reduce_blockwise.cpp 12.9 KB
Newer Older
1
2
3
4
5
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
6
7

#include "check_err.hpp"
8
9
10
11
12
13
14
15
16
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_reduce_blockwise.hpp"
#include "host_reduce_util.hpp"
17
#include "host_reduction.hpp"
Qianfeng's avatar
Qianfeng committed
18

19
20
21
22
23
24
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"

using namespace ck;
using namespace ck::tensor_operation::device;

25
26
using InDataType  = ck::half_t;
using OutDataType = ck::half_t;
27
28
using AccDataType = float;

Qianfeng's avatar
Qianfeng committed
29
30
constexpr int Rank         = 4;
constexpr int NumReduceDim = 3;
31

32
33
34
35
constexpr ReduceTensorOp ReduceOpId = ReduceTensorOp::NORM2;
constexpr NanPropagation NanOpt     = NanPropagation::PROPAGATE_NAN;
constexpr bool PropagateNan         = (NanOpt == NanPropagation::NOT_PROPAGATE_NAN) ? false : true;
constexpr ReduceTensorIndices IndicesOpt = ReduceTensorIndices::NO_INDICES;
36
37
38
39
40
41
42

using ReduceOperation = typename reduce_binary_operator<AccDataType, ReduceOpId>::opType;
using InElementwiseOperation =
    typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
    typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::AccElementwiseOperation;

43
44
45
using DeviceReduceInstance = DeviceReduceBlockWise<InDataType,
                                                   AccDataType,
                                                   OutDataType,
46
                                                   Rank,
Qianfeng's avatar
Qianfeng committed
47
                                                   NumReduceDim,
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
                                                   ReduceOperation,
                                                   InElementwiseOperation,
                                                   AccElementwiseOperation,
                                                   PropagateNan,
                                                   false,
                                                   256,
                                                   4,
                                                   64,
                                                   1,
                                                   1,
                                                   0,
                                                   1,
                                                   1>;

static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
                                       {"scales", required_argument, nullptr, 'S'},
                                       {"verify", required_argument, nullptr, 'v'},
                                       {"help", no_argument, nullptr, '?'},
                                       {nullptr, 0, nullptr, 0}};

class SimpleAppArgs
{
    template <typename T>
    static T getSingleValueFromString(const std::string& valueStr)
    {
        std::istringstream iss(valueStr);

        T ret;

        iss >> ret;

        return (ret);
    };

    template <typename T>
    static std::vector<T> getTypeValuesFromString(const char* cstr_values)
    {
        std::string valuesStr(cstr_values);

        std::vector<T> values;
        std::size_t pos = 0;
        std::size_t new_pos;

        new_pos = valuesStr.find(',', pos);
        while(new_pos != std::string::npos)
        {
            const std::string sliceStr = valuesStr.substr(pos, new_pos - pos);

            T val = getSingleValueFromString<T>(sliceStr);

            values.push_back(val);

            pos     = new_pos + 1;
            new_pos = valuesStr.find(',', pos);
        };

        std::string sliceStr = valuesStr.substr(pos);
        T val                = getSingleValueFromString<T>(sliceStr);

        values.push_back(val);

        return (values);
    };

    private:
    int option_index = 0;

    public:
    std::vector<size_t> inLengths;
    std::vector<float> scales;

JD's avatar
JD committed
119
120
121
    bool do_verification = true;
    int init_method      = 1;
    bool time_kernel     = false;
122
123
124
125
126
127
128
129
130
131
132
133

    public:
    void show_usage(const char* cmd)
    {
        std::cout << "Usage of " << cmd << std::endl;
        std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths"
                  << std::endl;
        std::cout << "--scales or -S, comma separated two float values for alpha and beta"
                  << std::endl;
        std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
                     "comparing with the host-based reduction"
                  << std::endl;
134
135
136
        std::cout << "Arg1 -- init method (0=no init, 1=single integer value, 2=scope integer "
                     "value, 3=decimal value)"
                  << std::endl;
JD's avatar
JD committed
137
        std::cout << "Arg2 -- time kernel (0=n0, 1=yes)" << std::endl;
138
139
140
141
    };

