"git@developer.sourcefind.cn:OpenDAS/dlib.git" did not exist on "e0fac30c52e83969c1ad0c6133a36fe995373414"
Unverified Commit 19613902 authored by Chao Liu's avatar Chao Liu Committed by GitHub
Browse files

GEMM driver and kernel (#29)

* add gemm driver

* tweak

* add gemm kernel: mk_kn_mn and km_kn_mn

* tweak

* add GEMM km_nk_mn

* fix comment
parent 627d8ef3
...@@ -14,11 +14,14 @@ include_directories(BEFORE ...@@ -14,11 +14,14 @@ include_directories(BEFORE
set(CONV_FWD_DRIVER_OFFLINE_SOURCE src/conv_fwd_driver_offline.cpp) set(CONV_FWD_DRIVER_OFFLINE_SOURCE src/conv_fwd_driver_offline.cpp)
set(CONV_BWD_DRIVER_OFFLINE_SOURCE src/conv_bwd_driver_offline.cpp) set(CONV_BWD_DRIVER_OFFLINE_SOURCE src/conv_bwd_driver_offline.cpp)
set(CONV_WRW_DRIVER_OFFLINE_SOURCE src/conv_wrw_driver_offline.cpp) set(CONV_WRW_DRIVER_OFFLINE_SOURCE src/conv_wrw_driver_offline.cpp)
set(GEMM_DRIVER_OFFLINE_SOURCE src/gemm_driver_offline.cpp)
add_executable(conv_fwd_driver_offline ${CONV_FWD_DRIVER_OFFLINE_SOURCE}) add_executable(conv_fwd_driver_offline ${CONV_FWD_DRIVER_OFFLINE_SOURCE})
add_executable(conv_bwd_driver_offline ${CONV_BWD_DRIVER_OFFLINE_SOURCE}) add_executable(conv_bwd_driver_offline ${CONV_BWD_DRIVER_OFFLINE_SOURCE})
add_executable(conv_wrw_driver_offline ${CONV_WRW_DRIVER_OFFLINE_SOURCE}) add_executable(conv_wrw_driver_offline ${CONV_WRW_DRIVER_OFFLINE_SOURCE})
add_executable(gemm_driver_offline ${GEMM_DRIVER_OFFLINE_SOURCE})
target_link_libraries(conv_fwd_driver_offline PRIVATE host_tensor) target_link_libraries(conv_fwd_driver_offline PRIVATE host_tensor)
target_link_libraries(conv_bwd_driver_offline PRIVATE host_tensor) target_link_libraries(conv_bwd_driver_offline PRIVATE host_tensor)
target_link_libraries(conv_wrw_driver_offline PRIVATE host_tensor) target_link_libraries(conv_wrw_driver_offline PRIVATE host_tensor)
target_link_libraries(gemm_driver_offline PRIVATE host_tensor)
#pragma once
#include <unistd.h>
#include "device.hpp"
#include "host_tensor.hpp"
#include "driver_gemm_xdlops_v2r3.hpp"
template <typename ABType,
typename AccType,
typename CType,
typename ADesc,
typename BDesc,
typename CDesc>
void device_gemm_xdlops_km_kn_mn(const ADesc& a_k_m_grid_desc,
const BDesc& b_k_n_grid_desc,
const CDesc& c_m_n_grid_desc,
const Tensor<ABType>& a_k_m,
const Tensor<ABType>& b_k_n,
Tensor<CType>& c_m_n,
ck::index_t nrepeat)
{
using namespace ck;
std::cout << __func__ << std::endl;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
DeviceMem a_k_m_device_buf(sizeof(ABType) * a_k_m.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(ABType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CType) * c_m_n.mDesc.GetElementSpace());
a_k_m_device_buf.ToDevice(a_k_m.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
c_m_n_device_buf.ToDevice(c_m_n.mData.data());
#if 0
// [M, N, K0, K1] = [256, 128, 4, 4] for fp32
constexpr index_t BlockSize = 256;
constexpr index_t MPerBlock = 256;
constexpr index_t NPerBlock = 128;
constexpr index_t KPerBlock = 4;
constexpr index_t MPerXDL = 32;
constexpr index_t NPerXDL = 32;
constexpr index_t K1 = 4;
constexpr index_t MRepeat = 4;
constexpr index_t NRepeat = 2;
using ABlockTransferThreadSliceLengths_K0_M_K1 = Sequence<1, 4, 4>;
using ABlockTransferThreadClusterLengths_K0_M_K1 = Sequence<4, 64, 1>;
constexpr index_t ABlockTransferSrcScalarPerVector_M = 4;
constexpr index_t ABlockTransferDstScalarPerVector_K1 = 4;
using BBlockTransferThreadSliceLengths_K0_N_K1 = Sequence<1, 2, 4>;
using BBlockTransferThreadClusterLengths_K0_N_K1 = Sequence<4, 64, 1>;
constexpr index_t BBlockTransferSrcScalarPerVector_N = 2;
constexpr index_t BBlockTransferDstScalarPerVector_K1 = 4;
constexpr index_t CThreadTransferDstScalarPerVector = 1;
#elif 1
// [M, N, K0, K1] = [256, 128, 4, 8] for fp16
constexpr index_t BlockSize = 256;
constexpr index_t MPerBlock = 256;
constexpr index_t NPerBlock = 128;
constexpr index_t KPerBlock = 4;
constexpr index_t MPerXDL = 32;
constexpr index_t NPerXDL = 32;
constexpr index_t K1 = 8;
constexpr index_t MRepeat = 4;
constexpr index_t NRepeat = 2;
using ABlockTransferThreadSliceLengths_K0_M_K1 = Sequence<1, 4, 8>;
using ABlockTransferThreadClusterLengths_K0_M_K1 = Sequence<4, 64, 1>;
constexpr index_t ABlockTransferSrcScalarPerVector_M = 4;
constexpr index_t ABlockTransferDstScalarPerVector_K1 = 8;
using BBlockTransferThreadSliceLengths_K0_N_K1 = Sequence<1, 2, 8>;
using BBlockTransferThreadClusterLengths_K0_N_K1 = Sequence<4, 64, 1>;
constexpr index_t BBlockTransferSrcScalarPerVector_N = 2;
constexpr index_t BBlockTransferDstScalarPerVector_K1 = 8;
constexpr index_t CThreadTransferDstScalarPerVector = 1;
#endif
const auto K = a_k_m_grid_desc.GetLength(I0);
const auto M = a_k_m_grid_desc.GetLength(I1);
const auto N = b_k_n_grid_desc.GetLength(I1);
constexpr auto K1Number = Number<K1>{};
const auto K0 = K / K1Number;
const auto a_k0_m_k1_grid_desc =
transform_tensor_descriptor(a_k_m_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(M)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
const auto b_k0_n_k1_grid_desc =
transform_tensor_descriptor(b_k_n_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// HACK: hacks that control index calculation when iterating over A, B, C matrix
constexpr auto a_k0_m_k1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, // 0+: K0
Sequence<0, 0, 0>{}, // 1+: M
Sequence<0, 0, 0>{}), // 2+: K1
make_tuple(Sequence<0, 0, 0>{}, // 0-: K0
Sequence<0, 0, 0>{}, // 1-: M
Sequence<0, 0, 0>{})); // 2-: K1
constexpr auto b_k0_n_k1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, // 0+: K0
