gemm_split_k.cpp 8.87 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

ltqin's avatar
ltqin committed
4
5
6
#include <iostream>
#include <initializer_list>
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_splitk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"

#include "ck/library/host_tensor/host_gemm.hpp"
ltqin's avatar
ltqin committed
22

Chao Liu's avatar
Chao Liu committed
23
enum struct GemmMatrixLayout
ltqin's avatar
ltqin committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
{
    MK_KN_MN, // 0
    MK_NK_MN, // 1
    KM_KN_MN, // 2
    KM_NK_MN, // 3
};

using DeviceGemmNoOpPtr =
    ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough>;

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {

void add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);

} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

template <typename T>
static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{
    float max_diff = 1e-6;

56
    for(std::size_t i = 0; i < ref.mData.size(); ++i)
ltqin's avatar
ltqin committed
57
58
59
60
61
62
63
64
65
66
67
    {
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
        if(max_diff < diff)
        {
            return false;
        }
    }

    return true;
}

68
struct gemmArgs
ltqin's avatar
ltqin committed
69
{
Chao Liu's avatar
Chao Liu committed
70
    GemmMatrixLayout layout;
71
72
73
74
75
76
77
78
    int M;
    int N;
    int K;
    int StrideA;
    int StrideB;
    int StrideC;
    int KBatch;
};
ltqin's avatar
ltqin committed
79

80
81
int test_gemm(const gemmArgs& args)
{
ltqin's avatar
ltqin committed
82
83
    bool a_row_major, b_row_major, c_row_major;

84
    switch(args.layout)
ltqin's avatar
ltqin committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    {
    case GemmMatrixLayout::MK_KN_MN:
        a_row_major = true;
        b_row_major = true;
        c_row_major = true;
        break;
    case GemmMatrixLayout::MK_NK_MN:
        a_row_major = true;
        b_row_major = false;
        c_row_major = true;
        break;
    case GemmMatrixLayout::KM_KN_MN:
        a_row_major = false;
        b_row_major = true;
        c_row_major = true;
        break;
    case GemmMatrixLayout::KM_NK_MN:
        a_row_major = false;
        b_row_major = false;
        c_row_major = true;
        break;
    default: printf("not supported layout"); return 1;
    }

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, bool row_major) {
            if(row_major)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

123
124
    Tensor<float> a_m_k(f_host_tensor_descriptor(args.M, args.K, args.StrideA, a_row_major));
    Tensor<float> b_k_n(f_host_tensor_descriptor(args.K, args.N, args.StrideB, b_row_major));
125
126
127
128
    Tensor<float> c_m_n_host_result(
        f_host_tensor_descriptor(args.M, args.N, args.StrideC, c_row_major));
    Tensor<float> c_m_n_device_result(
        f_host_tensor_descriptor(args.M, args.N, args.StrideC, c_row_major));
ltqin's avatar
ltqin committed
129
130

    // init data
131
    std::size_t num_thread = 1;
ltqin's avatar
ltqin committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    a_m_k.GenerateTensorValue(GeneratorTensor_2<float>{-5, 5}, num_thread);
    b_k_n.GenerateTensorValue(GeneratorTensor_2<float>{-5, 5}, num_thread);
    // set zero to c_device_buf
    c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<float>{}, num_thread);

    host_gemm_mk_kn_mn(a_m_k,
                       b_k_n,
                       c_m_n_host_result,
                       ck::tensor_operation::element_wise::PassThrough{},
                       ck::tensor_operation::element_wise::PassThrough{},
                       ck::tensor_operation::element_wise::PassThrough{});

    DeviceMem a_device_buf(sizeof(float) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(float) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(float) * c_m_n_device_result.mDesc.GetElementSpace());

    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());
    c_device_buf.ToDevice(c_m_n_device_result.mData.data());

    // add device GEMM instances
    std::vector<DeviceGemmNoOpPtr> gemm_ptrs;