    int processArgs(int argc, char* argv[])
    {
142
        int ch;
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

        while(1)
        {
            ch = getopt_long(argc, argv, "D:S:v:l:", long_options, &option_index);
            if(ch == -1)
                break;
            switch(ch)
            {
            case 'D':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                inLengths = getTypeValuesFromString<size_t>(optarg);
                break;
            case 'S':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                scales = getTypeValuesFromString<float>(optarg);
                break;
            case 'v':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                do_verification = static_cast<bool>(std::atoi(optarg));
                break;
            case '?':
                if(std::string(long_options[option_index].name) == "help")
                {
                    show_usage(argv[0]);
                    return (-1);
                };
                break;
            default: show_usage(argv[0]); return (-1);
            };
        };

        if(optind + 2 > argc)
            throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");

        init_method = std::atoi(argv[optind++]);
JD's avatar
JD committed
184
        time_kernel = std::atoi(argv[optind]);
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

        if(scales.empty())
        {
            scales.push_back(1.0f);
            scales.push_back(0.0f);
        };

        return (0);
    };
};

int main(int argc, char* argv[])
{
    using namespace ck::host_reduce;

Qianfeng's avatar
Qianfeng committed
200
201
202
    const std::vector<int> reduceDims{0, 1, 2};
    const std::vector<int> invariantDims{3};

203
204
205
206
207
208
    SimpleAppArgs args;

    if(args.processArgs(argc, argv) < 0)
        return (-1);

    constexpr bool op_support_indices =
209
210
        (ReduceOpId == ReduceTensorOp::MIN || ReduceOpId == ReduceTensorOp::MAX ||
         ReduceOpId == ReduceTensorOp::AMAX);
211
212

    constexpr bool NeedIndices =
213
        (op_support_indices && (IndicesOpt != ReduceTensorIndices::NO_INDICES));
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

    // if input is half type, no reason to use float for indiced reduction operation and must use
    // float for non-indiced reduction operation for accuracy
    constexpr bool invalid_reduce_1 =
        std::is_same<InDataType, ck::half_t>::value &&
        ((!op_support_indices && !std::is_same<AccDataType, float>::value) ||
         (op_support_indices && !std::is_same<AccDataType, ck::half_t>::value));

    // if input is float type, no reason to use double for indiced reduction operation
    constexpr bool invalid_reduce_2 =
        std::is_same<InDataType, float>::value &&
        (op_support_indices && !std::is_same<AccDataType, float>::value);

    // indices option can only be used when it is really needed
    constexpr bool invalid_reduce_3 =
229
        (!op_support_indices && IndicesOpt != ReduceTensorIndices::NO_INDICES);
230
231
232
233
234
235
236
237
238
239

    constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3);

    if constexpr(invalid_reduce)
        std::cout << "Reduction setting is not supported, exiting!" << std::endl;

    Tensor<InDataType> in(args.inLengths);

    std::vector<size_t> outLengths;

Qianfeng's avatar
Qianfeng committed
240
    if(invariantDims.empty())
241
242
        outLengths.push_back(1);
    else
Qianfeng's avatar
Qianfeng committed
243
        for(auto dim : invariantDims)
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
            outLengths.push_back(args.inLengths[dim]);

    Tensor<OutDataType> out_ref(outLengths);
    Tensor<OutDataType> out(outLengths);
    Tensor<int> out_indices_ref(outLengths);
    Tensor<int> out_indices(outLengths);

    auto inStrides  = in.mDesc.GetStrides();
    auto outStrides = out.mDesc.GetStrides();

    size_t invariant_total_length = out.mDesc.GetElementSize();
    size_t reduce_total_length    = in.mDesc.GetElementSize() / invariant_total_length;

    float alpha = args.scales[0];
    float beta  = args.scales[1];