Sequence<0, 0, 0>{}, // 1+: N
Sequence<0, 0, 0>{}), // 2+: K1
make_tuple(Sequence<0, 0, 0>{}, // 0-: K0
Sequence<0, 0, 0>{}, // 1-: N
Sequence<0, 0, 0>{})); // 2-: K1
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0+: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1+: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2+: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3+: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4+: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5+: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6+: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}), // 7+: N2
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0-: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1-: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2-: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3-: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4-: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5-: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6-: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{})); // 7-: N2
constexpr auto a_k0_m_k1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0>{};
constexpr auto b_k0_n_k1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0>{};
for(index_t i = 0; i < 5; ++i)
{
float ave_time =
driver_gemm_xdlops_v2r3<BlockSize,
ABType,
AccType,
CType,
InMemoryDataOperationEnum_t::Set,
decltype(a_k0_m_k1_grid_desc),
decltype(b_k0_n_k1_grid_desc),
decltype(c_m_n_grid_desc),
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
K1,
MRepeat,
NRepeat,
ABlockTransferThreadSliceLengths_K0_M_K1,
ABlockTransferThreadClusterLengths_K0_M_K1,
Sequence<0, 2, 1>,
Sequence<0, 2, 1>,
1,
ABlockTransferSrcScalarPerVector_M,
ABlockTransferDstScalarPerVector_K1,
false, // don't move back src coordinate after threadwise copy
BBlockTransferThreadSliceLengths_K0_N_K1,
BBlockTransferThreadClusterLengths_K0_N_K1,
Sequence<0, 2, 1>,
Sequence<0, 2, 1>,
1,
BBlockTransferSrcScalarPerVector_N,
BBlockTransferDstScalarPerVector_K1,
false, // don't move back src coordinate after threadwise copy
Sequence<0, 2, 4, 5, 6, 1, 3, 7>,
7,
CThreadTransferDstScalarPerVector,
decltype(a_k0_m_k1_grid_step_hacks),
decltype(b_k0_n_k1_grid_step_hacks),
decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks),
decltype(a_k0_m_k1_grid_move_slice_window_step_hacks),
decltype(b_k0_n_k1_grid_move_slice_window_step_hacks),
false // CAccessOrderMRepeatNRepeat
>(static_cast<ABType*>(a_k_m_device_buf.GetDeviceBuffer()),
static_cast<ABType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CType*>(c_m_n_device_buf.GetDeviceBuffer()),
a_k0_m_k1_grid_desc,
b_k0_n_k1_grid_desc,
c_m_n_grid_desc,
a_k0_m_k1_grid_step_hacks,
b_k0_n_k1_grid_step_hacks,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks,
a_k0_m_k1_grid_move_slice_window_step_hacks,
b_k0_n_k1_grid_move_slice_window_step_hacks,
nrepeat);
float perf = static_cast<float>((std::size_t(2) * M * N * K)) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s" << std::endl;
}
// copy result back to host
c_m_n_device_buf.FromDevice(c_m_n.mData.data());
}
#pragma once
#include <unistd.h>
#include "device.hpp"
#include "host_tensor.hpp"
#include "driver_gemm_xdlops_v2r3.hpp"
template <typename ABType,
typename AccType,
typename CType,
typename ADesc,
typename BDesc,
typename CDesc>
void device_gemm_xdlops_km_nk_mn(const ADesc& a_k_m_grid_desc,
const BDesc& b_n_k_grid_desc,
const CDesc& c_m_n_grid_desc,
const Tensor<ABType>& a_k_m,
const Tensor<ABType>& b_n_k,
Tensor<CType>& c_m_n,
ck::index_t nrepeat)
{
using namespace ck;
std::cout << __func__ << std::endl;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
DeviceMem a_k_m_device_buf(sizeof(ABType) * a_k_m.mDesc.GetElementSpace());
DeviceMem b_n_k_device_buf(sizeof(ABType) * b_n_k.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CType) * c_m_n.mDesc.GetElementSpace());
a_k_m_device_buf.ToDevice(a_k_m.mData.data());
b_n_k_device_buf.ToDevice(b_n_k.mData.data());
c_m_n_device_buf.ToDevice(c_m_n.mData.data());
#if 0
// [M, N, K0, K1] = [256, 128, 4, 4] for fp32
constexpr index_t BlockSize = 256;
constexpr index_t MPerBlock = 256;
constexpr index_t NPerBlock = 128;
constexpr index_t KPerBlock = 4;
constexpr index_t MPerXDL = 32;
constexpr index_t NPerXDL = 32;
constexpr index_t K1 = 4;
constexpr index_t MRepeat = 4;
constexpr index_t NRepeat = 2;
using ABlockTransferThreadSliceLengths_K0_M_K1 = Sequence<1, 4, 4>;
using ABlockTransferThreadClusterLengths_K0_M_K1 = Sequence<4, 64, 1>;
constexpr index_t ABlockTransferSrcScalarPerVector_M = 4;
constexpr index_t ABlockTransferDstScalarPerVector_K1 = 4;
using BBlockTransferThreadSliceLengths_K0_N_K1 = Sequence<1, 2, 4>;
using BBlockTransferThreadClusterLengths_K0_N_K1 = Sequence<4, 64, 1>;
constexpr index_t BBlockTransferSrcScalarPerVector_K1 = 4;
constexpr index_t BBlockTransferDstScalarPerVector_K1 = 4;
constexpr index_t CThreadTransferDstScalarPerVector = 1;
#elif 1
// [M, N, K0, K1] = [256, 128, 4, 8] for fp16
constexpr index_t BlockSize = 256;
constexpr index_t MPerBlock = 256;
constexpr index_t NPerBlock = 128;
constexpr index_t KPerBlock = 4;
constexpr index_t MPerXDL = 32;
constexpr index_t NPerXDL = 32;
constexpr index_t K1 = 8;
constexpr index_t MRepeat = 4;
constexpr index_t NRepeat = 2;
using ABlockTransferThreadSliceLengths_K0_M_K1 = Sequence<1, 4, 8>;
using ABlockTransferThreadClusterLengths_K0_M_K1 = Sequence<4, 64, 1>;
constexpr index_t ABlockTransferSrcScalarPerVector_M = 4;
constexpr index_t ABlockTransferDstScalarPerVector_K1 = 8;