155
    if(args.layout == GemmMatrixLayout::MK_KN_MN)
ltqin's avatar
ltqin committed
156
157
158
159
    {
        ck::tensor_operation::device::device_gemm_instance::
            add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(gemm_ptrs);
    }
160
    else if(args.layout == GemmMatrixLayout::MK_NK_MN)
ltqin's avatar
ltqin committed
161
162
163
164
    {
        ck::tensor_operation::device::device_gemm_instance::
            add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(gemm_ptrs);
    }
165
    else if(args.layout == GemmMatrixLayout::KM_KN_MN)
ltqin's avatar
ltqin committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    {
        ck::tensor_operation::device::device_gemm_instance::
            add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(gemm_ptrs);
    }
    else
    {
        ck::tensor_operation::device::device_gemm_instance::
            add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(gemm_ptrs);
    }

    bool success = false;
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<float*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<float*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<float*>(c_device_buf.GetDeviceBuffer()),
183
184
185
186
187
188
                                          args.M,
                                          args.N,
                                          args.K,
                                          args.StrideA,
                                          args.StrideB,
                                          args.StrideC,
ltqin's avatar
ltqin committed
189
190
191
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
192
                                          args.KBatch);
ltqin's avatar
ltqin committed
193
194
195
196
197

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
JD's avatar
JD committed
198
            invoker_ptr->Run(argument_ptr.get());
ltqin's avatar
ltqin committed
199
200

            c_device_buf.FromDevice(c_m_n_device_result.mData.data());
JD's avatar
JD committed
201

ltqin's avatar
ltqin committed
202
203
204
205
206
207
208
209
            if(!check_out(c_m_n_host_result, c_m_n_device_result))
            {
                success = false;
                break;
            }
            success = true;
        }
    }
210
    auto error_code = 0;
ltqin's avatar
ltqin committed
211
212
213
214
215
216
217
    if(success)
    {
        std::cout << "test split k : Pass" << std::endl;
    }
    else
    {
        std::cout << "test split k: Fail " << std::endl;
218
        error_code = -1; // test needs to report failure
219
220
221
222
223
224
225
226
227
    }
    return error_code;
}

int main(int argc, char* argv[])
{
    std::vector<gemmArgs> test_cases;
    if(argc == 1)
    {
Chao Liu's avatar
Chao Liu committed
228
        test_cases = {{GemmMatrixLayout::MK_KN_MN, 3, 3, 3, 3, 3, 3, 1}};
229
230
231
232
233
        // JD: Populate with more and meaningful
        return 0;
    }
    else if(argc == 9)
    {
Chao Liu's avatar
Chao Liu committed
234
        const auto layout = static_cast<GemmMatrixLayout>(std::stoi(argv[1]));
235

236
237
238
        const int M = std::stoi(argv[2]);
        const int N = std::stoi(argv[3]);
        const int K = std::stoi(argv[4]);
239

240
241
242
243
244
        const int StrideA = std::stoi(argv[5]);
        const int StrideB = std::stoi(argv[6]);
        const int StrideC = std::stoi(argv[7]);
        const int KBatch  = std::stoi(argv[8]);
        test_cases        = {{layout, M, N, K, StrideA, StrideB, StrideC, KBatch}};
245
246
247
248
249
250
251
252
253
254
    }
    else
    {
        printf("arg1: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
        printf("                     1: A[m, k] * B[n, k] = C[m, n];\n");
        printf("                     2: A[k, m] * B[k, n] = C[m, n];\n");
        printf("                     3: A[k, m] * B[n, k] = C[m, n])\n");
        printf("arg2 to 7: M, N, K, StrideA, StrideB, StrideC KBatch\n");
        return -1;
    }
255
    for(const auto& kinder : test_cases)
256
257
258
    {
        const auto res = test_gemm(kinder);
        if(!res)
259
            return -1;
ltqin's avatar
ltqin committed
260
261
262
    }
    return 0;
}