"git@developer.sourcefind.cn:modelzoo/resnet50_tensorflow.git" did not exist on "5a2cf36faf2c8e090d271c6789fb04e1f27b116f"
driver.hip.cpp 27.8 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
Chao Liu's avatar
Chao Liu committed
2
3
#include <numeric>
#include <initializer_list>
Chao Liu's avatar
Chao Liu committed
4
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
5
#include <stdlib.h>
Chao Liu's avatar
Chao Liu committed
6
#include "config.h"
Chao Liu's avatar
Chao Liu committed
7
#include "tensor.hpp"
8
9
#include "ConstantTensorDescriptor.hip.hpp"
#include "conv_common.hip.hpp"
Chao Liu's avatar
Chao Liu committed
10
//#include "device_direct_convolution_1.hpp"
Chao Liu's avatar
Chao Liu committed
11
#include "device_direct_convolution_2_nchw_kcyx_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
12
//#include "device_direct_convolution_2_vectorized_nchw_kcyx_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
13
#include "device_implicit_gemm_convolution_1_chwn_cyxk_khwn.hpp"
Chao Liu's avatar
Chao Liu committed
14
//#include "device_implicit_gemm_convolution_1_chwn_cyxk_khwn_padded.hpp"
Chao Liu's avatar
Chao Liu committed
15
#include "device_implicit_gemm_convolution_2_chwn_cyxk_khwn.hpp"
Chao Liu's avatar
Chao Liu committed
16

Chao Liu's avatar
Chao Liu committed
17
struct GeneratorTensor_1
Chao Liu's avatar
Chao Liu committed
18
19
{
    template <class... Is>
Chao Liu's avatar
Chao Liu committed
20
    double operator()(Is... is)
Chao Liu's avatar
Chao Liu committed
21
    {
Chao Liu's avatar
Chao Liu committed
22
        return 1;
Chao Liu's avatar
Chao Liu committed
23
24
25
    }
};

Chao Liu's avatar
Chao Liu committed
26
27
28
29
30
31
32
33
34
35
36
37
struct GeneratorTensor_2
{
    int min_value = 0;
    int max_value = 1;

    template <class... Is>
    double operator()(Is...)
    {
        return (std::rand() % (max_value - min_value)) + min_value;
    }
};

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
struct GeneratorTensor_3
{
    int min_value = 0;
    int max_value = 9;

    template <class... Is>
    double operator()(Is... is)
    {
        std::array<index_t, sizeof...(Is)> dims = {{static_cast<index_t>(is)...}};

#if 0
        auto f_acc = std::plus<index_t>{};
#else
        auto f_acc = [](auto a, auto b){ return 10*a + b;};
#endif

        return std::accumulate(dims.begin(),
                               dims.end(),
                               index_t(0),
                               f_acc);
    }
};

Chao Liu's avatar
Chao Liu committed
61
62
63
64
65
struct GeneratorTensor_Checkboard
{
    template <class... Ts>
    double operator()(Ts... Xs) const
    {
Chao Liu's avatar
Chao Liu committed
66
        std::array<index_t, sizeof...(Ts)> dims = {{Xs...}};
Chao Liu's avatar
Chao Liu committed
67
68
69
        return std::accumulate(dims.begin(),
                               dims.end(),
                               true,
Chao Liu's avatar
Chao Liu committed
70
                               [](bool init, index_t x) -> int { return init != (x % 2); })
Chao Liu's avatar
Chao Liu committed
71
72
73
74
75
                   ? 1
                   : -1;
    }
};

Chao Liu's avatar
Chao Liu committed
76
77
78
79
80
81
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
82
83
84
85
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
100
101
102
103
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
104
105
    constexpr auto desc = TConstTensorDesc{};

Chao Liu's avatar
Chao Liu committed
106
    std::initializer_list<index_t> lengths = {
Chao Liu's avatar
Chao Liu committed
107
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
Chao Liu's avatar
Chao Liu committed
108
    std::initializer_list<index_t> strides = {
Chao Liu's avatar
Chao Liu committed
109
110
111
112
113
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