using BBlockTransferThreadSliceLengths_K0_N_K1 = Sequence<1, 2, 8>;
using BBlockTransferThreadClusterLengths_K0_N_K1 = Sequence<4, 64, 1>;
constexpr index_t BBlockTransferSrcScalarPerVector_K1 = 8;
constexpr index_t BBlockTransferDstScalarPerVector_K1 = 8;
constexpr index_t CThreadTransferDstScalarPerVector = 1;
#endif
const auto K = a_k_m_grid_desc.GetLength(I0);
const auto M = a_k_m_grid_desc.GetLength(I1);
const auto N = b_n_k_grid_desc.GetLength(I0);
constexpr auto K1Number = Number<K1>{};
const auto K0 = K / K1Number;
const auto a_k0_m_k1_grid_desc =
transform_tensor_descriptor(a_k_m_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(M)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
const auto b_k0_n_k1_grid_desc =
transform_tensor_descriptor(b_n_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_unmerge_transform(make_tuple(K0, K1Number))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}));
// HACK: hacks that control index calculation when iterating over A, B, C matrix
constexpr auto a_k0_m_k1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, // 0+: K0
Sequence<0, 0, 0>{}, // 1+: M
Sequence<0, 0, 0>{}), // 2+: K1
make_tuple(Sequence<0, 0, 0>{}, // 0-: K0
Sequence<0, 0, 0>{}, // 1-: M
Sequence<0, 0, 0>{})); // 2-: K1
constexpr auto b_k0_n_k1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, // 0+: K0
Sequence<0, 0, 0>{}, // 1+: N
Sequence<0, 0, 0>{}), // 2+: K1
make_tuple(Sequence<0, 0, 0>{}, // 0-: K0
Sequence<0, 0, 0>{}, // 1-: N
Sequence<0, 0, 0>{})); // 2-: K1
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0+: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1+: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2+: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3+: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4+: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5+: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6+: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}), // 7+: N2
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0-: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1-: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2-: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3-: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4-: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5-: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6-: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{})); // 7-: N2
constexpr auto a_k0_m_k1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0>{};
constexpr auto b_k0_n_k1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0>{};
for(index_t i = 0; i < 5; ++i)
{
float ave_time =
driver_gemm_xdlops_v2r3<BlockSize,
ABType,
AccType,
CType,
InMemoryDataOperationEnum_t::Set,
decltype(a_k0_m_k1_grid_desc),
decltype(b_k0_n_k1_grid_desc),
decltype(c_m_n_grid_desc),
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
K1,
MRepeat,
NRepeat,
ABlockTransferThreadSliceLengths_K0_M_K1,
ABlockTransferThreadClusterLengths_K0_M_K1,
Sequence<0, 2, 1>,
Sequence<0, 2, 1>,
1,
ABlockTransferSrcScalarPerVector_M,
ABlockTransferDstScalarPerVector_K1,
false, // don't move back src coordinate after threadwise copy
BBlockTransferThreadSliceLengths_K0_N_K1,
BBlockTransferThreadClusterLengths_K0_N_K1,
Sequence<1, 0, 2>,
Sequence<1, 0, 2>,
2,
BBlockTransferSrcScalarPerVector_K1,
BBlockTransferDstScalarPerVector_K1,
false, // don't move back src coordinate after threadwise copy
Sequence<0, 2, 4, 5, 6, 1, 3, 7>,
7,
CThreadTransferDstScalarPerVector,
decltype(a_k0_m_k1_grid_step_hacks),
decltype(b_k0_n_k1_grid_step_hacks),
decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks),
decltype(a_k0_m_k1_grid_move_slice_window_step_hacks),
decltype(b_k0_n_k1_grid_move_slice_window_step_hacks),
false // CAccessOrderMRepeatNRepeat
>(static_cast<ABType*>(a_k_m_device_buf.GetDeviceBuffer()),
static_cast<ABType*>(b_n_k_device_buf.GetDeviceBuffer()),
static_cast<CType*>(c_m_n_device_buf.GetDeviceBuffer()),
a_k0_m_k1_grid_desc,
b_k0_n_k1_grid_desc,
c_m_n_grid_desc,
a_k0_m_k1_grid_step_hacks,
b_k0_n_k1_grid_step_hacks,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks,
a_k0_m_k1_grid_move_slice_window_step_hacks,
b_k0_n_k1_grid_move_slice_window_step_hacks,
nrepeat);
float perf = static_cast<float>((std::size_t(2) * M * N * K)) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s" << std::endl;
}
// copy result back to host
c_m_n_device_buf.FromDevice(c_m_n.mData.data());
}
#pragma once
#include <unistd.h>
#include "device.hpp"
#include "host_tensor.hpp"
#include "driver_gemm_xdlops_v2r3.hpp"
template <typename ABType,
typename AccType,
typename CType,
typename ADesc,
typename BDesc,
typename CDesc>
void device_gemm_xdlops_mk_kn_mn(const ADesc& a_m_k_grid_desc,
const BDesc& b_k_n_grid_desc,
const CDesc& c_m_n_grid_desc,
const Tensor<ABType>& a_m_k,
const Tensor<ABType>& b_k_n,
Tensor<CType>& c_m_n,
ck::index_t nrepeat)
{
using namespace ck;
std::cout << __func__ << std::endl;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
DeviceMem a_m_k_device_buf(sizeof(ABType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(ABType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CType) * c_m_n.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
c_m_n_device_buf.ToDevice(c_m_n.mData.data());
#if 1
// [M, N, K0, K1] = [256, 128, 4, 8] for fp16
constexpr index_t BlockSize = 256;
constexpr index_t MPerBlock = 256;
constexpr index_t NPerBlock = 128;
constexpr index_t KPerBlock = 4;
constexpr index_t MPerXDL = 32;
