"...resnet50_tensorflow.git" did not exist on "1d610ef9799c4b43f74875027c809274bd90a6cc"
reduce_blockwise.cpp 11.3 KB
Newer Older
1
2
3
4
5
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
6
7

#include "check_err.hpp"
8
9
10
11
12
13
14
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
15
16
#include "device_reduce_multiblock.hpp"
#include "host_common_util.hpp"
17
#include "host_reduction.hpp"
Qianfeng's avatar
Qianfeng committed
18

19
20
21
22
23
24
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"

using namespace ck;
using namespace ck::tensor_operation::device;

25
26
using InDataType  = ck::half_t;
using OutDataType = ck::half_t;
27
28
using AccDataType = float;

Qianfeng's avatar
Qianfeng committed
29
30
constexpr int Rank         = 4;
constexpr int NumReduceDim = 3;
31

32
constexpr ReduceTensorOp ReduceOpId = ReduceTensorOp::NORM2;
33
34
constexpr bool PropagateNan         = true;
constexpr bool OutputIndex          = false;
35
36
37
38
39
40
41

using ReduceOperation = typename reduce_binary_operator<AccDataType, ReduceOpId>::opType;
using InElementwiseOperation =
    typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
    typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::AccElementwiseOperation;

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
using DeviceReduceInstance = DeviceReduceMultiBlock<InDataType,
                                                    AccDataType,
                                                    OutDataType,
                                                    Rank,
                                                    NumReduceDim,
                                                    ReduceOperation,
                                                    InElementwiseOperation,
                                                    AccElementwiseOperation,
                                                    InMemoryDataOperationEnum::Set,
                                                    PropagateNan,
                                                    OutputIndex,
                                                    false, // HaveIndexInputIfOutputIndex
                                                    256,
                                                    4,
                                                    64,
                                                    1,
                                                    1,
                                                    0,
                                                    1,
                                                    1>;
62
63
64
65
66
67
68
69
70
71
72
73

static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
                                       {"verify", required_argument, nullptr, 'v'},
                                       {"help", no_argument, nullptr, '?'},
                                       {nullptr, 0, nullptr, 0}};

class SimpleAppArgs
{
    private:
    int option_index = 0;

    public:
74
75
    std::vector<size_t> inLengths = {16, 64, 32, 960};
    std::vector<float> scales     = {1.0f, 0.0f};
76

JD's avatar
JD committed
77
78
    bool do_verification = true;
    int init_method      = 1;
79
    bool time_kernel     = true;
80
81
82
83
84
85
86
87
88
89

    public:
    void show_usage(const char* cmd)
    {
        std::cout << "Usage of " << cmd << std::endl;
        std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths"
                  << std::endl;
        std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
                     "comparing with the host-based reduction"
                  << std::endl;
90
91
92
        std::cout << "Arg1 -- init method (0=no init, 1=single integer value, 2=scope integer "
                     "value, 3=decimal value)"
                  << std::endl;
93
        std::cout << "Arg2 -- time kernel (0=no, 1=yes)" << std::endl;
94
95
96
97
    };

    int processArgs(int argc, char* argv[])
    {
98
99
        using ck::host_common::getTypeValuesFromString;

100
        int ch;
101
102
103

        while(1)
        {
104
            ch = getopt_long(argc, argv, "D:v:l:", long_options, &option_index);
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
            if(ch == -1)
                break;
            switch(ch)
            {
            case 'D':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                inLengths = getTypeValuesFromString<size_t>(optarg);
                break;
            case 'v':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                do_verification = static_cast<bool>(std::atoi(optarg));
                break;
            case '?':
                if(std::string(long_options[option_index].name) == "help")
                {
                    show_usage(argv[0]);
                    return (-1);
                };
                break;
            default: show_usage(argv[0]); return (-1);
            };
        };

        if(optind + 2 > argc)
            throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");

        init_method = std::atoi(argv[optind++]);
136
        time_kernel = static_cast<bool>(std::atoi(argv[optind]));
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

        if(scales.empty())
        {
            scales.push_back(1.0f);
            scales.push_back(0.0f);
        };

        return (0);
    };
};

int main(int argc, char* argv[])
{
    using namespace ck::host_reduce;

Qianfeng's avatar
Qianfeng committed
152
153
154
    const std::vector<int> reduceDims{0, 1, 2};
    const std::vector<int> invariantDims{3};

155
156
    SimpleAppArgs args;

157
158
159
160
161
    if(argc > 1)
    {
        if(args.processArgs(argc, argv) < 0)
            return (-1);
    };
162
163

    constexpr bool op_support_indices =
164
165
        (ReduceOpId == ReduceTensorOp::MIN || ReduceOpId == ReduceTensorOp::MAX ||
         ReduceOpId == ReduceTensorOp::AMAX);
166
167
168
169
170
171
172
173
174
175
176
177
178
179

    // if input is half type, no reason to use float for indiced reduction operation and must use
    // float for non-indiced reduction operation for accuracy
    constexpr bool invalid_reduce_1 =
        std::is_same<InDataType, ck::half_t>::value &&
        ((!op_support_indices && !std::is_same<AccDataType, float>::value) ||
         (op_support_indices && !std::is_same<AccDataType, ck::half_t>::value));

    // if input is float type, no reason to use double for indiced reduction operation
    constexpr bool invalid_reduce_2 =
        std::is_same<InDataType, float>::value &&
        (op_support_indices && !std::is_same<AccDataType, float>::value);