114
115
116
117
118
119
template <class TIn, class TWei, class TOut, class LowerPads, class UpperPads>
void host_direct_convolution(const Tensor<TIn>& in_nchw,
                             const Tensor<TWei>& wei_kcyx,
                             Tensor<TOut>& out_nkhw,
                             LowerPads,
                             UpperPads)
Chao Liu's avatar
Chao Liu committed
120
{
Chao Liu's avatar
Chao Liu committed
121
122
    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});
123

Chao Liu's avatar
Chao Liu committed
124
125
    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});
126

Chao Liu's avatar
Chao Liu committed
127
128
    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
Chao Liu's avatar
Chao Liu committed
129
        for(int c = 0; c < wei_kcyx.mDesc.GetLengths()[1]; ++c)
Chao Liu's avatar
Chao Liu committed
130
        {
Chao Liu's avatar
Chao Liu committed
131
            for(int y = 0; y < wei_kcyx.mDesc.GetLengths()[2]; ++y)
Chao Liu's avatar
Chao Liu committed
132
            {
133
                int hi = ho + y - h_pad_low;
Chao Liu's avatar
Chao Liu committed
134
                for(int x = 0; x < wei_kcyx.mDesc.GetLengths()[3]; ++x)
Chao Liu's avatar
Chao Liu committed
135
                {
136
137
138
139
                    int wi = wo + x - w_pad_low;
                    if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                       wi < in_nchw.mDesc.GetLengths()[3])
                    {
140
                        v += double(in_nchw(n, c, hi, wi)) * double(wei_kcyx(k, c, y, x));
141
                    }
Chao Liu's avatar
Chao Liu committed
142
143
144
                }
            }
        }
145
        out_nkhw(n, k, ho, wo) = v;
Chao Liu's avatar
Chao Liu committed
146
147
148
    };

    auto f_par = make_ParallelTensorFunctor(f,
149
150
151
152
                                            out_nkhw.mDesc.GetLengths()[0],
                                            out_nkhw.mDesc.GetLengths()[1],
                                            out_nkhw.mDesc.GetLengths()[2],
                                            out_nkhw.mDesc.GetLengths()[3]);
Chao Liu's avatar
Chao Liu committed
153

Chao Liu's avatar
Chao Liu committed
154
    f_par(std::thread::hardware_concurrency());
Chao Liu's avatar
Chao Liu committed
155
156
}

157
158
159
160
161
162
template <class TIn, class TWei, class TOut, class LowerPads, class UpperPads>
void host_winograd_3x3_convolution(const Tensor<TIn>& in_nchw,
                                   const Tensor<TWei>& wei_kcyx,
                                   Tensor<TOut>& out_nkhw,
                                   LowerPads,
                                   UpperPads)
Chao Liu's avatar
Chao Liu committed
163
{
Chao Liu's avatar
Chao Liu committed
164
165
    constexpr std::size_t HoPerTile = 2;
    constexpr std::size_t WoPerTile = 2;
Chao Liu's avatar
Chao Liu committed
166

Chao Liu's avatar
Chao Liu committed
167
168
169
170
    std::size_t N  = in_nchw.mDesc.GetLengths()[0];
    std::size_t C  = in_nchw.mDesc.GetLengths()[1];
    std::size_t HI = in_nchw.mDesc.GetLengths()[2];
    std::size_t WI = in_nchw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
171

Chao Liu's avatar
Chao Liu committed
172
173
174
    std::size_t K = wei_kcyx.mDesc.GetLengths()[0];
    std::size_t Y = wei_kcyx.mDesc.GetLengths()[2];
    std::size_t X = wei_kcyx.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
175

176
177
    std::size_t HO = out_nkhw.mDesc.GetLengths()[2];
    std::size_t WO = out_nkhw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
178

Chao Liu's avatar
Chao Liu committed
179
180
    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});
181

Chao Liu's avatar
Chao Liu committed
182
183
    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});
184