constexpr index_t NPerXDL = 32;
constexpr index_t K1 = 8;
constexpr index_t MRepeat = 4;
constexpr index_t NRepeat = 2;
using ABlockTransferThreadSliceLengths_K0_M_K1 = Sequence<1, 4, 8>;
using ABlockTransferThreadClusterLengths_K0_M_K1 = Sequence<4, 64, 1>;
constexpr index_t ABlockTransferSrcScalarPerVector_K1 = 8;
constexpr index_t ABlockTransferDstScalarPerVector_K1 = 8;
using BBlockTransferThreadSliceLengths_K0_N_K1 = Sequence<1, 2, 8>;
using BBlockTransferThreadClusterLengths_K0_N_K1 = Sequence<4, 64, 1>;
constexpr index_t BBlockTransferSrcScalarPerVector_N = 2;
constexpr index_t BBlockTransferDstScalarPerVector_K1 = 8;
constexpr index_t CThreadTransferDstScalarPerVector = 1;
#elif 0
// [M, N, K0, K1] = [128, 256, 4, 8] for fp16
constexpr index_t BlockSize = 256;
constexpr index_t MPerBlock = 128;
constexpr index_t NPerBlock = 256;
constexpr index_t KPerBlock = 4;
constexpr index_t MPerXDL = 32;
constexpr index_t NPerXDL = 32;
constexpr index_t K1 = 8;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 4;
using ABlockTransferThreadSliceLengths_K0_M_K1 = Sequence<1, 2, 8>;
using ABlockTransferThreadClusterLengths_K0_M_K1 = Sequence<4, 64, 1>;
constexpr index_t ABlockTransferSrcScalarPerVector_K1 = 8;
constexpr index_t ABlockTransferDstScalarPerVector_K1 = 8;
using BBlockTransferThreadSliceLengths_K0_N_K1 = Sequence<1, 4, 8>;
using BBlockTransferThreadClusterLengths_K0_N_K1 = Sequence<4, 64, 1>;
constexpr index_t BBlockTransferSrcScalarPerVector_N = 4;
constexpr index_t BBlockTransferDstScalarPerVector_K1 = 8;
constexpr index_t CThreadTransferDstScalarPerVector = 1;
#endif
const auto K = a_m_k_grid_desc.GetLength(I1);
const auto M = a_m_k_grid_desc.GetLength(I0);
const auto N = b_k_n_grid_desc.GetLength(I1);
constexpr auto K1Number = Number<K1>{};
const auto K0 = K / K1Number;
const auto a_k0_m_k1_grid_desc =
transform_tensor_descriptor(a_m_k_grid_desc,
make_tuple(make_pass_through_transform(M),
make_unmerge_transform(make_tuple(K0, K1Number))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}));
const auto b_k0_n_k1_grid_desc =
transform_tensor_descriptor(b_k_n_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// HACK: hacks that control index calculation when iterating over A, B, C matrix
constexpr auto a_k0_m_k1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, // 0+: K0
Sequence<0, 0, 0>{}, // 1+: M
Sequence<0, 0, 0>{}), // 2+: K1
make_tuple(Sequence<0, 0, 0>{}, // 0-: K0
Sequence<0, 0, 0>{}, // 1-: M
Sequence<0, 0, 0>{})); // 2-: K1
constexpr auto b_k0_n_k1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, // 0+: K0
Sequence<0, 0, 0>{}, // 1+: N
Sequence<0, 0, 0>{}), // 2+: K1
make_tuple(Sequence<0, 0, 0>{}, // 0-: K0
Sequence<0, 0, 0>{}, // 1-: N
Sequence<0, 0, 0>{})); // 2-: K1
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0+: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1+: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2+: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3+: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4+: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5+: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6+: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}), // 7+: N2
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0-: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1-: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2-: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3-: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4-: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5-: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6-: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{})); // 7-: N2
constexpr auto a_k0_m_k1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0>{};
constexpr auto b_k0_n_k1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0>{};
for(index_t i = 0; i < 5; ++i)
{
float ave_time =
driver_gemm_xdlops_v2r3<BlockSize,
ABType,
AccType,
CType,
InMemoryDataOperationEnum_t::Set,
decltype(a_k0_m_k1_grid_desc),
decltype(b_k0_n_k1_grid_desc),
decltype(c_m_n_grid_desc),
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
K1,
MRepeat,
NRepeat,
ABlockTransferThreadSliceLengths_K0_M_K1,
ABlockTransferThreadClusterLengths_K0_M_K1,
Sequence<1, 0, 2>,
Sequence<1, 0, 2>,
2,
ABlockTransferSrcScalarPerVector_K1,
ABlockTransferDstScalarPerVector_K1,
false, // don't move back src coordinate after threadwise copy
BBlockTransferThreadSliceLengths_K0_N_K1,
BBlockTransferThreadClusterLengths_K0_N_K1,
Sequence<0, 2, 1>,
Sequence<0, 2, 1>,
1,
BBlockTransferSrcScalarPerVector_N,
BBlockTransferDstScalarPerVector_K1,
false, // don't move back src coordinate after threadwise copy
Sequence<0, 2, 4, 5, 6, 1, 3, 7>,
7,
CThreadTransferDstScalarPerVector,
decltype(a_k0_m_k1_grid_step_hacks),
decltype(b_k0_n_k1_grid_step_hacks),
decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks),
decltype(a_k0_m_k1_grid_move_slice_window_step_hacks),
decltype(b_k0_n_k1_grid_move_slice_window_step_hacks),
false // CAccessOrderMRepeatNRepeat
>(static_cast<ABType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<ABType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CType*>(c_m_n_device_buf.GetDeviceBuffer()),
a_k0_m_k1_grid_desc,
b_k0_n_k1_grid_desc,
c_m_n_grid_desc,
a_k0_m_k1_grid_step_hacks,
b_k0_n_k1_grid_step_hacks,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks,
a_k0_m_k1_grid_move_slice_window_step_hacks,
b_k0_n_k1_grid_move_slice_window_step_hacks,
nrepeat);
float perf = static_cast<float>((std::size_t(2) * M * N * K)) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s" << std::endl;
