driver.hip.cpp 26.2 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
Chao Liu's avatar
Chao Liu committed
2
3
#include <numeric>
#include <initializer_list>
Chao Liu's avatar
Chao Liu committed
4
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
5
#include <stdlib.h>
Chao Liu's avatar
Chao Liu committed
6
#include "config.h"
Chao Liu's avatar
Chao Liu committed
7
#include "tensor.hpp"
8
9
#include "ConstantTensorDescriptor.hip.hpp"
#include "conv_common.hip.hpp"
Chao Liu's avatar
Chao Liu committed
10
//#include "device_direct_convolution_1.hpp"
Chao Liu's avatar
Chao Liu committed
11
#include "device_direct_convolution_2_nchw_kcyx_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
12
//#include "device_direct_convolution_2_vectorized_nchw_kcyx_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
13
#include "device_convolution_implicit_gemm_v1_chwn_cyxk_khwn.hpp"
14
#include "device_convolution_implicit_gemm_v1_nchw_cyxk_khwn.hpp"
Chao Liu's avatar
Chao Liu committed
15
//#include "device_implicit_gemm_convolution_1_chwn_cyxk_khwn_padded.hpp"
Chao Liu's avatar
Chao Liu committed
16
#include "device_convolution_implicit_gemm_v2_chwn_cyxk_khwn.hpp"
Chao Liu's avatar
Chao Liu committed
17

Chao Liu's avatar
Chao Liu committed
18
struct GeneratorTensor_1
Chao Liu's avatar
Chao Liu committed
19
20
{
    template <class... Is>
Chao Liu's avatar
Chao Liu committed
21
    double operator()(Is... is)
Chao Liu's avatar
Chao Liu committed
22
    {
Chao Liu's avatar
Chao Liu committed
23
        return 1;
Chao Liu's avatar
Chao Liu committed
24
25
26
    }
};

Chao Liu's avatar
Chao Liu committed
27
28
29
30
31
32
33
34
35
36
37
38
struct GeneratorTensor_2
{
    int min_value = 0;
    int max_value = 1;

    template <class... Is>
    double operator()(Is...)
    {
        return (std::rand() % (max_value - min_value)) + min_value;
    }
};

39
40
41
42
43
44
45
46
47
48
struct GeneratorTensor_3
{
    template <class... Is>
    double operator()(Is... is)
    {
        std::array<index_t, sizeof...(Is)> dims = {{static_cast<index_t>(is)...}};

#if 0
        auto f_acc = std::plus<index_t>{};
#else
49
        auto f_acc = [](auto a, auto b) { return 10 * a + b; };
50
51
#endif

52
        return std::accumulate(dims.begin(), dims.end(), index_t(0), f_acc);
53
54
55
    }
};

Chao Liu's avatar
Chao Liu committed
56
57
58
59
60
struct GeneratorTensor_Checkboard
{
    template <class... Ts>
    double operator()(Ts... Xs) const
    {
Chao Liu's avatar
Chao Liu committed
61
        std::array<index_t, sizeof...(Ts)> dims = {{Xs...}};
Chao Liu's avatar
Chao Liu committed
62
63
64
        return std::accumulate(dims.begin(),
                               dims.end(),
                               true,
Chao Liu's avatar
Chao Liu committed
65
                               [](bool init, index_t x) -> int { return init != (x % 2); })
Chao Liu's avatar
Chao Liu committed
66
67
68
69
70
                   ? 1
                   : -1;
    }
};

Chao Liu's avatar
Chao Liu committed
71
72
73
74
75
76
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
77
78
79
80
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
95
96
97
98
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
99
100
    constexpr auto desc = TConstTensorDesc{};

Chao Liu's avatar
Chao Liu committed
101
    std::initializer_list<index_t> lengths = {
Chao Liu's avatar
Chao Liu committed
102
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
Chao Liu's avatar
Chao Liu committed
103
    std::initializer_list<index_t> strides = {
Chao Liu's avatar
Chao Liu committed
104
105
106
107
108
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

109
110
111
112
113
114
template <class TIn, class TWei, class TOut, class LowerPads, class UpperPads>
void host_direct_convolution(const Tensor<TIn>& in_nchw,
                             const Tensor<TWei>& wei_kcyx,
                             Tensor<TOut>& out_nkhw,
                             LowerPads,
                             UpperPads)
Chao Liu's avatar
Chao Liu committed
115
{
Chao Liu's avatar
Chao Liu committed
116
117
    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});
118