Chao Liu's avatar
Chao Liu committed
185
186
    std::size_t HiPerTile = HoPerTile + Y - 1;
    std::size_t WiPerTile = WoPerTile + X - 1;
Chao Liu's avatar
Chao Liu committed
187

Chao Liu's avatar
Chao Liu committed
188
189
    std::size_t HTile = (HO + HoPerTile - 1) / HoPerTile;
    std::size_t WTile = (WO + WoPerTile - 1) / WoPerTile;
Chao Liu's avatar
Chao Liu committed
190

191
192
193
194
195
    Tensor<double> in_hold({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> in_transform({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> wei_transform({K, C, HiPerTile, WiPerTile});
    Tensor<double> out_transform({N, K, HTile, WTile, HiPerTile, HiPerTile});
    Tensor<double> out_hold({N, K, HTile, WTile, HoPerTile, WoPerTile});
Chao Liu's avatar
Chao Liu committed
196

Chao Liu's avatar
Chao Liu committed
197
198
    auto f_in_hold = [&](auto n, auto c, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
199
        {
Chao Liu's avatar
Chao Liu committed
200
201
            int hi = HoPerTile * htile + j - h_pad_low;
            for(int i = 0; i < WiPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
202
            {
Chao Liu's avatar
Chao Liu committed
203
                int wi = WoPerTile * wtile + i - w_pad_low;
204
205
206
207

                if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                   wi < in_nchw.mDesc.GetLengths()[3])
                {
Chao Liu's avatar
Chao Liu committed
208
                    in_hold(n, c, htile, wtile, j, i) = in_nchw(n, c, hi, wi);
209
210
211
                }
                else
                {
212
                    in_hold(n, c, htile, wtile, j, i) = TIn(0);
213
                }
Chao Liu's avatar
Chao Liu committed
214
215
216
217
            }
        }
    };

Chao Liu's avatar
Chao Liu committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    auto f_in_transform = [&](auto n, auto c, auto htile, auto wtile) {
        in_transform(n, c, htile, wtile, 0, 0) =
            in_hold(n, c, htile, wtile, 0, 0) - in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 0) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 1) =
            in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 2) =
            -in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 3) =
            in_hold(n, c, htile, wtile, 0, 1) - in_hold(n, c, htile, wtile, 0, 3) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 1, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 2, 0) =
            -in_hold(n, c, htile, wtile, 1, 0) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 1) =
            -in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 2) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 3) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 3, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 0) + in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) -
            in_hold(n, c, htile, wtile, 3, 1) + in_hold(n, c, htile, wtile, 3, 3);
Chao Liu's avatar
Chao Liu committed
270
271
272
    };

    auto f_wei_transform = [&](auto k, auto c) {
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
        wei_transform(k, c, 0, 0) = double(wei_kcyx(k, c, 0, 0));
        wei_transform(k, c, 0, 1) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 2) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 3) = double(wei_kcyx(k, c, 0, 2));

        wei_transform(k, c, 1, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 1, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 2, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 2, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 3, 0) = double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 3, 1) = 0.5 * double(wei_kcyx(k, c, 2, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 2) = 0.5 * double(wei_kcyx(k, c, 2, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 3) = double(wei_kcyx(k, c, 2, 2));
Chao Liu's avatar
Chao Liu committed
328
329
    };

Chao Liu's avatar
Chao Liu committed
330
331
    auto f_out_transform = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
332
        {
Chao Liu's avatar
Chao Liu committed
333
            for(int i = 0; i < WiPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
334
335
336
337
            {
                double v = 0;
                for(int c = 0; c < C; ++c)
                {
Chao Liu's avatar
Chao Liu committed
338
                    v += in_transform(n, c, htile, wtile, j, i) * wei_transform(k, c, j, i);
Chao Liu's avatar
Chao Liu committed
339
340
                }

Chao Liu's avatar
Chao Liu committed
341
                out_transform(n, k, htile, wtile, j, i) = v;
Chao Liu's avatar
Chao Liu committed
342
343
344
345
            }
        }
    };