}
// copy result back to host
c_m_n_device_buf.FromDevice(c_m_n.mData.data());
}
#pragma once
#include <unistd.h>
#include "device.hpp"
#include "host_tensor.hpp"
#include "driver_gemm_xdlops_v2r3.hpp"
template <typename ABType,
typename AccType,
typename CType,
typename ADesc,
typename BDesc,
typename CDesc>
void device_gemm_xdlops_mk_nk_mn(const ADesc& a_m_k_grid_desc,
const BDesc& b_n_k_grid_desc,
const CDesc& c_m_n_grid_desc,
const Tensor<ABType>& a_m_k,
const Tensor<ABType>& b_n_k,
Tensor<CType>& c_m_n,
ck::index_t nrepeat)
{
using namespace ck;
std::cout << __func__ << std::endl;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
DeviceMem a_m_k_device_buf(sizeof(ABType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_n_k_device_buf(sizeof(ABType) * b_n_k.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CType) * c_m_n.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_n_k_device_buf.ToDevice(b_n_k.mData.data());
c_m_n_device_buf.ToDevice(c_m_n.mData.data());
#if 0
// [M, N, K0, K1] = [128, 256, 4, 4] for fp32
constexpr index_t BlockSize = 256;
constexpr index_t MPerBlock = 128;
constexpr index_t NPerBlock = 256;
constexpr index_t KPerBlock = 4;
constexpr index_t MPerXDL = 32;
constexpr index_t NPerXDL = 32;
constexpr index_t K1 = 4;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 4;
using ABlockTransferThreadSliceLengths_K0_M_K1 = Sequence<1, 2, 4>;
using ABlockTransferThreadClusterLengths_K0_M_K1 = Sequence<4, 64, 1>;
constexpr index_t ABlockTransferSrcScalarPerVector_K1 = 4;
constexpr index_t ABlockTransferDstScalarPerVector_K1 = 4;
using BBlockTransferThreadSliceLengths_K0_N_K1 = Sequence<1, 4, 4>;
using BBlockTransferThreadClusterLengths_K0_N_K1 = Sequence<4, 64, 1>;
constexpr index_t BBlockTransferSrcScalarPerVector_K1 = 4;
constexpr index_t BBlockTransferDstScalarPerVector_K1 = 4;
constexpr index_t CThreadTransferDstScalarPerVector = 1;
#elif 1
// [M, N, K0, K1] = [256, 128, 4, 8] for fp16
constexpr index_t BlockSize = 256;
constexpr index_t MPerBlock = 256;
constexpr index_t NPerBlock = 128;
constexpr index_t KPerBlock = 4;
constexpr index_t MPerXDL = 32;
constexpr index_t NPerXDL = 32;
constexpr index_t K1 = 8;
constexpr index_t MRepeat = 4;
constexpr index_t NRepeat = 2;
using ABlockTransferThreadSliceLengths_K0_M_K1 = Sequence<1, 4, 8>;
using ABlockTransferThreadClusterLengths_K0_M_K1 = Sequence<4, 64, 1>;
constexpr index_t ABlockTransferSrcScalarPerVector_K1 = 8;
constexpr index_t ABlockTransferDstScalarPerVector_K1 = 8;
using BBlockTransferThreadSliceLengths_K0_N_K1 = Sequence<1, 2, 8>;
using BBlockTransferThreadClusterLengths_K0_N_K1 = Sequence<4, 64, 1>;
constexpr index_t BBlockTransferSrcScalarPerVector_K1 = 8;
constexpr index_t BBlockTransferDstScalarPerVector_K1 = 8;
constexpr index_t CThreadTransferDstScalarPerVector = 1;
#elif 0
// [M, N, K0, K1] = [128, 256, 4, 8] for fp16
constexpr index_t BlockSize = 256;
constexpr index_t MPerBlock = 128;
constexpr index_t NPerBlock = 256;
constexpr index_t KPerBlock = 4;
constexpr index_t MPerXDL = 32;
constexpr index_t NPerXDL = 32;
constexpr index_t K1 = 8;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 4;
using ABlockTransferThreadSliceLengths_K0_M_K1 = Sequence<1, 2, 8>;
using ABlockTransferThreadClusterLengths_K0_M_K1 = Sequence<4, 64, 1>;
constexpr index_t ABlockTransferSrcScalarPerVector_K1 = 8;
constexpr index_t ABlockTransferDstScalarPerVector_K1 = 8;
using BBlockTransferThreadSliceLengths_K0_N_K1 = Sequence<1, 4, 8>;
using BBlockTransferThreadClusterLengths_K0_N_K1 = Sequence<4, 64, 1>;
constexpr index_t BBlockTransferSrcScalarPerVector_K1 = 8;
constexpr index_t BBlockTransferDstScalarPerVector_K1 = 8;
constexpr index_t CThreadTransferDstScalarPerVector = 1;
#elif 1
// [M, N, K0, K1] = [128, 128, 4, 8] for fp16
constexpr index_t BlockSize = 256;
constexpr index_t MPerBlock = 128;
constexpr index_t NPerBlock = 128;
constexpr index_t KPerBlock = 4;
constexpr index_t MPerXDL = 32;
constexpr index_t NPerXDL = 32;
constexpr index_t K1 = 8;
constexpr index_t MRepeat = 2;
constexpr index_t NRepeat = 2;
using ABlockTransferThreadSliceLengths_K0_M_K1 = Sequence<1, 2, 8>;
using ABlockTransferThreadClusterLengths_K0_M_K1 = Sequence<4, 64, 1>;
constexpr index_t ABlockTransferSrcScalarPerVector_K1 = 8;
constexpr index_t ABlockTransferDstScalarPerVector_K1 = 8;
using BBlockTransferThreadSliceLengths_K0_N_K1 = Sequence<1, 2, 8>;
using BBlockTransferThreadClusterLengths_K0_N_K1 = Sequence<4, 64, 1>;
constexpr index_t BBlockTransferSrcScalarPerVector_K1 = 8;
constexpr index_t BBlockTransferDstScalarPerVector_K1 = 8;
constexpr index_t CThreadTransferDstScalarPerVector = 1;
#endif
const auto K = a_m_k_grid_desc.GetLength(I1);
const auto M = a_m_k_grid_desc.GetLength(I0);
const auto N = b_n_k_grid_desc.GetLength(I0);
constexpr auto K1Number = Number<K1>{};
const auto K0 = K / K1Number;
const auto a_k0_m_k1_grid_desc =
transform_tensor_descriptor(a_m_k_grid_desc,
make_tuple(make_pass_through_transform(M),
make_unmerge_transform(make_tuple(K0, K1Number))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}));
const auto b_k0_n_k1_grid_desc =
transform_tensor_descriptor(b_n_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_unmerge_transform(make_tuple(K0, K1Number))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}));
// HACK: hacks that control index calculation when iterating over A, B, C matrix
constexpr auto a_k0_m_k1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, // 0+: K0
