"vscode:/vscode.git/clone" did not exist on "74b847c0fb2b234935127ef98f65ca99254e1549"
profile_batched_gemm_impl.hpp 10.7 KB
Newer Older
zjing14's avatar
zjing14 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#pragma once
#include "reference_batched_gemm.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_batched_gemm_instance {

using DeviceGemmNoOpPtr =
    ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough>;

void add_device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gmk_gnk_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gkm_gkn_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gkm_gnk_gmn_instances(std::vector<DeviceGemmNoOpPtr>&);

} // namespace device_batched_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
void profile_batched_gemm_impl(int do_verification,
                               int init_method,
                               bool do_log,
                               int nrepeat,
                               int M,
                               int N,
                               int K,
                               int StrideA,
                               int StrideB,
                               int StrideC,
                               int BatchCount = 1)
{
    auto f_host_tensor_descriptor = [](std::size_t batch_count,
                                       std::size_t row,
                                       std::size_t col,
                                       std::size_t stride,
                                       auto layout) {
        if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
        {
            return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
                                        std::vector<std::size_t>({row * stride, stride, 1}));
        }
        else
        {
            return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
                                        std::vector<std::size_t>({col * stride, 1, stride}));
        }
    };

    Tensor<ADataType> a_g_m_k(f_host_tensor_descriptor(BatchCount, M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_g_k_n(f_host_tensor_descriptor(BatchCount, K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_g_m_n_host_result(
        f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_g_m_n_device_result(
        f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));

    std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
    std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl;
    std::cout << "c_g_m_n: " << c_g_m_n_host_result.mDesc << std::endl;

    std::size_t num_thread = std::thread::hardware_concurrency();
    switch(init_method)
    {
    case 0: break;
    case 1:
        a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_g_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
        break;
    default:
        a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_g_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
    }
    // set zero to c_device_buf
    c_g_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);

    using AElementOp = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};

    if(do_verification)
    {
        using ReferenceBatchedGemmInstance =
            ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
                                                             BDataType,
                                                             CDataType,
                                                             AElementOp,
                                                             BElementOp,
                                                             CElementOp>;

        auto ref_batched_gemm = ReferenceBatchedGemmInstance{};
        auto ref_invoker      = ref_batched_gemm.MakeInvoker();

        auto ref_argument = ref_batched_gemm.MakeArgument(
            a_g_m_k, b_g_k_n, c_g_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c_g_m_n_device_result.mDesc.GetElementSpace());

    a_device_buf.ToDevice(a_g_m_k.mData.data());
    b_device_buf.ToDevice(b_g_k_n.mData.data());
    c_device_buf.ToDevice(c_g_m_n_device_result.mData.data());

    // add device GEMM instances
    std::vector<ck::tensor_operation::device::device_batched_gemm_instance::DeviceGemmNoOpPtr>
        gemm_ptrs;

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                 is_same<CDataType, half_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f16_f16_f16_gmk_gnk_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f16_f16_f16_gkm_gkn_gmn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_batched_gemm_instance::
                add_device_batched_gemm_xdl_f16_f16_f16_gkm_gnk_gmn_instances(gemm_ptrs);
        }
    }

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          BatchCount);

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            std::string gemm_name = gemm_ptr->GetTypeString();

            float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

            std::size_t flop = std::size_t(2) * BatchCount * M * N * K;

            std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(BDataType) * K * M +
                                     sizeof(CDataType) * M * N) *
                                    BatchCount;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_g_m_n_device_result.mData.data());

                check_error(c_g_m_n_host_result, c_g_m_n_device_result);

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_g_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_g_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host: ", c_g_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(
                        std::cout << "c_device: ", c_g_m_n_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << "this device GEMM instance does not support this GEMM problem"
                      << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
}

} // namespace profiler
} // namespace ck