conv.cu 9.31 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
Chao Liu's avatar
Chao Liu committed
2
3
#include <numeric>
#include <initializer_list>
Chao Liu's avatar
Chao Liu committed
4
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
5
6
#include "nvToolsExt.h"
#include "tensor.hpp"
Chao Liu's avatar
Chao Liu committed
7
8
9
10
#include "constant_tensor_descriptor.cuh"
#include "device_tensor_descriptor.cuh"

#if 0
Chao Liu's avatar
Chao Liu committed
11
#include "direct_convolution.cuh"
Chao Liu's avatar
Chao Liu committed
12
13
14
#else
#include "constant_direct_convolution.cuh"
#endif
Chao Liu's avatar
Chao Liu committed
15

Chao Liu's avatar
Chao Liu committed
16
template <class T>
Chao Liu's avatar
Chao Liu committed
17
struct GeneratorConstant
Chao Liu's avatar
Chao Liu committed
18
19
20
21
22
23
24
{
    T value = 0;

    template <class... Is>
    T operator()(Is... is)
    {
        return value;
Chao Liu's avatar
Chao Liu committed
25
26
27
28
29
30
31
32
33
    }
};

template <class T>
struct GeneratorTensor
{
    template <class... Is>
    T operator()(Is... is)
    {
Chao Liu's avatar
Chao Liu committed
34
35
36
37
#if 1
        return std::rand() / RAND_MAX;
#elif 0

Chao Liu's avatar
Chao Liu committed
38
39
        std::initializer_list<std::size_t> ls = {static_cast<std::size_t>(is)...};
        return std::accumulate(ls.begin(), ls.end(), std::size_t(0));
Chao Liu's avatar
Chao Liu committed
40
41
42
43
44
45
46
#else
        assert(sizeof...(Is) > 0);
        std::initializer_list<std::size_t> ids = {static_cast<std::size_t>(is)...};
        std::vector<std::size_t> lens(sizeof...(Is), 100);
        std::vector<std::size_t> strides(sizeof...(Is), 1);
        std::partial_sum(lens.rbegin(), lens.rbegin() + (sizeof...(Is) - 1), strides.rbegin() + 1);
        return std::inner_product(ids.begin(), ids.end(), strides.begin(), std::size_t(0)) + 1;
Chao Liu's avatar
Chao Liu committed
47
48
49
50
#endif
    }
};

Chao Liu's avatar
Chao Liu committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

    constexpr auto I0   = Index<0>{};
    constexpr auto I1   = Index<1>{};
    constexpr auto I2   = Index<2>{};
    constexpr auto I3   = Index<3>{};
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

    constexpr auto I0   = Index<0>{};
    constexpr auto I1   = Index<1>{};
    constexpr auto I2   = Index<2>{};
    constexpr auto I3   = Index<3>{};
    constexpr auto desc = TConstTensorDesc{};

    std::initializer_list<unsigned> lengths = {
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
    std::initializer_list<unsigned> strides = {
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

template <class T>
void host_convolution(const Tensor<T>& in, const Tensor<T>& wei, Tensor<T>& out)
Chao Liu's avatar
Chao Liu committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
{
    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
        for(int c = 0; c < wei.mDesc.GetLengths()[1]; ++c)
        {
            for(int y = 0; y < wei.mDesc.GetLengths()[2]; ++y)
            {
                int hi = ho + y;
                for(int x = 0; x < wei.mDesc.GetLengths()[3]; ++x)
                {
                    int wi = wo + x;
                    v += in(n, c, hi, wi) * wei(k, c, y, x);
                }
            }
        }
        out(n, k, ho, wo) = v;
    };

    auto f_par = make_ParallelTensorFunctor(f,
                                            out.mDesc.GetLengths()[0],
                                            out.mDesc.GetLengths()[1],
                                            out.mDesc.GetLengths()[2],
                                            out.mDesc.GetLengths()[3]);

Chao Liu's avatar
Chao Liu committed
115
    f_par(std::thread::hardware_concurrency());
Chao Liu's avatar
Chao Liu committed
116
117
}

Chao Liu's avatar
Chao Liu committed
118
119
120
121
122
123
124
125
126
127
128
template <class T, class InDesc, class WeiDesc, class OutDesc>
void const_device_convolution(
    InDesc, const Tensor<T>& in, WeiDesc, const Tensor<T>& wei, OutDesc, Tensor<T>& out)
{
    std::size_t data_sz = sizeof(T);
    DeviceMem in_device_buf(data_sz * in.mDesc.GetElementSpace());
    DeviceMem wei_device_buf(data_sz * wei.mDesc.GetElementSpace());
    DeviceMem out_device_buf(data_sz * out.mDesc.GetElementSpace());

    int num_thread = std::thread::hardware_concurrency();