Sequence<0, 0, 0>{}, // 1+: M
Sequence<0, 0, 0>{}), // 2+: K1
make_tuple(Sequence<0, 0, 0>{}, // 0-: K0
Sequence<0, 0, 0>{}, // 1-: M
Sequence<0, 0, 0>{})); // 2-: K1
constexpr auto b_k0_n_k1_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0>{}, // 0+: K0
Sequence<0, 0, 0>{}, // 1+: N
Sequence<0, 0, 0>{}), // 2+: K1
make_tuple(Sequence<0, 0, 0>{}, // 0-: K0
Sequence<0, 0, 0>{}, // 1-: N
Sequence<0, 0, 0>{})); // 2-: K1
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks =
make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0+: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1+: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2+: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3+: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4+: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5+: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6+: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}), // 7+: N2
make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 0-: M0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 1-: N0
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 2-: M1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 3-: N1
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 4-: M2
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 5-: M3
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}, // 6-: M4
Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{})); // 7-: N2
constexpr auto a_k0_m_k1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0>{};
constexpr auto b_k0_n_k1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0>{};
for(index_t i = 0; i < 5; ++i)
{
float ave_time =
driver_gemm_xdlops_v2r3<BlockSize,
ABType,
AccType,
CType,
InMemoryDataOperationEnum_t::Set,
decltype(a_k0_m_k1_grid_desc),
decltype(b_k0_n_k1_grid_desc),
decltype(c_m_n_grid_desc),
MPerBlock,
NPerBlock,
KPerBlock,
MPerXDL,
NPerXDL,
K1,
MRepeat,
NRepeat,
ABlockTransferThreadSliceLengths_K0_M_K1,
ABlockTransferThreadClusterLengths_K0_M_K1,
Sequence<1, 0, 2>,
Sequence<1, 0, 2>,
2,
ABlockTransferSrcScalarPerVector_K1,
ABlockTransferDstScalarPerVector_K1,
false, // don't move back src coordinate after threadwise copy
BBlockTransferThreadSliceLengths_K0_N_K1,
BBlockTransferThreadClusterLengths_K0_N_K1,
Sequence<1, 0, 2>,
Sequence<1, 0, 2>,
2,
BBlockTransferSrcScalarPerVector_K1,
BBlockTransferDstScalarPerVector_K1,
false, // don't move back src coordinate after threadwise copy
Sequence<0, 2, 4, 5, 6, 1, 3, 7>,
7,
CThreadTransferDstScalarPerVector,
decltype(a_k0_m_k1_grid_step_hacks),
decltype(b_k0_n_k1_grid_step_hacks),
decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks),
decltype(a_k0_m_k1_grid_move_slice_window_step_hacks),
decltype(b_k0_n_k1_grid_move_slice_window_step_hacks),
false // CAccessOrderMRepeatNRepeat
>(static_cast<ABType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<ABType*>(b_n_k_device_buf.GetDeviceBuffer()),
static_cast<CType*>(c_m_n_device_buf.GetDeviceBuffer()),
a_k0_m_k1_grid_desc,
b_k0_n_k1_grid_desc,
c_m_n_grid_desc,
a_k0_m_k1_grid_step_hacks,
b_k0_n_k1_grid_step_hacks,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks,
a_k0_m_k1_grid_move_slice_window_step_hacks,
b_k0_n_k1_grid_move_slice_window_step_hacks,
nrepeat);
float perf = static_cast<float>((std::size_t(2) * M * N * K)) /
(std::size_t(1000) * 1000 * 1000) / ave_time;
std::cout << "Average time : " << ave_time << " ms, " << perf << " TFlop/s" << std::endl;
}
// copy result back to host
c_m_n_device_buf.FromDevice(c_m_n.mData.data());
}
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "gemm_common.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdlops_mk_kn_mn.hpp"
#include "device_gemm_xdlops_mk_nk_mn.hpp"
#include "device_gemm_xdlops_km_kn_mn.hpp"
#include "device_gemm_xdlops_km_nk_mn.hpp"
#define USE_GEMM_XDL_MK_KN_MN 1
#define USE_GEMM_XDL_MK_NK_MN 1
#define USE_GEMM_XDL_KM_KN_MN 1
#define USE_GEMM_XDL_KM_NK_MN 1
enum GemmAlgo
{
Xdl_MK_KN_MN, // 0
Xdl_MK_NK_MN, // 1
Xdl_KM_KN_MN, // 2
Xdl_KM_NK_MN, // 3
};
int main(int argc, char* argv[])
{
using namespace ck;
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
// dynamic mode
if(argc != 10)
{
printf("arg1 to 6: layout, algo, do_verification, init_method, do_log, nrepeat\n");
printf("rest: M, N, K\n");
exit(1);
}
const auto layout = static_cast<GemmMatrixLayout>(std::stoi(argv[1]));
const auto algo = static_cast<GemmAlgo>(std::stoi(argv[2]));
const bool do_verification = std::stoi(argv[3]);
const int init_method = std::stoi(argv[4]);
const bool do_log = std::stoi(argv[5]);
const int nrepeat = std::stoi(argv[6]);
const index_t M = std::stoi(argv[7]);
const index_t N = std::stoi(argv[8]);
const index_t K = std::stoi(argv[9]);
#if 0
using ab_data_t = float;
using acc_data_t = float;
using c_data_t = float;
#elif 1
using ab_data_t = half_t;
using acc_data_t = float;
using c_data_t = half_t;
#elif 1
using ab_data_t = int8_t;
using acc_data_t = int32_t;
using c_data_t = int8_t;
#endif
std::vector<std::size_t> a_lengths_host(2), b_lengths_host(2), c_lengths_host(2);
std::vector<std::size_t> a_strides_host(2), b_strides_host(2), c_strides_host(2);
if(layout == GemmMatrixLayout::MK_KN_MN)
{
a_lengths_host[0] = static_cast<std::size_t>(M);
a_lengths_host[1] = static_cast<std::size_t>(K);
a_strides_host[0] = static_cast<std::size_t>(K);
a_strides_host[1] = static_cast<std::size_t>(1);
b_lengths_host[0] = static_cast<std::size_t>(K);
b_lengths_host[1] = static_cast<std::size_t>(N);
b_strides_host[0] = static_cast<std::size_t>(N);
b_strides_host[1] = static_cast<std::size_t>(1);