Chao Liu's avatar
Chao Liu committed
119
120
    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});
121

Chao Liu's avatar
Chao Liu committed
122
123
    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
Chao Liu's avatar
Chao Liu committed
124
        for(int c = 0; c < wei_kcyx.mDesc.GetLengths()[1]; ++c)
Chao Liu's avatar
Chao Liu committed
125
        {
Chao Liu's avatar
Chao Liu committed
126
            for(int y = 0; y < wei_kcyx.mDesc.GetLengths()[2]; ++y)
Chao Liu's avatar
Chao Liu committed
127
            {
128
                int hi = ho + y - h_pad_low;
Chao Liu's avatar
Chao Liu committed
129
                for(int x = 0; x < wei_kcyx.mDesc.GetLengths()[3]; ++x)
Chao Liu's avatar
Chao Liu committed
130
                {
131
132
133
134
                    int wi = wo + x - w_pad_low;
                    if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                       wi < in_nchw.mDesc.GetLengths()[3])
                    {
135
                        v += double(in_nchw(n, c, hi, wi)) * double(wei_kcyx(k, c, y, x));
136
                    }
Chao Liu's avatar
Chao Liu committed
137
138
139
                }
            }
        }
140
        out_nkhw(n, k, ho, wo) = v;
Chao Liu's avatar
Chao Liu committed
141
142
143
    };

    auto f_par = make_ParallelTensorFunctor(f,
144
145
146
147
                                            out_nkhw.mDesc.GetLengths()[0],
                                            out_nkhw.mDesc.GetLengths()[1],
                                            out_nkhw.mDesc.GetLengths()[2],
                                            out_nkhw.mDesc.GetLengths()[3]);
Chao Liu's avatar
Chao Liu committed
148

Chao Liu's avatar
Chao Liu committed
149
    f_par(std::thread::hardware_concurrency());
Chao Liu's avatar
Chao Liu committed
150
151
}

152
153
154
155
156
157
template <class TIn, class TWei, class TOut, class LowerPads, class UpperPads>
void host_winograd_3x3_convolution(const Tensor<TIn>& in_nchw,
                                   const Tensor<TWei>& wei_kcyx,
                                   Tensor<TOut>& out_nkhw,
                                   LowerPads,
                                   UpperPads)
Chao Liu's avatar
Chao Liu committed
158
{
Chao Liu's avatar
Chao Liu committed
159
160
    constexpr std::size_t HoPerTile = 2;
    constexpr std::size_t WoPerTile = 2;
Chao Liu's avatar
Chao Liu committed
161

Chao Liu's avatar
Chao Liu committed
162
163
164
165
    std::size_t N  = in_nchw.mDesc.GetLengths()[0];
    std::size_t C  = in_nchw.mDesc.GetLengths()[1];
    std::size_t HI = in_nchw.mDesc.GetLengths()[2];
    std::size_t WI = in_nchw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
166

Chao Liu's avatar
Chao Liu committed
167
168
169
    std::size_t K = wei_kcyx.mDesc.GetLengths()[0];
    std::size_t Y = wei_kcyx.mDesc.GetLengths()[2];
    std::size_t X = wei_kcyx.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
170

171
172
    std::size_t HO = out_nkhw.mDesc.GetLengths()[2];
    std::size_t WO = out_nkhw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
173

Chao Liu's avatar
Chao Liu committed
174
175
    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});
176

Chao Liu's avatar
Chao Liu committed
177
178
    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});
179

Chao Liu's avatar
Chao Liu committed
180
181
    std::size_t HiPerTile = HoPerTile + Y - 1;
    std::size_t WiPerTile = WoPerTile + X - 1;
Chao Liu's avatar
Chao Liu committed
182

Chao Liu's avatar
Chao Liu committed
183
184
    std::size_t HTile = (HO + HoPerTile - 1) / HoPerTile;
    std::size_t WTile = (WO + WoPerTile - 1) / WoPerTile;
Chao Liu's avatar
Chao Liu committed
185

