host_gemm.hpp 5.3 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
#pragma once
#include "host_tensor.hpp"
3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
template <>
void host_gemm<ushort, ushort, ushort>(const Tensor<ushort>& a,
                                       const Tensor<ushort>& b,
                                       Tensor<ushort>& c,
                                       const GemmMatrixLayout layout)
{
    if(layout == GemmMatrixLayout::MK_KN_MN)
    {
        auto f_mk_kn_mn = [&](auto m, auto n) {
            const int K = a.mDesc.GetLengths()[1];

            double v = 0;

            for(int k = 0; k < K; ++k)
            {
                v += bfloat16_to_float(a(m, k)) * bfloat16_to_float(b(k, n));
            }

            c(m, n) = float_to_bfloat16(v);
        };

        make_ParallelTensorFunctor(f_mk_kn_mn, c.mDesc.GetLengths()[0], c.mDesc.GetLengths()[1])(
            std::thread::hardware_concurrency());
    }
    else if(layout == GemmMatrixLayout::MK_NK_MN)
    {
        auto f_mk_nk_mn = [&](auto m, auto n) {
            const int K = a.mDesc.GetLengths()[1];

            double v = 0;

            for(int k = 0; k < K; ++k)
            {
                v += bfloat16_to_float(a(m, k)) * bfloat16_to_float(b(n, k));
            }

            c(m, n) = float_to_bfloat16(v);
        };

        make_ParallelTensorFunctor(f_mk_nk_mn, c.mDesc.GetLengths()[0], c.mDesc.GetLengths()[1])(
            std::thread::hardware_concurrency());
    }
    else if(layout == GemmMatrixLayout::KM_KN_MN)
    {
        auto f_km_kn_mn = [&](auto m, auto n) {
            const int K = a.mDesc.GetLengths()[0];

            double v = 0;

            for(int k = 0; k < K; ++k)
            {
                v += bfloat16_to_float(a(k, m)) * bfloat16_to_float(b(k, n));
            }

            c(m, n) = float_to_bfloat16(v);
        };

        make_ParallelTensorFunctor(f_km_kn_mn, c.mDesc.GetLengths()[0], c.mDesc.GetLengths()[1])(
            std::thread::hardware_concurrency());
    }
    else if(layout == GemmMatrixLayout::KM_NK_MN)
    {
        auto f_km_nk_mn = [&](auto m, auto n) {
            const int K = a.mDesc.GetLengths()[0];

            double v = 0;

            for(int k = 0; k < K; ++k)
            {
                v += bfloat16_to_float(a(k, m)) * bfloat16_to_float(b(n, k));
            }

            c(m, n) = float_to_bfloat16(v);
        };

        make_ParallelTensorFunctor(f_km_nk_mn, c.mDesc.GetLengths()[0], c.mDesc.GetLengths()[1])(
            std::thread::hardware_concurrency());
    }
    else if(layout == GemmMatrixLayout::MK_KN_NM)
    {
        auto f_mk_kn_nm = [&](auto n, auto m) {
            const int K = a.mDesc.GetLengths()[1];

            double v = 0;

            for(int k = 0; k < K; ++k)
            {
                v += bfloat16_to_float(a(m, k)) * bfloat16_to_float(b(k, n));
            }

            c(n, m) = float_to_bfloat16(v);
        };

        make_ParallelTensorFunctor(f_mk_kn_nm, c.mDesc.GetLengths()[0], c.mDesc.GetLengths()[1])(
            std::thread::hardware_concurrency());
    }
    else if(layout == GemmMatrixLayout::MK_NK_NM)
    {
        auto f_mk_nk_nm = [&](auto n, auto m) {
            const int K = a.mDesc.GetLengths()[1];

            double v = 0;

            for(int k = 0; k < K; ++k)
            {
                v += bfloat16_to_float(a(m, k)) * bfloat16_to_float(b(n, k));
            }

            c(n, m) = float_to_bfloat16(v);
        };

        make_ParallelTensorFunctor(f_mk_nk_nm, c.mDesc.GetLengths()[0], c.mDesc.GetLengths()[1])(
            std::thread::hardware_concurrency());
    }
    else if(layout == GemmMatrixLayout::KM_KN_NM)
    {
        auto f_km_kn_nm = [&](auto n, auto m) {
            const int K = a.mDesc.GetLengths()[0];

            double v = 0;

            for(int k = 0; k < K; ++k)
            {
                v += bfloat16_to_float(a(k, m)) * bfloat16_to_float(b(k, n));
            }

            c(n, m) = float_to_bfloat16(v);
        };

        make_ParallelTensorFunctor(f_km_kn_nm, c.mDesc.GetLengths()[0], c.mDesc.GetLengths()[1])(
            std::thread::hardware_concurrency());
    }
    else if(layout == GemmMatrixLayout::KM_NK_NM)
    {
        auto f_km_nk_nm = [&](auto n, auto m) {
            const int K = a.mDesc.GetLengths()[0];

            double v = 0;

            for(int k = 0; k < K; ++k)
            {
                v += bfloat16_to_float(a(k, m)) * bfloat16_to_float(b(n, k));
            }

            c(n, m) = float_to_bfloat16(v);
        };

        make_ParallelTensorFunctor(f_km_nk_nm, c.mDesc.GetLengths()[0], c.mDesc.GetLengths()[1])(
            std::thread::hardware_concurrency());
    }
    else
    {
        throw std::runtime_error("wrong! not supported layout");
    }
}

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
template <typename AType, typename BType, typename CType>
void host_gemm_mk_kn_mn(const Tensor<AType>& a_m_k,
                        const Tensor<BType>& b_k_n,
                        Tensor<CType>& c_m_n)
{
    auto f_mk_kn_mn = [&](auto m, auto n) {
        const int K = a_m_k.mDesc.GetLengths()[1];

        double v = 0;

        for(int k = 0; k < K; ++k)
        {
            v += static_cast<const double>(a_m_k(m, k)) * static_cast<const double>(b_k_n(k, n));
        }

        c_m_n(m, n) = v;
    };

    make_ParallelTensorFunctor(f_mk_kn_mn,
                               c_m_n.mDesc.GetLengths()[0],
                               c_m_n.mDesc.GetLengths()[1])(std::thread::hardware_concurrency());
}