_ms_ns_host_result.mData)
? 0
: 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_splitk_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using ADataType = F32;
using BDataType = F32;
using AccDataType = F32;
using CShuffleDataType = F32;
using DDataType = F32;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F32;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 1;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Add;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto ABSpec = ck::tensor_operation::device::TensorSpecialization::Packed;
static constexpr auto DESpec = ck::tensor_operation::device::TensorSpecialization::Default;
// clang-format off
using DeviceOpInstanceKKNN = ck::tensor_operation::device::
//############################################| NumDimG| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| Gemm| A| B| DE| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle|CBlockTransferClusterLengths| CBlockTransfer|
//############################################| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Spacialization| Spacialization| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################################| | | | | | | | | | | Operation| Operation| Operation| | | | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceSplitKContractionMultipleD_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, ABSpec, ABSpec, DESpec, 1, 256, 256, 128, 32, 4, 4, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 4, 4, 1, 1, 1, S<1, 32, 1, 4>, 4>;
// clang-format on
using DeviceOpInstance = DeviceOpInstanceKKNN;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template <ck::index_t NumDimG,
ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename EDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
ck::enable_if_t<NumDimG == 2 && NumDimM == 2 && NumDimN == 2 && NumDimK == 1, bool> =
false>
struct ReferenceContraction_G2_M2_N2_K1 : public ck::tensor_operation::device::BaseOperator
{
// Argument
struct Argument : public ck::tensor_operation::device::BaseArgument
{
Argument(const Tensor<ADataType>& a_gs_ms_ks,
const Tensor<BDataType>& b_gs_ns_ks,
Tensor<EDataType>& e_gs_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: a_gs_ms_ks_{a_gs_ms_ks},
b_gs_ns_ks_{b_gs_ns_ks},
e_gs_ms_ns_{e_gs_ms_ns},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
}
const Tensor<ADataType>& a_gs_ms_ks_;
const Tensor<BDataType>& b_gs_ns_ks_;
Tensor<EDataType>& e_gs_ms_ns_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
struct Invoker : public ck::tensor_operation::device::BaseInvoker
{
using Argument = ReferenceContraction_G2_M2_N2_K1::Argument;
float Run(const Argument& arg)
{
auto f_ms_ns = [&](auto g0, auto g1, auto m0, auto m1, auto n0, auto n1) {
const int K0 = arg.a_gs_ms_ks_.mDesc.GetLengths()[4];
AccDataType v_acc = 0;
for(int k0 = 0; k0 < K0; ++k0)
{
AccDataType v_a;
AccDataType v_b;
arg.a_element_op_(
v_a,
ck::type_convert<const AccDataType>(arg.a_gs_ms_ks_(g0, g1, m0, m1, k0)));
arg.b_element_op_(
v_b,
ck::type_convert<const AccDataType>(arg.b_gs_ns_ks_(g0, g1, n0, n1, k0)));
v_acc += v_a * v_b;
}
AccDataType v_c;
arg.cde_element_op_(v_c, v_acc);
arg.e_gs_ms_ns_(g0, g1, m0, m1, n0, n1) = v_c;
};
make_ParallelTensorFunctor(f_ms_ns,
arg.e_gs_ms_ns_.mDesc.GetLengths()[0],
arg.e_gs_ms_ns_.mDesc.GetLengths()[1],
arg.e_gs_ms_ns_.mDesc.GetLengths()[2],
arg.e_gs_ms_ns_.mDesc.GetLengths()[3],
arg.e_gs_ms_ns_.mDesc.GetLengths()[4],
arg.e_gs_ms_ns_.mDesc.GetLengths()[5])(
std::thread::hardware_concurrency());
return 0;
}
float Run(const ck::tensor_operation::device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const ck::tensor_operation::device::BaseArgument*) override
{
return true;
}
static auto MakeArgument(const Tensor<ADataType>& a_gs_ms_ks,
const Tensor<BDataType>& b_gs_ns_ks,
Tensor<EDataType>& e_gs_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{
a_gs_ms_ks, b_gs_ns_ks, e_gs_ms_ns, a_element_op, b_element_op, cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<ck::tensor_operation::device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceContraction_G2_M2_N2_K1"
<< std::endl;
// clang-format on
return str.str();
}
};
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
int split_k = 1;
ck::index_t G0 = 1;
ck::index_t G1 = 2;
ck::index_t M0 = 4;
ck::index_t M1 = 256;
ck::index_t N0 = 16;
ck::index_t N1 = 128;
ck::index_t K0 = 64 * 2;
// A[G0, G1, M0, M1, K0]
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M0, M1, K0};
std::vector<ck::index_t> a_gs_ms_ks_strides{G1 * M0 * M1 * K0, M0 * M1 * K0, M1 * K0, K0, 1};
// B[G0, G1, N0, N1, K0]
std::vector<ck::index_t> b_gs_ns_ks_lengths{G0, G1, N0, N1, K0};
std::vector<ck::index_t> b_gs_ns_ks_strides{G1 * N0 * N1 * K0, N0 * N1 * K0, N1 * K0, K0, 1};
// D[G0, G1, M0, N0, M1, N1]
std::vector<ck::index_t> d_gs_ms_ns_lengths{G0, G1, M0, M1, N0, N1};
std::vector<ck::index_t> d_gs_ms_ns_strides{G1 * N0 * N1, N0 * N1, 0, 0, N1, 1};
// E[G0, G1, M0, N0, M1, N1]
std::vector<ck::index_t> e_gs_ms_ns_lengths{G0, G1, M0, M1, N0, N1};
std::vector<ck::index_t> e_gs_ms_ns_strides{
G1 * M0 * N0 * M1 * N1, M0 * N0 * M1 * N1, N0 * M1 * N1, N1, M1 * N1, 1};
if(argc == 1)
{
// use default case
}
else if(argc == 5)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
split_k = std::stoi(argv[4]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
exit(0);
}
Tensor<ADataType> a_gs_ms_ks(
std::vector<std::size_t>(a_gs_ms_ks_lengths.begin(), a_gs_ms_ks_lengths.end()),