Chao Liu's avatar
Chao Liu committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    auto f_out_hold = [&](auto n, auto k, auto htile, auto wtile) {
        out_hold(n, k, htile, wtile, 0, 0) =
            out_transform(n, k, htile, wtile, 0, 0) + out_transform(n, k, htile, wtile, 0, 1) +
            out_transform(n, k, htile, wtile, 0, 2) + out_transform(n, k, htile, wtile, 1, 0) +
            out_transform(n, k, htile, wtile, 1, 1) + out_transform(n, k, htile, wtile, 1, 2) +
            out_transform(n, k, htile, wtile, 2, 0) + out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2);
        out_hold(n, k, htile, wtile, 0, 1) =
            out_transform(n, k, htile, wtile, 0, 1) - out_transform(n, k, htile, wtile, 0, 2) -
            out_transform(n, k, htile, wtile, 0, 3) + out_transform(n, k, htile, wtile, 1, 1) -
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 1, 3) +
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 2, 3);
        out_hold(n, k, htile, wtile, 1, 0) =
            out_transform(n, k, htile, wtile, 1, 0) + out_transform(n, k, htile, wtile, 1, 1) +
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 2, 0) -
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 3, 0) - out_transform(n, k, htile, wtile, 3, 1) -
            out_transform(n, k, htile, wtile, 3, 2);
        out_hold(n, k, htile, wtile, 1, 1) =
            out_transform(n, k, htile, wtile, 1, 1) - out_transform(n, k, htile, wtile, 1, 2) -
            out_transform(n, k, htile, wtile, 1, 3) - out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2) + out_transform(n, k, htile, wtile, 2, 3) -
            out_transform(n, k, htile, wtile, 3, 1) + out_transform(n, k, htile, wtile, 3, 2) +
            out_transform(n, k, htile, wtile, 3, 3);
Chao Liu's avatar
Chao Liu committed
371
372
    };

Chao Liu's avatar
Chao Liu committed
373
374
    auto f_out = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HoPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
375
        {
Chao Liu's avatar
Chao Liu committed
376
377
            std::size_t ho = HoPerTile * htile + j;
            for(int i = 0; i < WoPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
378
            {
Chao Liu's avatar
tidy up  
Chao Liu committed
379
                std::size_t wo = WoPerTile * wtile + i;
380
                out_nkhw(n, k, ho, wo) = out_hold(n, k, htile, wtile, j, i);
Chao Liu's avatar
Chao Liu committed
381
382
383
384
385
386
            }
        }
    };

    std::size_t num_thread = std::thread::hardware_concurrency();

Chao Liu's avatar
Chao Liu committed
387
388
    make_ParallelTensorFunctor(f_in_hold, N, C, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_in_transform, N, C, HTile, WTile)(num_thread);
Chao Liu's avatar
Chao Liu committed
389
    make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread);
Chao Liu's avatar
Chao Liu committed
390
391
392
    make_ParallelTensorFunctor(f_out_transform, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out_hold, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out, N, K, HTile, WTile)(num_thread);
Chao Liu's avatar
Chao Liu committed
393
394
395
396
397
}

template <class T>
void check_error(const Tensor<T>& ref, const Tensor<T>& result)
{
398
399
    // printf("\n");

Chao Liu's avatar
Chao Liu committed
400
    float error     = 0;
Chao Liu's avatar
Chao Liu committed
401
    float max_diff  = -1;
Chao Liu's avatar
Chao Liu committed
402
403
404
    float ref_value = 0, result_value = 0;
    for(int i = 0; i < ref.mData.size(); ++i)
    {
405
406
        error += std::abs(double(ref.mData[i]) - double(result.mData[i]));
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
Chao Liu's avatar
Chao Liu committed
407
408
409
410
411
412
        if(max_diff < diff)
        {
            max_diff     = diff;
            ref_value    = ref.mData[i];
            result_value = result.mData[i];
        }
413
414