186
187
188
189
190
    Tensor<double> in_hold({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> in_transform({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> wei_transform({K, C, HiPerTile, WiPerTile});
    Tensor<double> out_transform({N, K, HTile, WTile, HiPerTile, HiPerTile});
    Tensor<double> out_hold({N, K, HTile, WTile, HoPerTile, WoPerTile});
Chao Liu's avatar
Chao Liu committed
191

Chao Liu's avatar
Chao Liu committed
192
193
    auto f_in_hold = [&](auto n, auto c, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
194
        {
Chao Liu's avatar
Chao Liu committed
195
196
            int hi = HoPerTile * htile + j - h_pad_low;
            for(int i = 0; i < WiPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
197
            {
Chao Liu's avatar
Chao Liu committed
198
                int wi = WoPerTile * wtile + i - w_pad_low;
199
200
201
202

                if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                   wi < in_nchw.mDesc.GetLengths()[3])
                {
Chao Liu's avatar
Chao Liu committed
203
                    in_hold(n, c, htile, wtile, j, i) = in_nchw(n, c, hi, wi);
204
205
206
                }
                else
                {
207
                    in_hold(n, c, htile, wtile, j, i) = TIn(0);
208
                }
Chao Liu's avatar
Chao Liu committed
209
210
211
212
            }
        }
    };

Chao Liu's avatar
Chao Liu committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    auto f_in_transform = [&](auto n, auto c, auto htile, auto wtile) {
        in_transform(n, c, htile, wtile, 0, 0) =
            in_hold(n, c, htile, wtile, 0, 0) - in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 0) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 1) =
            in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 2) =
            -in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 3) =
            in_hold(n, c, htile, wtile, 0, 1) - in_hold(n, c, htile, wtile, 0, 3) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 1, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 2, 0) =
            -in_hold(n, c, htile, wtile, 1, 0) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 1) =
            -in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 2) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 3) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 3, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 0) + in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) -
            in_hold(n, c, htile, wtile, 3, 1) + in_hold(n, c, htile, wtile, 3, 3);
Chao Liu's avatar
Chao Liu committed
265
266
267
    };

    auto f_wei_transform = [&](auto k, auto c) {
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        wei_transform(k, c, 0, 0) = double(wei_kcyx(k, c, 0, 0));
        wei_transform(k, c, 0, 1) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 2) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 3) = double(wei_kcyx(k, c, 0, 2));

        wei_transform(k, c, 1, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 1, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 2, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 2, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 3, 0) = double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 3, 1) = 0.5 * double(wei_kcyx(k, c, 2, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 2) = 0.5 * double(wei_kcyx(k, c, 2, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 3) = double(wei_kcyx(k, c, 2, 2));
Chao Liu's avatar
Chao Liu committed
323
324
    };

Chao Liu's avatar
Chao Liu committed
325
326
    auto f_out_transform = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
327
        {
Chao Liu's avatar
Chao Liu committed
328
            for(int i = 0; i < WiPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
329
330
331
332
            {
                double v = 0;
                for(int c = 0; c < C; ++c)
                {
Chao Liu's avatar
Chao Liu committed
333
                    v += in_transform(n, c, htile, wtile, j, i) * wei_transform(k, c, j, i);
Chao Liu's avatar
Chao Liu committed
334
335
                }

Chao Liu's avatar
Chao Liu committed
336
                out_transform(n, k, htile, wtile, j, i) = v;
Chao Liu's avatar
Chao Liu committed
337
338
339
340
            }
        }
    };

Chao Liu's avatar
Chao Liu committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    auto f_out_hold = [&](auto n, auto k, auto htile, auto wtile) {
        out_hold(n, k, htile, wtile, 0, 0) =
            out_transform(n, k, htile, wtile, 0, 0) + out_transform(n, k, htile, wtile, 0, 1) +
            out_transform(n, k, htile, wtile, 0, 2) + out_transform(n, k, htile, wtile, 1, 0) +
            out_transform(n, k, htile, wtile, 1, 1) + out_transform(n, k, htile, wtile, 1, 2) +
            out_transform(n, k, htile, wtile, 2, 0) + out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2);
        out_hold(n, k, htile, wtile, 0, 1) =
            out_transform(n, k, htile, wtile, 0, 1) - out_transform(n, k, htile, wtile, 0, 2) -
            out_transform(n, k, htile, wtile, 0, 3) + out_transform(n, k, htile, wtile, 1, 1) -
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 1, 3) +
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 2, 3);
        out_hold(n, k, htile, wtile, 1, 0) =
            out_transform(n, k, htile, wtile, 1, 0) + out_transform(n, k, htile, wtile, 1, 1) +
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 2, 0) -
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 3, 0) - out_transform(n, k, htile, wtile, 3, 1) -
            out_transform(n, k, htile, wtile, 3, 2);
        out_hold(n, k, htile, wtile, 1, 1) =
            out_transform(n, k, htile, wtile, 1, 1) - out_transform(n, k, htile, wtile, 1, 2) -
            out_transform(n, k, htile, wtile, 1, 3) - out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2) + out_transform(n, k, htile, wtile, 2, 3) -
            out_transform(n, k, htile, wtile, 3, 1) + out_transform(n, k, htile, wtile, 3, 2) +
            out_transform(n, k, htile, wtile, 3, 3);
Chao Liu's avatar
Chao Liu committed
366
367
    };