std::vector<std::size_t>(a_gs_ms_ks_strides.begin(), a_gs_ms_ks_strides.end()));
Tensor<BDataType> b_gs_ns_ks(
std::vector<std::size_t>(b_gs_ns_ks_lengths.begin(), b_gs_ns_ks_lengths.end()),
std::vector<std::size_t>(b_gs_ns_ks_strides.begin(), b_gs_ns_ks_strides.end()));
Tensor<DDataType> d_gs_ms_ns(
std::vector<std::size_t>(d_gs_ms_ns_lengths.begin(), d_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(d_gs_ms_ns_strides.begin(), d_gs_ms_ns_strides.end()));
Tensor<EDataType> e_gs_ms_ns_host_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
Tensor<EDataType> e_gs_ms_ns_device_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b_gs_ns_ks: " << b_gs_ns_ks.mDesc << std::endl;
std::cout << "d_gs_ms_ns: " << d_gs_ms_ns.mDesc << std::endl;
std::cout << "e_gs_ms_ns: " << e_gs_ms_ns_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
case 2:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b_gs_ns_ks.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_gs_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(DDataType) * d_gs_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) *
e_gs_ms_ns_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_gs_ms_ks.mData.data());
b_device_buf.ToDevice(b_gs_ns_ks.mData.data());
d_device_buf.ToDevice(d_gs_ms_ns.mData.data());
// set zero
e_device_buf.SetZero();
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
// device operation
auto op = DeviceOpInstance{};
auto invoker = op.MakeInvoker();
auto argument = op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b_gs_ns_ks_lengths,
b_gs_ns_ks_strides,
std::array<std::vector<ck::index_t>, 1>{d_gs_ms_ns_lengths},
std::array<std::vector<ck::index_t>, 1>{d_gs_ms_ns_strides},
e_gs_ms_ns_lengths,
e_gs_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op,
split_k);
if(!op.IsSupportedArgument(argument))
{
std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t G = std::accumulate(e_gs_ms_ns_lengths.begin(),
e_gs_ms_ns_lengths.begin() + NumDimG,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t M = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimG,
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM,
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = std::accumulate(a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM,
a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t flop = std::size_t(2) * G * M * N * K;
std::size_t num_btype = sizeof(ADataType) * G * M * K + sizeof(BDataType) * G * K * N +
sizeof(DDataType) * G * M * N + sizeof(EDataType) * G * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< op.GetTypeString() << std::endl;
e_device_buf.FromDevice(e_gs_ms_ns_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_ms_ns_host_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
using ReferenceOpInstance = ReferenceContraction_G2_M2_N2_K1<NumDimG,
NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
CShuffleDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceOpInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_gs_ms_ks, b_gs_ns_ks, c_ms_ns_host_result, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
e_gs_ms_ns_host_result.ForEach([&](auto&, auto idx) {
cde_element_op(e_gs_ms_ns_host_result(idx), c_ms_ns_host_result(idx), d_gs_ms_ns(idx));
});
return ck::utils::check_err(e_gs_ms_ns_device_result.mData, e_gs_ms_ns_host_result.mData)
? 0
: 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// Tensor Contraction:
// input : A
// input : B
// input : D0, D1, ...
// output : E
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// A[G0, G1, ..., M0, M1, M2, ..., K0, K1, K2, ...]
// B[G0, G1, ..., N0, N1, N2, ..., K0, K1, K2, ...]
// D[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
// E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
template <index_t NumDimG,
index_t NumDimM,
index_t NumDimN,
index_t NumDimK,
typename ADataType,
typename BDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation>
struct DeviceSplitKContractionMultipleD : public BaseOperator
{
static constexpr index_t NumDTensor = DsDataType::Size();
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_e,
const std::vector<index_t>& a_gs_ms_ns_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
const std::vector<index_t>& b_gs_ns_ks_strides,
const std::array<std::vector<index_t>, NumDTensor>& ds_gs_ms_ns_lengths,
const std::array<std::vector<index_t>, NumDTensor>& ds_gs_ms_ns_strides,
const std::vector<index_t>& e_gs_ms_ns_lengths,
const std::vector<index_t>& e_gs_ms_ns_strides,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op,
index_t split_k) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -209,6 +209,8 @@ struct BlockToCTileMap_KSplit_M00_N0_M01Adapt ...@@ -209,6 +209,8 @@ struct BlockToCTileMap_KSplit_M00_N0_M01Adapt
const auto M0 = math::integer_divide_ceil(c_grid_desc_m_n_.GetLength(I0), MPerBlock); const auto M0 = math::integer_divide_ceil(c_grid_desc_m_n_.GetLength(I0), MPerBlock);
const auto N0 = math::integer_divide_ceil(c_grid_desc_m_n_.GetLength(I1), NPerBlock); const auto N0 = math::integer_divide_ceil(c_grid_desc_m_n_.GetLength(I1), NPerBlock);
block_1d_id = block_1d_id % (M0 * N0 * KSplit_); // hide groups
const index_t idx_ksplit = block_1d_id / (M0 * N0); const index_t idx_ksplit = block_1d_id / (M0 * N0);
block_1d_id = block_1d_id % (M0 * N0); block_1d_id = block_1d_id % (M0 * N0);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment