profile_batched_gemm_impl.hpp 20.2 KB
Newer Older
zjing14's avatar
zjing14 committed
1
#pragma once
2

Jianfeng Yan's avatar
Jianfeng Yan committed
3
#include <memory>
4

5
#include "check_err.hpp"
6
7
8
9
10
11
#include "config.hpp"
#include "element_wise_operation.hpp"
#include "tensor_layout.hpp"
#include "device.hpp"
#include "host_tensor_generator.hpp"
#include "device_gemm.hpp"
zjing14's avatar
zjing14 committed
12
13
14
15
16
17
18
19
20
21
22
23
#include "reference_batched_gemm.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_batched_gemm_instance {

using DeviceGemmNoOpPtr =
    ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough>;

Jianfeng Yan's avatar
Jianfeng Yan committed
24
25
26
27
28
29
30
31
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gkn_gmn_instances(
    std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gnk_gmn_instances(
    std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gkn_gmn_instances(
    std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gnk_gmn_instances(
    std::vector<DeviceGemmNoOpPtr>&);
zjing14's avatar
zjing14 committed
32
33
34
35
void add_device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gmk_gnk_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gkm_gkn_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gkm_gnk_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
36
37
38
39
40
41
42
43
44
45
46
47
void add_device_batched_gemm_xdl_f32_f32_f32_gmk_gkn_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f32_f32_f32_gmk_gnk_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f32_f32_f32_gkm_gkn_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f32_f32_f32_gkm_gnk_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_int8_int8_int8_gmk_gkn_gmn_instances(
    std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_int8_int8_int8_gmk_gnk_gmn_instances(
    std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_int8_int8_int8_gkm_gkn_gmn_instances(
    std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_int8_int8_int8_gkm_gnk_gmn_instances(
    std::vector<DeviceGemmNoOpPtr>&);
zjing14's avatar
zjing14 committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

} // namespace device_batched_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
63
bool profile_batched_gemm_impl(int do_verification,
zjing14's avatar
zjing14 committed
64
65
                               int init_method,
                               bool do_log,
JD's avatar
JD committed
66
                               bool time_kernel,
zjing14's avatar
zjing14 committed
67
68
69
70
71
72
                               int M,
                               int N,
                               int K,
                               int StrideA,
                               int StrideB,
                               int StrideC,
73
                               int BatchCount)
zjing14's avatar
zjing14 committed
74
{
75
76
    bool pass = true;

zjing14's avatar
zjing14 committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    auto f_host_tensor_descriptor = [](std::size_t batch_count,
                                       std::size_t row,
                                       std::size_t col,
                                       std::size_t stride,
                                       auto layout) {
        if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
        {
            return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
                                        std::vector<std::size_t>({row * stride, stride, 1}));
        }
        else
        {
            return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
                                        std::vector<std::size_t>({col * stride, 1, stride}));
        }
    };

    Tensor<ADataType> a_g_m_k(f_host_tensor_descriptor(BatchCount, M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_g_k_n(f_host_tensor_descriptor(BatchCount, K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_g_m_n_host_result(
        f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_g_m_n_device_result(
        f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
Jianfeng Yan's avatar
Jianfeng Yan committed
100
101
    std::unique_ptr<Tensor<float>> c_f32_g_m_n_host_result   = nullptr;
    std::unique_ptr<Tensor<float>> c_f32_g_m_n_device_result = nullptr;
zjing14's avatar
zjing14 committed
102
103
104
105
106

    std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
    std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl;
    std::cout << "c_g_m_n: " << c_g_m_n_host_result.mDesc << std::endl;

107
    std::size_t num_thread = 1;
zjing14's avatar
zjing14 committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    switch(init_method)
    {
    case 0: break;
    case 1:
        a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_g_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
        break;
    default:
        a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_g_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
    }
    // set zero to c_device_buf
    c_g_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);

    using AElementOp = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};

    if(do_verification)
    {
Jianfeng Yan's avatar
Jianfeng Yan committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        if constexpr(is_same<ADataType, ck::bhalf_t>::value &&
                     is_same<BDataType, ck::bhalf_t>::value &&
                     is_same<CDataType, ck::bhalf_t>::value)
        {
            Tensor<float> a_f32_g_m_k(
                f_host_tensor_descriptor(BatchCount, M, K, StrideA, ALayout{}));
            Tensor<float> b_f32_g_k_n(
                f_host_tensor_descriptor(BatchCount, K, N, StrideB, BLayout{}));
            c_f32_g_m_n_host_result = std::make_unique<Tensor<float>>(
                f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
            c_f32_g_m_n_device_result = std::make_unique<Tensor<float>>(
                f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));

            bf16_to_f32_(a_g_m_k, a_f32_g_m_k);
            bf16_to_f32_(b_g_k_n, b_f32_g_k_n);

            using ReferenceBatchedGemmInstance = ck::tensor_operation::host::
                ReferenceBatchedGemm<float, float, float, AElementOp, BElementOp, CElementOp>;

            auto ref_batched_gemm = ReferenceBatchedGemmInstance{};
            auto ref_invoker      = ref_batched_gemm.MakeInvoker();

            auto ref_argument = ref_batched_gemm.MakeArgument(a_f32_g_m_k,
                                                              b_f32_g_k_n,
                                                              *c_f32_g_m_n_host_result,
                                                              a_element_op,
                                                              b_element_op,
                                                              c_element_op);

            ref_invoker.Run(ref_argument);
        }
        else
        {

            using ReferenceBatchedGemmInstance =
                ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
                                                                 BDataType,
                                                                 CDataType,
                                                                 AElementOp,
                                                                 BElementOp,
                                                                 CElementOp>;
zjing14's avatar
zjing14 committed
173