        // printf("{%f, %f}", double(ref.mData[i]), double(result.mData[i]));
Chao Liu's avatar
Chao Liu committed
415
    }
416
    // printf("\n");
Chao Liu's avatar
Chao Liu committed
417
418
419
420
421

    std::cout << "error: " << error << std::endl;
    std::cout << "max_diff: " << max_diff << ", " << ref_value << ", " << result_value << std::endl;
}

Chao Liu's avatar
Chao Liu committed
422
int main(int argc, char* argv[])
Chao Liu's avatar
Chao Liu committed
423
{
424
#if 1
425
    // 3x3, 34x34
Chao Liu's avatar
Chao Liu committed
426
427
428
429
    constexpr index_t N  = 64;
    constexpr index_t C  = 256;
    constexpr index_t HI = 34;
    constexpr index_t WI = 34;
430
    constexpr index_t K  = 128;
Chao Liu's avatar
Chao Liu committed
431
432
433
434
435
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
436
#elif 0
437
    // 3x3, 56x56
Chao Liu's avatar
Chao Liu committed
438
439
440
441
    constexpr index_t N  = 64;
    constexpr index_t C  = 64;
    constexpr index_t HI = 56;
    constexpr index_t WI = 56;
Chao Liu's avatar
Chao Liu committed
442
    constexpr index_t K  = 128;
Chao Liu's avatar
Chao Liu committed
443
444
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
Chao Liu's avatar
Chao Liu committed
445
446
447

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
448
#elif 0
449
    // 3x3, 58x58
Chao Liu's avatar
Chao Liu committed
450
451
452
453
454
455
456
    constexpr index_t N  = 64;
    constexpr index_t C  = 64;
    constexpr index_t HI = 58;
    constexpr index_t WI = 58;
    constexpr index_t K  = 64;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
457
458
#elif 0
    // 5x5, 36x36
Chao Liu's avatar
Chao Liu committed
459
460
461
462
463
464
465
466
467
468
    constexpr index_t N  = 64;
    constexpr index_t C  = 256;
    constexpr index_t HI = 36;
    constexpr index_t WI = 36;
    constexpr index_t K  = 64;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
469
#elif 0
470
    // 7x7, 38x38
Chao Liu's avatar
Chao Liu committed
471
472
473
474
    constexpr index_t N  = 64;
    constexpr index_t C  = 256;
    constexpr index_t HI = 38;
    constexpr index_t WI = 38;
Chao Liu's avatar
Chao Liu committed
475
    constexpr index_t K  = 128;
Chao Liu's avatar
Chao Liu committed
476
477
478
479
480
    constexpr index_t Y  = 7;
    constexpr index_t X  = 7;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
481
#elif 0
482
    // 3x3, 58x58
Chao Liu's avatar
Chao Liu committed
483
484
485
486
487
488
489
    constexpr index_t N  = 16;
    constexpr index_t C  = 128;
    constexpr index_t HI = 58;
    constexpr index_t WI = 58;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
490
491
#elif 0
    // 3x3 filter, 58x58 image, 0x0 padding
Chao Liu's avatar
Chao Liu committed
492
493
494
495
496
497
498
499
500
501
    constexpr index_t N  = 16;
    constexpr index_t C  = 128;
    constexpr index_t HI = 58;
    constexpr index_t WI = 58;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
502
#elif 0
503
    // 3x3 filter, 56x56 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
504
505
506
507
508
509
510
511
512
513
    constexpr index_t N  = 16;
    constexpr index_t C  = 128;
    constexpr index_t HI = 56;
    constexpr index_t WI = 56;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
514
515
#elif 0
    // 3x3 filter, 28x28 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
516
517
518
519
520
521
522
523
524
525
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
526
#elif 0
Chao Liu's avatar
Chao Liu committed
527
528
529
530
531
532
533
534
535
536
537
    // 3x3 filter, 28x28 image
    constexpr index_t N  = 128;
    constexpr index_t C  = 256;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
538
#elif 0
Chao Liu's avatar
Chao Liu committed
539
    // 1x1 filter, 28x28 image
Chao Liu's avatar
Chao Liu committed
540
541
542
543
544
545
546
547
548
549
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
550
551
#elif 0
    // 3x3 filter, 20x84 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
552
553
554
555
556
557
558
559
560
561
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 84;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
Chao Liu's avatar
Chao Liu committed
562
563
#elif 0
    // 3x3 filter, 112x112 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
564
565
566
567
568
569
570
571
572
573
    constexpr index_t N  = 16;
    constexpr index_t C  = 64;
    constexpr index_t HI = 112;
    constexpr index_t WI = 112;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
Chao Liu's avatar
Chao Liu committed
574
575
#elif 0
    // 5x5 filter, 20x86 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
576
577
578
579
580
581
582
583
584
585
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 86;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
Chao Liu's avatar
Chao Liu committed
586
587
#elif 0
    // 5x5 filter, 28x28 image, 2x2 padding
Chao Liu's avatar
Chao Liu committed
588
589
590
591
592
593
594
595
596
597
    constexpr index_t N  = 16;
    constexpr index_t C  = 192;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 32;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 2;
    constexpr index_t WPad = 2;
Chao Liu's avatar
Chao Liu committed
598
#elif 0
599
    // 1x1 filter, 32x32 image
Chao Liu's avatar
Chao Liu committed
600
601
602
603
604
605
606
607
608
609
    constexpr index_t N  = 64;
    constexpr index_t C  = 256;
    constexpr index_t HI = 32;
    constexpr index_t WI = 32;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
610
#elif 1
Chao Liu's avatar
Chao Liu committed
611
612
613
614
615
616
617
618
619
620
621
    // 1x1 filter, 14x14 image, C = 2048
    constexpr index_t N  = 128;
    constexpr index_t C  = 2048;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
622
#elif 1
Chao Liu's avatar
Chao Liu committed
623
    // 1x1 filter, 14x14 image, C = 512
Chao Liu's avatar
Chao Liu committed
624
625
626
627
628
629
630
631
632
633
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
634
#endif
Chao Liu's avatar
Chao Liu committed
635