Chao Liu's avatar
Chao Liu committed
129
#if 0
Chao Liu's avatar
Chao Liu committed
130
    out.GenerateTensorValue(GeneratorConstant<float>{0}, num_thread);
Chao Liu's avatar
Chao Liu committed
131
#endif
Chao Liu's avatar
Chao Liu committed
132
133
134
135
136
137
138
139
140
141

    in_device_buf.ToDevice(in.mData.data());
    wei_device_buf.ToDevice(wei.mData.data());
    out_device_buf.ToDevice(out.mData.data());

    constexpr auto I0 = Index<0>{};
    constexpr auto I1 = Index<1>{};
    constexpr auto I2 = Index<2>{};
    constexpr auto I3 = Index<3>{};

Chao Liu's avatar
Chao Liu committed
142
143
144
145
146
    constexpr auto in_desc           = InDesc{};
    constexpr auto wei_desc          = WeiDesc{};
    constexpr auto out_desc          = OutDesc{};
    constexpr unsigned NPerBlock     = 1;
    constexpr unsigned KPerBlock     = 1;
Chao Liu's avatar
Chao Liu committed
147
    constexpr unsigned CPerBlockLoop = 1;
Chao Liu's avatar
Chao Liu committed
148
149
150
151
    constexpr unsigned OutTileSizeH  = 2;
    constexpr unsigned OutTileSizeW  = 2;
    constexpr unsigned YPerBlock     = 16;
    constexpr unsigned XPerBlock     = 16;
Chao Liu's avatar
Chao Liu committed
152
153
154
155
156
157

    constexpr unsigned NBlockCopyLen0 = 1;
    constexpr unsigned NBlockCopyLen1 = 1;
    constexpr unsigned NBlockCopyLen2 = 1;
    constexpr unsigned NBlockCopyLen3 = 64;

Chao Liu's avatar
Chao Liu committed
158
159
160
161
162
163
164
165
166
167
    constexpr unsigned nblock = (out_desc.GetLength(I0) / NPerBlock) *
                                (out_desc.GetLength(I1) / KPerBlock) *
                                (out_desc.GetLength(I2) / (OutTileSizeH * YPerBlock)) *
                                (out_desc.GetLength(I3) / (OutTileSizeW * XPerBlock));

    dim3 block_dim(32);
    dim3 grid_dim(nblock);

    printf("__func__: nblock %u \n", nblock);

Chao Liu's avatar
Chao Liu committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    gridwise_convolution<T,
                         InDesc,
                         WeiDesc,
                         OutDesc,
                         NPerBlock,
                         KPerBlock,
                         CPerBlockLoop,
                         OutTileSizeH,
                         OutTileSizeW,
                         YPerBlock,
                         XPerBlock,
                         NBlockCopyLen0,
                         NBlockCopyLen1,
                         NBlockCopyLen2,
                         NBlockCopyLen3>
Chao Liu's avatar
Chao Liu committed
183
184
185
186
187
188
        <<<grid_dim, block_dim>>>(InDesc{},
                                  static_cast<T*>(in_device_buf.GetDeviceBuffer()),
                                  WeiDesc{},
                                  static_cast<T*>(wei_device_buf.GetDeviceBuffer()),
                                  OutDesc{},
                                  static_cast<T*>(out_device_buf.GetDeviceBuffer()));
Chao Liu's avatar
Chao Liu committed
189

Chao Liu's avatar
Chao Liu committed
190
    checkCudaErrors(cudaGetLastError());
Chao Liu's avatar
Chao Liu committed
191
192
193
194
195
    out_device_buf.FromDevice(out.mData.data());
}