Jianfeng Yan's avatar
Jianfeng Yan committed
174
175
            auto ref_batched_gemm = ReferenceBatchedGemmInstance{};
            auto ref_invoker      = ref_batched_gemm.MakeInvoker();
zjing14's avatar
zjing14 committed
176

Jianfeng Yan's avatar
Jianfeng Yan committed
177
178
            auto ref_argument = ref_batched_gemm.MakeArgument(
                a_g_m_k, b_g_k_n, c_g_m_n_host_result, a_element_op, b_element_op, c_element_op);
zjing14's avatar
zjing14 committed
179

Jianfeng Yan's avatar
Jianfeng Yan committed
180
181
            ref_invoker.Run(ref_argument);
        }
zjing14's avatar
zjing14 committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c_g_m_n_device_result.mDesc.GetElementSpace());

    a_device_buf.ToDevice(a_g_m_k.mData.data());
    b_device_buf.ToDevice(b_g_k_n.mData.data());
    c_device_buf.ToDevice(c_g_m_n_device_result.mData.data());

    // add device GEMM instances
    std::vector<ck::tensor_operation::device::device_batched_gemm_instance::DeviceGemmNoOpPtr>
        gemm_ptrs;

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                 is_same<CDataType, half_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f16_f16_f16_gmk_gnk_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f16_f16_f16_gkm_gkn_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f16_f16_f16_gkm_gnk_gmn_instances(gemm_ptrs);
        }
    }
Jianfeng Yan's avatar
Jianfeng Yan committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    else if constexpr(is_same<ADataType, bhalf_t>::value && is_same<BDataType, bhalf_t>::value &&
                      is_same<CDataType, bhalf_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gkn_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gnk_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gkn_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gnk_gmn_instances(gemm_ptrs);
        }
    }
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    else if constexpr(is_same<ADataType, float>::value && is_same<BDataType, float>::value &&
                      is_same<CDataType, float>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f32_f32_f32_gmk_gkn_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f32_f32_f32_gmk_gnk_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f32_f32_f32_gkm_gkn_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f32_f32_f32_gkm_gnk_gmn_instances(gemm_ptrs);
        }
    }
    else if constexpr(is_same<ADataType, int8_t>::value && is_same<BDataType, int8_t>::value &&
                      is_same<CDataType, int8_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_int8_int8_int8_gmk_gkn_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_int8_int8_int8_gmk_gnk_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_int8_int8_int8_gkm_gkn_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_int8_int8_int8_gkm_gnk_gmn_instances(gemm_ptrs);
        }
    }
zjing14's avatar
zjing14 committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          BatchCount);

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            std::string gemm_name = gemm_ptr->GetTypeString();

JD's avatar
JD committed
359
360
            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
zjing14's avatar
zjing14 committed
361
362
363

            std::size_t flop = std::size_t(2) * BatchCount * M * N * K;

JD's avatar
JD committed
364
            std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
zjing14's avatar
zjing14 committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
                                     sizeof(CDataType) * M * N) *
                                    BatchCount;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_g_m_n_device_result.mData.data());

Jianfeng Yan's avatar
Jianfeng Yan committed
387
388
389
390
391
392
                if constexpr(is_same<ADataType, ck::bhalf_t>::value &&
                             is_same<BDataType, ck::bhalf_t>::value &&
                             is_same<CDataType, ck::bhalf_t>::value)
                {

                    bf16_to_f32_(c_g_m_n_device_result, *c_f32_g_m_n_device_result);
393
394
                    float err = check_error(*c_f32_g_m_n_host_result, *c_f32_g_m_n_device_result);
                    pass      = pass && (err < 1E-6);
Jianfeng Yan's avatar
Jianfeng Yan committed
395
396
397
                }
                else
                {
398
399
                    float err = check_error(c_g_m_n_host_result, c_g_m_n_device_result);
                    pass      = pass && (err < 1E-6);
Jianfeng Yan's avatar
Jianfeng Yan committed
400
                }
zjing14's avatar
zjing14 committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_g_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_g_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host: ", c_g_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(
                        std::cout << "c_device: ", c_g_m_n_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << "this device GEMM instance does not support this GEMM problem"
                      << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
423
424

    return pass;
zjing14's avatar
zjing14 committed
425
426
427
428
}

} // namespace profiler
} // namespace ck