260
    std::size_t num_thread = 1;
261
262
263
264
265

    if(args.do_verification)
    {
        switch(args.init_method)
        {
266
267
268
        case 0: break;
        case 1:
            in.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
269
            if(beta != 0.0f)
270
                out_ref.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
271
            break;
272
        case 2:
273
274
275
276
277
            in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
            break;
        default:
278
            in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
279
            if(beta != 0.0f)
280
                out_ref.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        }

        if(beta != 0.0f)
            for(size_t i = 0; i < out_ref.mDesc.GetElementSpace(); i++)
                out.mData[i] = out_ref.mData[i];
    };

    // these buffers are usually provided by the user application
    DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpace());
    DeviceMem out_dev(sizeof(OutDataType) * out.mDesc.GetElementSpace());

    in_dev.ToDevice(in.mData.data());

    if(beta != 0.0f)
        out_dev.ToDevice(out.mData.data());

297
    size_t indicesSizeInBytes = NeedIndices ? out.mDesc.GetElementSize() * sizeof(int32_t) : 0;
298
299
300
301
302

    DeviceMem out_indices_dev(indicesSizeInBytes);

    if(args.do_verification)
    {
303
304
305
        ReductionHost<InDataType,
                      AccDataType,
                      OutDataType,
306
307
308
309
310
                      ReduceOpId,
                      Rank,
                      NumReduceDim,
                      PropagateNan,
                      NeedIndices>
Qianfeng's avatar
Qianfeng committed
311
            hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
312

313
314
        hostReduce.Run(
            alpha, in.mData.data(), beta, out_ref.mData.data(), out_indices_ref.mData.data());
315
316
317
318
319
320
321
322
323
    };

    const auto i_inLengths  = to_int_vector(args.inLengths);
    const auto i_inStrides  = to_int_vector(inStrides);
    const auto i_outLengths = to_int_vector(outLengths);
    const auto i_outStrides = to_int_vector(outStrides);

    auto reduce = DeviceReduceInstance{};

324
    auto wsSizeInBytes = reduce.GetWorkspaceSizeInBytes(i_inLengths, reduceDims);
325
326
327
328
329
330
331
332

    DeviceMem ws_dev(wsSizeInBytes);

    auto argument_ptr =
        reduce.MakeArgumentPointer(i_inLengths,
                                   i_inStrides,
                                   i_outLengths,
                                   i_outStrides,
Qianfeng's avatar
Qianfeng committed
333
                                   reduceDims,
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
                                   alpha,
                                   beta,
                                   in_dev.GetDeviceBuffer(),
                                   out_dev.GetDeviceBuffer(),
                                   out_indices_dev.GetDeviceBuffer(),
                                   ws_dev.GetDeviceBuffer(),
                                   InElementwiseOperation{static_cast<int>(reduce_total_length)},
                                   AccElementwiseOperation{static_cast<int>(reduce_total_length)});

    if(!reduce.IsSupportedArgument(argument_ptr.get()))
    {
        std::cout
            << "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
            << std::endl;
    };

    std::string reduce_name = reduce.GetTypeString();

    auto invoker_ptr = reduce.MakeInvokerPointer();

JD's avatar
JD committed
354
    float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, args.time_kernel});
355
356
357
358
359
360
361
362
363

    std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InDataType) +
                            invariant_total_length * sizeof(OutDataType);

    float gb_per_sec = num_bytes / 1.E6 / avg_time;

    std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
              << std::endl;

Anthony Chang's avatar
Anthony Chang committed
364
    bool pass = true;
365
366
367
    if(args.do_verification)
    {
        out_dev.FromDevice(out.mData.data());
Anthony Chang's avatar
Anthony Chang committed
368
        pass &= ck::utils::check_err(out.mData, out_ref.mData);
369
370
371
372

        if(NeedIndices)
        {
            out_indices_dev.FromDevice(out_indices.mData.data());
Anthony Chang's avatar
Anthony Chang committed
373
            pass &= ck::utils::check_err(out_indices.mData, out_indices_ref.mData);
374
375
        };
    };
Anthony Chang's avatar
Anthony Chang committed
376
    return pass ? 0 : 1;
377
}