c_lengths_host[0] = static_cast<std::size_t>(M);
c_lengths_host[1] = static_cast<std::size_t>(N);
c_strides_host[0] = static_cast<std::size_t>(N);
c_strides_host[1] = static_cast<std::size_t>(1);
}
else if(layout == GemmMatrixLayout::MK_NK_MN)
{
a_lengths_host[0] = static_cast<std::size_t>(M);
a_lengths_host[1] = static_cast<std::size_t>(K);
a_strides_host[0] = static_cast<std::size_t>(K);
a_strides_host[1] = static_cast<std::size_t>(1);
b_lengths_host[0] = static_cast<std::size_t>(N);
b_lengths_host[1] = static_cast<std::size_t>(K);
b_strides_host[0] = static_cast<std::size_t>(K);
b_strides_host[1] = static_cast<std::size_t>(1);
c_lengths_host[0] = static_cast<std::size_t>(M);
c_lengths_host[1] = static_cast<std::size_t>(N);
c_strides_host[0] = static_cast<std::size_t>(N);
c_strides_host[1] = static_cast<std::size_t>(1);
}
else if(layout == GemmMatrixLayout::KM_KN_MN)
{
a_lengths_host[0] = static_cast<std::size_t>(K);
a_lengths_host[1] = static_cast<std::size_t>(M);
a_strides_host[0] = static_cast<std::size_t>(M);
a_strides_host[1] = static_cast<std::size_t>(1);
b_lengths_host[0] = static_cast<std::size_t>(K);
b_lengths_host[1] = static_cast<std::size_t>(N);
b_strides_host[0] = static_cast<std::size_t>(N);
b_strides_host[1] = static_cast<std::size_t>(1);
c_lengths_host[0] = static_cast<std::size_t>(M);
c_lengths_host[1] = static_cast<std::size_t>(N);
c_strides_host[0] = static_cast<std::size_t>(N);
c_strides_host[1] = static_cast<std::size_t>(1);
}
else if(layout == GemmMatrixLayout::KM_NK_MN)
{
a_lengths_host[0] = static_cast<std::size_t>(K);
a_lengths_host[1] = static_cast<std::size_t>(M);
a_strides_host[0] = static_cast<std::size_t>(M);
a_strides_host[1] = static_cast<std::size_t>(1);
b_lengths_host[0] = static_cast<std::size_t>(N);
b_lengths_host[1] = static_cast<std::size_t>(K);
b_strides_host[0] = static_cast<std::size_t>(K);
b_strides_host[1] = static_cast<std::size_t>(1);
c_lengths_host[0] = static_cast<std::size_t>(M);
c_lengths_host[1] = static_cast<std::size_t>(N);
c_strides_host[0] = static_cast<std::size_t>(N);
c_strides_host[1] = static_cast<std::size_t>(1);
}
else
{
std::runtime_error("wrong! not implemented");
}
Tensor<ab_data_t> a(a_lengths_host, a_strides_host);
Tensor<ab_data_t> b(b_lengths_host, b_strides_host);
Tensor<c_data_t> c_host(c_lengths_host, c_strides_host);
Tensor<c_data_t> c_device(c_lengths_host, c_strides_host);
std::cout << "layout: " << layout << std::endl;
ostream_HostTensorDescriptor(a.mDesc, std::cout << "a: ");
ostream_HostTensorDescriptor(b.mDesc, std::cout << "b: ");
ostream_HostTensorDescriptor(c_host.mDesc, std::cout << "c: ");
std::size_t num_thread = std::thread::hardware_concurrency();
switch(init_method)
{
case 0:
// no initialization
break;
case 1:
a.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
b.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
break;
case 2:
a.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
b.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
break;
case 3:
a.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
b.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
break;
case 4:
a.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
b.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
break;
default:
a.GenerateTensorValue(GeneratorTensor_3<float>{0.0, 1.0}, num_thread);
b.GenerateTensorValue(GeneratorTensor_3<float>{-0.5, 0.5}, num_thread);
}
auto f_make_for_device_mk_kn_mn = [&]() {
const auto a_desc = make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(K, I1));
const auto b_desc = make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(N, I1));
const auto c_desc = make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(N, I1));
return make_tuple(a_desc, b_desc, c_desc);
};
auto f_make_for_device_mk_nk_mn = [&]() {
const auto a_desc = make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(K, I1));
const auto b_desc = make_naive_tensor_descriptor(make_tuple(N, K), make_tuple(K, I1));
const auto c_desc = make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(N, I1));
return make_tuple(a_desc, b_desc, c_desc);
};
auto f_make_for_device_km_kn_mn = [&]() {
const auto a_desc = make_naive_tensor_descriptor(make_tuple(K, M), make_tuple(M, I1));
const auto b_desc = make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(N, I1));
const auto c_desc = make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(N, I1));
return make_tuple(a_desc, b_desc, c_desc);
};
auto f_make_for_device_km_nk_mn = [&]() {
const auto a_desc = make_naive_tensor_descriptor(make_tuple(K, M), make_tuple(M, I1));
const auto b_desc = make_naive_tensor_descriptor(make_tuple(N, K), make_tuple(K, I1));
const auto c_desc = make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(N, I1));
return make_tuple(a_desc, b_desc, c_desc);
};
#if USE_GEMM_XDL_MK_KN_MN
if(algo == GemmAlgo::Xdl_MK_KN_MN)
{
if(layout != GemmMatrixLayout::MK_KN_MN)
{
throw std::runtime_error("wrong! layout");
}
const auto descs = f_make_for_device_mk_kn_mn();
device_gemm_xdlops_mk_kn_mn<ab_data_t, acc_data_t, c_data_t>(
descs[I0], descs[I1], descs[I2], a, b, c_device, nrepeat);
}
#endif
#if USE_GEMM_XDL_MK_NK_MN
if(algo == GemmAlgo::Xdl_MK_NK_MN)
{
if(layout != GemmMatrixLayout::MK_NK_MN)
{
throw std::runtime_error("wrong! layout");
}
const auto descs = f_make_for_device_mk_nk_mn();
device_gemm_xdlops_mk_nk_mn<ab_data_t, acc_data_t, c_data_t>(
descs[I0], descs[I1], descs[I2], a, b, c_device, nrepeat);
}
#endif
#if USE_GEMM_XDL_KM_KN_MN
if(algo == GemmAlgo::Xdl_KM_KN_MN)
{