int main()
{
Chao Liu's avatar
Chao Liu committed
196
#if 0
Chao Liu's avatar
Chao Liu committed
197
198
199
200
201
202
203
    constexpr unsigned N  = 1;
    constexpr unsigned C  = 1;
    constexpr unsigned HI = 18;
    constexpr unsigned WI = 18;
    constexpr unsigned K  = 1;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
204
#elif 1
Chao Liu's avatar
Chao Liu committed
205
206
207
208
209
    constexpr unsigned N = 64;
    constexpr unsigned C = 256;
    constexpr unsigned HI = 34;
    constexpr unsigned WI = 34;
    constexpr unsigned K = 56;
Chao Liu's avatar
Chao Liu committed
210
211
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
Chao Liu's avatar
Chao Liu committed
212
#elif 0
Chao Liu's avatar
Chao Liu committed
213
214
    constexpr unsigned N = 2;
    constexpr unsigned C = 3;
Chao Liu's avatar
Chao Liu committed
215
216
    constexpr unsigned HI = 130;
    constexpr unsigned WI = 130;
Chao Liu's avatar
Chao Liu committed
217
218
219
    constexpr unsigned K = 5;
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
Chao Liu's avatar
Chao Liu committed
220
221
222
223
224
225
226
227
#elif 0
    constexpr unsigned N  = 3;
    constexpr unsigned C  = 16;
    constexpr unsigned HI = 130;
    constexpr unsigned WI = 130;
    constexpr unsigned K  = 4;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
228
#endif
Chao Liu's avatar
Chao Liu committed
229
230
231
232
233
234
235
236
237
238
239
240
241

    auto in_desc  = make_ConstantTensorDescriptor(Sequence<N, C, HI, WI>{});
    auto wei_desc = make_ConstantTensorDescriptor(Sequence<K, C, S, R>{});
    auto out_desc = get_output_4d_tensor_descriptor(in_desc, wei_desc);

    ostream_ConstantTensorDescriptor(in_desc, std::cout << "in_desc: ");
    ostream_ConstantTensorDescriptor(wei_desc, std::cout << "wei_desc: ");
    ostream_ConstantTensorDescriptor(out_desc, std::cout << "out_desc: ");

    Tensor<float> in(make_TensorDescriptor(in_desc));
    Tensor<float> wei(make_TensorDescriptor(wei_desc));
    Tensor<float> out_host(make_TensorDescriptor(out_desc));

Chao Liu's avatar
Chao Liu committed
242
243
244
245
    Tensor<float> out_device = out_host;

    int num_thread = std::thread::hardware_concurrency();

Chao Liu's avatar
Chao Liu committed
246
#if 0
Chao Liu's avatar
Chao Liu committed
247
248
    in.GenerateTensorValue(GeneratorTensor<float>{}, num_thread);
    wei.GenerateTensorValue(GeneratorTensor<float>{}, num_thread);
Chao Liu's avatar
Chao Liu committed
249
#endif
Chao Liu's avatar
Chao Liu committed
250

Chao Liu's avatar
Chao Liu committed
251
#if 0
Chao Liu's avatar
Chao Liu committed
252
    host_convolution(in, wei, out_host);
Chao Liu's avatar
Chao Liu committed
253
#endif
Chao Liu's avatar
Chao Liu committed
254
255

    const_device_convolution(in_desc, in, wei_desc, wei, out_desc, out_device);
Chao Liu's avatar
Chao Liu committed
256
257
258

    std::cout << __func__ << ": done" << std::endl;

Chao Liu's avatar
Chao Liu committed
259
#if 0
Chao Liu's avatar
Chao Liu committed
260
261
262
    LogRange(std::cout << __func__ << "in : ", in.mData, ",") << std::endl;
    LogRange(std::cout << __func__ << "wei: ", wei.mData, ",") << std::endl;
    LogRange(std::cout, out_host.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
263
    LogRange(std::cout, out_device.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
264
#endif
Chao Liu's avatar
Chao Liu committed
265

Chao Liu's avatar
Chao Liu committed
266
267
268
269
#if 0
    float error      = 0;
    float max_diff   = 0;
    float host_value = 0, device_value = 0;
Chao Liu's avatar
Chao Liu committed
270
271
272
    for(int i = 0; i < out_host.mData.size(); ++i)
    {
        error += std::abs(out_host.mData[i] - out_device.mData[i]);
Chao Liu's avatar
Chao Liu committed
273
274
275
276
277
278
279
        float diff = std::abs(out_host.mData[i] - out_device.mData[i]);
        if(max_diff < diff)
        {
            max_diff     = diff;
            host_value   = out_host.mData[i];
            device_value = out_device.mData[i];
        }
Chao Liu's avatar
Chao Liu committed
280
281
    }
    std::cout << "error: " << error << std::endl;
Chao Liu's avatar
Chao Liu committed
282
283
284
    std::cout << "max_diff: " << max_diff << ", " << host_value << ", " << device_value
              << std::endl;
#endif
Chao Liu's avatar
Chao Liu committed
285
}