636
637
638
    auto lower_pads = Sequence<HPad, WPad>{};
    auto upper_pads = Sequence<HPad, WPad>{};

Chao Liu's avatar
Chao Liu committed
639
    auto in_nchw_desc  = make_ConstantTensorDescriptor(Sequence<N, C, HI, WI>{});
Chao Liu's avatar
Chao Liu committed
640
    auto wei_kcyx_desc = make_ConstantTensorDescriptor(Sequence<K, C, Y, X>{});
641
    auto out_nkhw_desc = get_convolution_with_padding_output_default_4d_tensor_descriptor(
Chao Liu's avatar
Chao Liu committed
642
        in_nchw_desc, wei_kcyx_desc, lower_pads, upper_pads);
Chao Liu's avatar
Chao Liu committed
643

Chao Liu's avatar
Chao Liu committed
644
    ostream_ConstantTensorDescriptor(in_nchw_desc, std::cout << "in_nchw_desc: ");
Chao Liu's avatar
Chao Liu committed
645
    ostream_ConstantTensorDescriptor(wei_kcyx_desc, std::cout << "wei_kcyx_desc: ");
Chao Liu's avatar
Chao Liu committed
646
    ostream_ConstantTensorDescriptor(out_nkhw_desc, std::cout << "out_nkhw_desc: ");
Chao Liu's avatar
Chao Liu committed
647

Chao Liu's avatar
Chao Liu committed
648
649
    using in_data_t  = float;
    using out_data_t = float;
650
651
652
653
    Tensor<in_data_t> in_nchw(make_TensorDescriptor(in_nchw_desc));
    Tensor<in_data_t> wei_kcyx(make_TensorDescriptor(wei_kcyx_desc));
    Tensor<out_data_t> out_nkhw_host(make_TensorDescriptor(out_nkhw_desc));
    Tensor<out_data_t> out_nkhw_device(make_TensorDescriptor(out_nkhw_desc));
Chao Liu's avatar
Chao Liu committed
654

Chao Liu's avatar
Chao Liu committed
655
    std::size_t num_thread = std::thread::hardware_concurrency();
Chao Liu's avatar
Chao Liu committed
656

