"vscode:/vscode.git/clone" did not exist on "ff3ed4cc81005a95ffc8234cd90ab58a277edb7d"
grouped_gemm_fp16.cpp 7.05 KB
Newer Older
zjing14's avatar
zjing14 committed
1
2
3
4
5
6
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
7
8

#include "check_err.hpp"
zjing14's avatar
zjing14 committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_grouped_gemm_xdl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

using DeviceGroupedGemmPtr_ = ck::tensor_operation::device::DeviceGroupedGemmPtr<
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough>;

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_grouped_gemm_instance {
void add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(
    std::vector<DeviceGroupedGemmPtr_>&);
}
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace {

using ADataType   = ck::half_t;
using BDataType   = ck::half_t;
using CDataType   = ck::half_t;
using AccDataType = float;

using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;

bool TestGroupedGemm(DeviceGroupedGemmPtr_& groupedGemmPtr)
{
zjing14's avatar
zjing14 committed
52
    int group_count = rand() % 10 + 1;
zjing14's avatar
zjing14 committed
53
54
55
56
57
58
59
60
61
62

    // GEMM shape
    std::vector<ck::tensor_operation::device::GemmShape> gemm_shapes;
    std::vector<const void*> p_a, p_b;
    std::vector<void*> p_c;

    gemm_shapes.reserve(group_count);

    for(int i = 0; i < group_count; i++)
    {
zjing14's avatar
zjing14 committed
63
64
65
        int M = 256 + 256 * (rand() % 10);
        int N = 256 + 256 * (rand() % 10);
        int K = 128 + 128 * (rand() % 10);
zjing14's avatar
zjing14 committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

        int AStride = std::is_same<ck::tensor_layout::gemm::RowMajor, ALayout>::value ? K : M;
        int BStride = std::is_same<ck::tensor_layout::gemm::RowMajor, BLayout>::value ? N : K;
        int CStride = std::is_same<ck::tensor_layout::gemm::RowMajor, CLayout>::value ? N : M;

        gemm_shapes.push_back({M, N, K, AStride, BStride, CStride});
    }

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    std::vector<Tensor<ADataType>> a_tensors;
    ;
    std::vector<Tensor<BDataType>> b_tensors;
    std::vector<Tensor<CDataType>> c_host_tensors;
    std::vector<Tensor<CDataType>> c_device_tensors;

    a_tensors.reserve(group_count);
    b_tensors.reserve(group_count);
    c_host_tensors.reserve(group_count);
    c_device_tensors.reserve(group_count);

    using DeviceMemPtr = std::unique_ptr<DeviceMem>;

    std::vector<DeviceMemPtr> a_tensors_device, b_tensors_device, c_tensors_device;

    a_tensors_device.reserve(group_count);
    b_tensors_device.reserve(group_count);
    c_tensors_device.reserve(group_count);

107
    for(std::size_t i = 0; i < gemm_shapes.size(); i++)
zjing14's avatar
zjing14 committed
108
109
110
111
112
113
114
115
116
117
    {
        a_tensors.emplace_back(Tensor<ADataType>(f_host_tensor_descriptor(
            gemm_shapes[i].M, gemm_shapes[i].K, gemm_shapes[i].StrideA, ALayout{})));
        b_tensors.emplace_back(Tensor<BDataType>(f_host_tensor_descriptor(
            gemm_shapes[i].K, gemm_shapes[i].N, gemm_shapes[i].StrideB, BLayout{})));
        c_host_tensors.emplace_back(Tensor<CDataType>(f_host_tensor_descriptor(
            gemm_shapes[i].M, gemm_shapes[i].N, gemm_shapes[i].StrideC, CLayout{})));
        c_device_tensors.emplace_back(Tensor<CDataType>(f_host_tensor_descriptor(
            gemm_shapes[i].M, gemm_shapes[i].N, gemm_shapes[i].StrideC, CLayout{})));

zjing14's avatar
zjing14 committed
118
119
        a_tensors[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_tensors[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
zjing14's avatar
zjing14 committed
120
121
    }

122
    for(std::size_t i = 0; i < gemm_shapes.size(); i++)
zjing14's avatar
zjing14 committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    {
        a_tensors_device.emplace_back(
            std::make_unique<DeviceMem>(sizeof(ADataType) * a_tensors[i].mDesc.GetElementSize()));
        b_tensors_device.emplace_back(
            std::make_unique<DeviceMem>(sizeof(BDataType) * b_tensors[i].mDesc.GetElementSize()));
        c_tensors_device.emplace_back(std::make_unique<DeviceMem>(
            sizeof(CDataType) * c_device_tensors[i].mDesc.GetElementSize()));

        a_tensors_device[i]->ToDevice(a_tensors[i].mData.data());
        b_tensors_device[i]->ToDevice(b_tensors[i].mData.data());

        p_a.push_back(a_tensors_device[i]->GetDeviceBuffer());
        p_b.push_back(b_tensors_device[i]->GetDeviceBuffer());
        p_c.push_back(c_tensors_device[i]->GetDeviceBuffer());
    }

    auto a_element_op = PassThrough{};
    auto b_element_op = PassThrough{};
    auto c_element_op = PassThrough{};

    // do GEMM
    auto invoker_ptr  = groupedGemmPtr->MakeInvokerPointer();
    auto argument_ptr = groupedGemmPtr->MakeArgumentPointer(
        p_a, p_b, p_c, gemm_shapes, a_element_op, b_element_op, c_element_op);

    invoker_ptr->Run(argument_ptr.get());

150
    for(std::size_t i = 0; i < gemm_shapes.size(); i++)
zjing14's avatar
zjing14 committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    {
        c_tensors_device[i]->FromDevice(c_device_tensors[i].mData.data());

        using ReferenceGemmInstance = ck::tensor_operation::host::
            ReferenceGemm<ADataType, BDataType, CDataType, PassThrough, PassThrough, PassThrough>;

        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(a_tensors[i],
                                                  b_tensors[i],
                                                  c_host_tensors[i],
                                                  a_element_op,
                                                  b_element_op,
                                                  c_element_op);

zjing14's avatar
zjing14 committed
167
168
169
170
171
        if(!groupedGemmPtr->IsSupportedArgument(argument_ptr.get()))
        {
            return false;
        }

zjing14's avatar
zjing14 committed
172
173
        ref_invoker.Run(ref_argument);

174
        bool res = ck::utils::check_err(c_host_tensors[i].mData, c_device_tensors[i].mData);
zjing14's avatar
zjing14 committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

        std::cout << "group_id: " << i << (res ? " SUCCESS" : " FAILURE") << std::endl;

        if(!res)
            return false;
    }

    return true;
}

} // anonymous namespace

int main()
{
    std::vector<DeviceGroupedGemmPtr_> groupedGemmPtrs;
    ck::tensor_operation::device::device_grouped_gemm_instance::
        add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(groupedGemmPtrs);

    bool res = true;

    for(auto& gemmPtr : groupedGemmPtrs)
    {
        res &= TestGroupedGemm(gemmPtr);
    }

    std::cout << "TestGroupedGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
zjing14's avatar
zjing14 committed
201
202

    return res ? 0 : 1;
zjing14's avatar
zjing14 committed
203
}