Chao Liu's avatar
Chao Liu committed
368
369
    auto f_out = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HoPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
370
        {
Chao Liu's avatar
Chao Liu committed
371
372
            std::size_t ho = HoPerTile * htile + j;
            for(int i = 0; i < WoPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
373
            {
374
                std::size_t wo         = WoPerTile * wtile + i;
375
                out_nkhw(n, k, ho, wo) = out_hold(n, k, htile, wtile, j, i);
Chao Liu's avatar
Chao Liu committed
376
377
378
379
380
381
            }
        }
    };

    std::size_t num_thread = std::thread::hardware_concurrency();

Chao Liu's avatar
Chao Liu committed
382
383
    make_ParallelTensorFunctor(f_in_hold, N, C, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_in_transform, N, C, HTile, WTile)(num_thread);
Chao Liu's avatar
Chao Liu committed
384
    make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread);
Chao Liu's avatar
Chao Liu committed
385
386
387
    make_ParallelTensorFunctor(f_out_transform, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out_hold, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out, N, K, HTile, WTile)(num_thread);
Chao Liu's avatar
Chao Liu committed
388
389
390
391
392
}

template <class T>
void check_error(const Tensor<T>& ref, const Tensor<T>& result)
{
393
394
    // printf("\n");

Chao Liu's avatar
Chao Liu committed
395
    float error     = 0;
Chao Liu's avatar
Chao Liu committed
396
    float max_diff  = -1;
Chao Liu's avatar
Chao Liu committed
397
398
399
    float ref_value = 0, result_value = 0;
    for(int i = 0; i < ref.mData.size(); ++i)
    {
400
401
        error += std::abs(double(ref.mData[i]) - double(result.mData[i]));
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
Chao Liu's avatar
Chao Liu committed
402
403
404
405
406
407
        if(max_diff < diff)
        {
            max_diff     = diff;
            ref_value    = ref.mData[i];
            result_value = result.mData[i];
        }
408
409

        // printf("{%f, %f}", double(ref.mData[i]), double(result.mData[i]));
Chao Liu's avatar
Chao Liu committed
410
    }
411
    // printf("\n");
Chao Liu's avatar
Chao Liu committed
412
413
414
415
416

    std::cout << "error: " << error << std::endl;
    std::cout << "max_diff: " << max_diff << ", " << ref_value << ", " << result_value << std::endl;
}

Chao Liu's avatar
Chao Liu committed
417
int main(int argc, char* argv[])
Chao Liu's avatar
Chao Liu committed
418
{
Chao Liu's avatar
tuning  
Chao Liu committed
419
#if 0
420
421
422
423
    constexpr index_t N  = 128;
    constexpr index_t C  = 8;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
424
    constexpr index_t K  = 128;
Chao Liu's avatar
Chao Liu committed
425
426
427
428
429
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
430
#elif 0
431
    // 3x3, 34x34
432
    constexpr index_t N = 64;
433
434
435
    constexpr index_t C = 256;
    constexpr index_t HI = 34;
    constexpr index_t WI = 34;
436
437
438
    constexpr index_t K = 128;
    constexpr index_t Y = 3;
    constexpr index_t X = 3;
Chao Liu's avatar
Chao Liu committed
439

440
441
442
443
444
445
446
447
448
449
450
451
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 0
    // 3x3, 56x56
    constexpr index_t N  = 64;
    constexpr index_t C  = 64;
    constexpr index_t HI = 56;
    constexpr index_t WI = 56;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