    // indices option can only be used when it is really needed
180
    constexpr bool invalid_reduce_3 = (!op_support_indices && OutputIndex);
181
182
183
184
185
186
187
188
189
190

    constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3);

    if constexpr(invalid_reduce)
        std::cout << "Reduction setting is not supported, exiting!" << std::endl;

    Tensor<InDataType> in(args.inLengths);

    std::vector<size_t> outLengths;

Qianfeng's avatar
Qianfeng committed
191
    if(invariantDims.empty())
192
193
        outLengths.push_back(1);
    else
Qianfeng's avatar
Qianfeng committed
194
        for(auto dim : invariantDims)
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
            outLengths.push_back(args.inLengths[dim]);

    Tensor<OutDataType> out_ref(outLengths);
    Tensor<OutDataType> out(outLengths);
    Tensor<int> out_indices_ref(outLengths);
    Tensor<int> out_indices(outLengths);

    auto inStrides  = in.mDesc.GetStrides();
    auto outStrides = out.mDesc.GetStrides();

    size_t invariant_total_length = out.mDesc.GetElementSize();
    size_t reduce_total_length    = in.mDesc.GetElementSize() / invariant_total_length;

    float alpha = args.scales[0];
    float beta  = args.scales[1];

211
    std::size_t num_thread = 1;
212
213
214
215
216

    if(args.do_verification)
    {
        switch(args.init_method)
        {
217
218
219
        case 0: break;
        case 1:
            in.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
220
            if(beta != 0.0f)
221
                out_ref.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
222
            break;
223
        case 2:
224
225
226
227
228
            in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
            break;
        default:
229
            in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
230
            if(beta != 0.0f)
231
                out_ref.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        }

        if(beta != 0.0f)
            for(size_t i = 0; i < out_ref.mDesc.GetElementSpace(); i++)
                out.mData[i] = out_ref.mData[i];
    };

    // these buffers are usually provided by the user application
    DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpace());
    DeviceMem out_dev(sizeof(OutDataType) * out.mDesc.GetElementSpace());

    in_dev.ToDevice(in.mData.data());

    if(beta != 0.0f)
        out_dev.ToDevice(out.mData.data());

248
    size_t indicesSizeInBytes = OutputIndex ? out.mDesc.GetElementSize() * sizeof(int32_t) : 0;
249

250
    DeviceMem out_index_dev(indicesSizeInBytes);
251
252
253

    if(args.do_verification)
    {
254
255
256
        ReductionHost<InDataType,
                      AccDataType,
                      OutDataType,
257
258
259
260
                      ReduceOpId,
                      Rank,
                      NumReduceDim,
                      PropagateNan,
261
                      OutputIndex>
Qianfeng's avatar
Qianfeng committed
262
            hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
263

264
265
        hostReduce.Run(
            alpha, in.mData.data(), beta, out_ref.mData.data(), out_indices_ref.mData.data());
266
267
    };

268
269
270
271
272
273
274
275
276
    std::vector<ck::index_t> i_inLengths;
    std::vector<ck::index_t> i_inStrides;
    std::vector<ck::index_t> i_outLengths;
    std::vector<ck::index_t> i_outStrides;

    i_inLengths.assign(args.inLengths.begin(), args.inLengths.end());
    i_inStrides.assign(inStrides.begin(), inStrides.end());
    i_outLengths.assign(outLengths.begin(), outLengths.end());
    i_outStrides.assign(outStrides.begin(), outStrides.end());
277
278
279

    auto reduce = DeviceReduceInstance{};

280
281
282
283
284
285
286
287
288
289
290
291
292
293
    auto argument_ptr = reduce.MakeArgumentPointer(
        i_inLengths,
        i_inStrides,
        i_outLengths,
        i_outStrides,
        reduceDims,
        alpha,
        beta,
        in_dev.GetDeviceBuffer(),
        nullptr,
        out_dev.GetDeviceBuffer(),
        out_index_dev.GetDeviceBuffer(),
        InElementwiseOperation{static_cast<int32_t>(reduce_total_length)},
        AccElementwiseOperation{static_cast<int32_t>(reduce_total_length)});
294
295
296
297
298
299
300
301
302
303
304
305

    if(!reduce.IsSupportedArgument(argument_ptr.get()))
    {
        std::cout
            << "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
            << std::endl;
    };

    std::string reduce_name = reduce.GetTypeString();

    auto invoker_ptr = reduce.MakeInvokerPointer();

JD's avatar
JD committed
306
    float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, args.time_kernel});
307
308
309
310
311
312
313
314
315

    std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InDataType) +
                            invariant_total_length * sizeof(OutDataType);

    float gb_per_sec = num_bytes / 1.E6 / avg_time;

    std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
              << std::endl;

Anthony Chang's avatar
Anthony Chang committed
316
    bool pass = true;
317

318
319
320
    if(args.do_verification)
    {
        out_dev.FromDevice(out.mData.data());
321
        pass = pass && ck::utils::check_err(out.mData, out_ref.mData);
322

323
        if(OutputIndex)
324
        {
325
326
            out_index_dev.FromDevice(out_indices.mData.data());
            pass = pass && ck::utils::check_err(out_indices.mData, out_indices_ref.mData);
327
328
        };
    };
329
330

    return (pass ? 0 : 1);
331
}