Chao Liu's avatar
Chao Liu committed
657
658
659
660
661
662
663
    if(argc != 3)
    {
        printf("arg1: do_verification, arg2: nrepeat\n");
        exit(1);
    }

    bool do_verification = atoi(argv[1]);
Chao Liu's avatar
Chao Liu committed
664
    index_t nrepeat      = atoi(argv[2]);
665
666
667

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
668
#if 0
669
        in_nchw.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
670
        wei_kcyx.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
671
#elif 1
672
        in_nchw.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
673
        wei_kcyx.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
674
#elif 1
675
676
677
678
679
680
        in_nchw.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread);

        auto gen_wei = [](auto... is) {
            return GeneratorTensor_2{1, 5}(is...) * GeneratorTensor_Checkboard{}(is...);
        };
        wei_kcyx.GenerateTensorValue(gen_wei, num_thread);
Chao Liu's avatar
Chao Liu committed
681
#endif
682
    }
Chao Liu's avatar
Chao Liu committed
683

Chao Liu's avatar
Chao Liu committed
684
#if 1
Chao Liu's avatar
Chao Liu committed
685
#if 0
Chao Liu's avatar
Chao Liu committed
686
    device_direct_convolution_1
687
#elif 0
Chao Liu's avatar
Chao Liu committed
688
689
    device_direct_convolution_2_nchw_kcyx_nkhw
#elif 0
Chao Liu's avatar
Chao Liu committed
690
    device_direct_convolution_2_vectorized_nchw_kcyx_nkhw
691
#elif 1
Chao Liu's avatar
Chao Liu committed
692
    device_implicit_gemm_convolution_1_chwn_cyxk_khwn
693
#elif 0
Chao Liu's avatar
Chao Liu committed
694
    device_implicit_gemm_convolution_2_chwn_cyxk_khwn
695
#endif
Chao Liu's avatar
Chao Liu committed
696
    (in_nchw_desc, in_nchw, wei_kcyx_desc, wei_kcyx, out_nkhw_desc, out_nkhw_device, nrepeat);
697

Chao Liu's avatar
Chao Liu committed
698
#elif 1
Chao Liu's avatar
Chao Liu committed
699
    device_implicit_gemm_convolution_1_chwn_cyxk_khwn_padded(in_nchw_desc,
Chao Liu's avatar
Chao Liu committed
700
                                                             in_nchw,
Chao Liu's avatar
Chao Liu committed
701
702
                                                             wei_kcyx_desc,
                                                             wei_kcyx,
Chao Liu's avatar
Chao Liu committed
703
704
705
706
707
                                                             out_nkhw_desc,
                                                             out_nkhw_device,
                                                             lower_pads,
                                                             upper_pads,
                                                             nrepeat);
708
#endif
Chao Liu's avatar
Chao Liu committed
709

710
    if(do_verification)
711
    {
Chao Liu's avatar
Chao Liu committed
712
        if(Y == 3 && X == 3)
713
        {
Chao Liu's avatar
Chao Liu committed
714
            host_winograd_3x3_convolution(in_nchw, wei_kcyx, out_nkhw_host, lower_pads, upper_pads);
715
716
717
        }
        else
        {
Chao Liu's avatar
Chao Liu committed
718
            host_direct_convolution(in_nchw, wei_kcyx, out_nkhw_host, lower_pads, upper_pads);
719
720
        }
        check_error(out_nkhw_host, out_nkhw_device);
Chao Liu's avatar
Chao Liu committed
721

Chao Liu's avatar
Chao Liu committed
722
#if 0
723
        LogRange(std::cout << "in_nchw : ", in_nchw.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
724
        LogRange(std::cout << "wei_kcyx: ", wei_kcyx.mData, ",") << std::endl;
725
726
        LogRange(std::cout << "out_nkhw_host  : ", out_nkhw_host.mData, ",") << std::endl;
        LogRange(std::cout << "out_nkhw_device: ", out_nkhw_device.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
727
#endif
728
    }
729
}