Chao Liu's avatar
Chao Liu committed
452
453
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
454
#elif 0
Chao Liu's avatar
Chao Liu committed
455
456
457
458
459
    // 3x3 filter, 28x28 image
    constexpr index_t N  = 128;
    constexpr index_t C  = 256;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
460
    constexpr index_t K  = 128;
Chao Liu's avatar
Chao Liu committed
461
462
463
464
465
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
466
#elif 0
Chao Liu's avatar
Chao Liu committed
467
    // 1x1 filter, 28x28 image
Chao Liu's avatar
Chao Liu committed
468
469
470
471
472
473
474
475
476
477
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
478
479
#elif 0
    // 3x3 filter, 20x84 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
480
481
482
483
484
485
486
487
488
489
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 84;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
Chao Liu's avatar
Chao Liu committed
490
491
#elif 0
    // 3x3 filter, 112x112 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
492
493
494
495
496
497
498
499
500
501
    constexpr index_t N  = 16;
    constexpr index_t C  = 64;
    constexpr index_t HI = 112;
    constexpr index_t WI = 112;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
502
503
504
505
506
507
508
509
510
511
512
513
#elif 1
    // 5x5 filter, 20x86 image
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 86;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
514
515
#elif 0
    // 5x5 filter, 20x86 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
516
517
518
519
520
521
522
523
524
525
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 86;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
Chao Liu's avatar
Chao Liu committed
526
527
#elif 0
    // 5x5 filter, 28x28 image, 2x2 padding
Chao Liu's avatar
Chao Liu committed
528
529
530
531
532
533
534
535
536
537
    constexpr index_t N  = 16;
    constexpr index_t C  = 192;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 32;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 2;
    constexpr index_t WPad = 2;
Chao Liu's avatar
Chao Liu committed
538
#elif 0
539
    // 3x3 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
540
    constexpr index_t N  = 128;
541
    constexpr index_t C  = 256;
Chao Liu's avatar
Chao Liu committed
542
543
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
544
545
546
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Chao Liu's avatar
Chao Liu committed
547
548
549

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
550
#elif 10
551
    // 1x1 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
552
553
554
555
556
557
558
559
560
561
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
562
#endif
Chao Liu's avatar
Chao Liu committed
563

564
565
566
    auto lower_pads = Sequence<HPad, WPad>{};
    auto upper_pads = Sequence<HPad, WPad>{};

Chao Liu's avatar
Chao Liu committed
567
    auto in_nchw_desc  = make_ConstantTensorDescriptor(Sequence<N, C, HI, WI>{});
Chao Liu's avatar
Chao Liu committed
568
    auto wei_kcyx_desc = make_ConstantTensorDescriptor(Sequence<K, C, Y, X>{});
569
    auto out_nkhw_desc = get_convolution_with_padding_output_default_4d_tensor_descriptor(
Chao Liu's avatar
Chao Liu committed
570
        in_nchw_desc, wei_kcyx_desc, lower_pads, upper_pads);
Chao Liu's avatar
Chao Liu committed
571

Chao Liu's avatar
Chao Liu committed
572
    ostream_ConstantTensorDescriptor(in_nchw_desc, std::cout << "in_nchw_desc: ");
Chao Liu's avatar
Chao Liu committed
573
    ostream_ConstantTensorDescriptor(wei_kcyx_desc, std::cout << "wei_kcyx_desc: ");
Chao Liu's avatar
Chao Liu committed
574
    ostream_ConstantTensorDescriptor(out_nkhw_desc, std::cout << "out_nkhw_desc: ");
Chao Liu's avatar
Chao Liu committed
575

Chao Liu's avatar
Chao Liu committed
576
577
    using in_data_t  = float;
    using out_data_t = float;
578
579
580
581
    Tensor<in_data_t> in_nchw(make_TensorDescriptor(in_nchw_desc));
    Tensor<in_data_t> wei_kcyx(make_TensorDescriptor(wei_kcyx_desc));
    Tensor<out_data_t> out_nkhw_host(make_TensorDescriptor(out_nkhw_desc));
    Tensor<out_data_t> out_nkhw_device(make_TensorDescriptor(out_nkhw_desc));
Chao Liu's avatar
Chao Liu committed
582

Chao Liu's avatar
Chao Liu committed
583
    std::size_t num_thread = std::thread::hardware_concurrency();
Chao Liu's avatar
Chao Liu committed
584

Chao Liu's avatar
Chao Liu committed
585
586
587
588
589
590
591
    if(argc != 3)
    {
        printf("arg1: do_verification, arg2: nrepeat\n");
        exit(1);
    }

    bool do_verification = atoi(argv[1]);
Chao Liu's avatar
Chao Liu committed
592
    index_t nrepeat      = atoi(argv[2]);
593
594
595

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
596
#if 0
597
        in_nchw.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
598
        wei_kcyx.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
599
600
601
#elif 0
        in_nchw.GenerateTensorValue(GeneratorTensor_3{}, num_thread);
        wei_kcyx.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
602
#elif 1
603
        in_nchw.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
604
        wei_kcyx.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
605
#elif 1
606
607
608
609
610
611
        in_nchw.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread);

        auto gen_wei = [](auto... is) {
            return GeneratorTensor_2{1, 5}(is...) * GeneratorTensor_Checkboard{}(is...);
        };
        wei_kcyx.GenerateTensorValue(gen_wei, num_thread);
Chao Liu's avatar
Chao Liu committed
612
#endif
613
    }
Chao Liu's avatar
Chao Liu committed
614

Chao Liu's avatar
Chao Liu committed
615
#if 1
Chao Liu's avatar
Chao Liu committed
616
#if 0
Chao Liu's avatar
Chao Liu committed
617
    device_direct_convolution_1
618
#elif 0
Chao Liu's avatar
Chao Liu committed
619
620
    device_direct_convolution_2_nchw_kcyx_nkhw
#elif 0
Chao Liu's avatar
Chao Liu committed
621
    device_direct_convolution_2_vectorized_nchw_kcyx_nkhw
622
#elif 1
623
624
    device_convolution_implicit_gemm_v1_chwn_cyxk_khwn
#elif 0
625
    device_convolution_implicit_gemm_v1_nchw_cyxk_khwn
626
#elif 0
Chao Liu's avatar
Chao Liu committed
627
    device_convolution_implicit_gemm_v2_chwn_cyxk_khwn
628
#endif
Chao Liu's avatar
Chao Liu committed
629
    (in_nchw_desc, in_nchw, wei_kcyx_desc, wei_kcyx, out_nkhw_desc, out_nkhw_device, nrepeat);
630

Chao Liu's avatar
Chao Liu committed
631
#elif 1
Chao Liu's avatar
Chao Liu committed
632
    device_implicit_gemm_convolution_1_chwn_cyxk_khwn_padded(in_nchw_desc,
Chao Liu's avatar
Chao Liu committed
633
                                                             in_nchw,
Chao Liu's avatar
Chao Liu committed
634
635
                                                             wei_kcyx_desc,
                                                             wei_kcyx,
Chao Liu's avatar
Chao Liu committed
636
637
638
639
640
                                                             out_nkhw_desc,
                                                             out_nkhw_device,
                                                             lower_pads,
                                                             upper_pads,
                                                             nrepeat);
641
#endif
Chao Liu's avatar
Chao Liu committed
642

643
    if(do_verification)
644
    {
Chao Liu's avatar
Chao Liu committed
645
        if(Y == 3 && X == 3)
646
        {
Chao Liu's avatar
Chao Liu committed
647
            host_winograd_3x3_convolution(in_nchw, wei_kcyx, out_nkhw_host, lower_pads, upper_pads);
648
649
650
        }
        else
        {
Chao Liu's avatar
Chao Liu committed
651
            host_direct_convolution(in_nchw, wei_kcyx, out_nkhw_host, lower_pads, upper_pads);
652
653
        }
        check_error(out_nkhw_host, out_nkhw_device);
Chao Liu's avatar
Chao Liu committed
654

Chao Liu's avatar
Chao Liu committed
655
#if 0
656
        LogRange(std::cout << "in_nchw : ", in_nchw.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
657
        LogRange(std::cout << "wei_kcyx: ", wei_kcyx.mData, ",") << std::endl;
658
659
        LogRange(std::cout << "out_nkhw_host  : ", out_nkhw_host.mData, ",") << std::endl;
        LogRange(std::cout << "out_nkhw_device: ", out_nkhw_device.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
660
#endif
661
    }
662
}