if(layout != GemmMatrixLayout::KM_KN_MN)
{
throw std::runtime_error("wrong! layout");
}
const auto descs = f_make_for_device_km_kn_mn();
device_gemm_xdlops_km_kn_mn<ab_data_t, acc_data_t, c_data_t>(
descs[I0], descs[I1], descs[I2], a, b, c_device, nrepeat);
}
#endif
#if USE_GEMM_XDL_KM_NK_MN
if(algo == GemmAlgo::Xdl_KM_NK_MN)
{
if(layout != GemmMatrixLayout::KM_NK_MN)
{
throw std::runtime_error("wrong! layout");
}
const auto descs = f_make_for_device_km_nk_mn();
device_gemm_xdlops_km_nk_mn<ab_data_t, acc_data_t, c_data_t>(
descs[I0], descs[I1], descs[I2], a, b, c_device, nrepeat);
}
#endif
if(do_verification)
{
host_gemm(a, b, c_host, layout);
check_error(c_host, c_device);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c_host : ", c_host.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c_device: ", c_device.mData, ",") << std::endl;
}
}
}
#ifndef GEMM_COMMON_HPP
#define GEMM_COMMON_HPP
enum GemmMatrixLayout
{
MK_KN_MN, // 0
MK_NK_MN, // 1
KM_KN_MN, // 2
KM_NK_MN, // 3
};
#endif
#pragma once
#include "host_tensor.hpp"
#include "gemm_common.hpp"
template <typename AType, typename BType, typename CType>
void host_gemm(const Tensor<AType>& a,
const Tensor<BType>& b,
Tensor<CType>& c,
const GemmMatrixLayout layout)
{
if(layout == GemmMatrixLayout::MK_KN_MN)
{
auto f_mk_kn_mn = [&](auto m, auto n) {
const int K = a.mDesc.GetLengths()[1];
double v = 0;
for(int k = 0; k < K; ++k)
{
v += static_cast<const double>(a(m, k)) * static_cast<const double>(b(k, n));
}
c(m, n) = v;
};
make_ParallelTensorFunctor(f_mk_kn_mn, c.mDesc.GetLengths()[0], c.mDesc.GetLengths()[1])(
std::thread::hardware_concurrency());
}
else if(layout == GemmMatrixLayout::MK_NK_MN)
{
auto f_mk_nk_mn = [&](auto m, auto n) {
const int K = a.mDesc.GetLengths()[1];
double v = 0;
for(int k = 0; k < K; ++k)
{
v += static_cast<const double>(a(m, k)) * static_cast<const double>(b(n, k));
}
c(m, n) = v;
};
make_ParallelTensorFunctor(f_mk_nk_mn, c.mDesc.GetLengths()[0], c.mDesc.GetLengths()[1])(
std::thread::hardware_concurrency());
}
else if(layout == GemmMatrixLayout::KM_KN_MN)
{
auto f_km_kn_mn = [&](auto m, auto n) {
const int K = a.mDesc.GetLengths()[0];
double v = 0;
for(int k = 0; k < K; ++k)
{
v += static_cast<const double>(a(k, m)) * static_cast<const double>(b(k, n));
}
c(m, n) = v;
};
make_ParallelTensorFunctor(f_km_kn_mn, c.mDesc.GetLengths()[0], c.mDesc.GetLengths()[1])(
std::thread::hardware_concurrency());
}
else if(layout == GemmMatrixLayout::KM_NK_MN)
{
auto f_km_nk_mn = [&](auto m, auto n) {
const int K = a.mDesc.GetLengths()[0];
double v = 0;
for(int k = 0; k < K; ++k)
{
v += static_cast<const double>(a(k, m)) * static_cast<const double>(b(n, k));
}
c(m, n) = v;
};
make_ParallelTensorFunctor(f_km_nk_mn, c.mDesc.GetLengths()[0], c.mDesc.GetLengths()[1])(
std::thread::hardware_concurrency());
}
else
{
throw std::runtime_error("wrong! not supported layout");
}
}
...@@ -12,13 +12,16 @@ ...@@ -12,13 +12,16 @@
#export OLC_DEBUG_HIP_DUMP=1 #export OLC_DEBUG_HIP_DUMP=1
#export OLC_DEBUG_SAVE_TEMP_DIR=1 #export OLC_DEBUG_SAVE_TEMP_DIR=1
make -j conv_fwd_driver_offline
make -j conv_bwd_driver_offline
make -j conv_fwd_driver_online
#rm -rf /root/_hip_binary_kernels_/ #rm -rf /root/_hip_binary_kernels_/
#rm -rf /tmp/olCompile* #rm -rf /tmp/olCompile*
#make -j conv_fwd_driver_offline
#make -j conv_bwd_driver_offline
#make -j conv_wrw_driver_offline
#make -j conv_fwd_driver_online
make -j gemm_driver_offline
LAYOUT=$1 LAYOUT=$1
ALGO=$2 ALGO=$2
VERIFY=$3 VERIFY=$3
...@@ -30,7 +33,7 @@ REPEAT=$6 ...@@ -30,7 +33,7 @@ REPEAT=$6
#./host/driver_offline/conv_fwd_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 128 192 3 3 71 71 2 2 1 1 1 1 1 1 #./host/driver_offline/conv_fwd_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 128 192 3 3 71 71 2 2 1 1 1 1 1 1
#./host/driver_offline/conv_fwd_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 192 3 3 71 71 2 2 1 1 1 1 1 1 #./host/driver_offline/conv_fwd_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 192 3 3 71 71 2 2 1 1 1 1 1 1
#./host/driver_offline/conv_fwd_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 1024 1 7 17 17 1 1 1 1 0 3 0 3 #./host/driver_offline/conv_fwd_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 1024 1 7 17 17 1 1 1 1 0 3 0 3
./host/driver_offline/conv_fwd_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 256 3 3 14 14 1 1 1 1 1 1 1 1 #./host/driver_offline/conv_fwd_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 256 3 3 14 14 1 1 1 1 1 1 1 1
#./host/driver_offline/conv_fwd_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 128 128 3 3 14 14 1 1 1 1 1 1 1 1 #./host/driver_offline/conv_fwd_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 128 128 3 3 14 14 1 1 1 1 1 1 1 1
#./host/driver_offline/conv_fwd_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 512 3 3 7 7 1 1 1 1 1 1 1 1 #./host/driver_offline/conv_fwd_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 512 512 3 3 7 7 1 1 1 1 1 1 1 1
...@@ -44,4 +47,12 @@ REPEAT=$6 ...@@ -44,4 +47,12 @@ REPEAT=$6
#./host/driver_offline/conv_bwd_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 256 3 3 14 14 1 1 1 1 1 1 1 1 #./host/driver_offline/conv_bwd_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 256 256 256 3 3 14 14 1 1 1 1 1 1 1 1
#./host/driver_online/conv_fwd_driver_online $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 192 3 3 71 71 2 2 1 1 1 1 1 1 #./host/driver_offline/conv_wrw_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 256 128 3 3 14 14 1 1 1 1 1 1 1 1
#./host/driver_online/conv_fwd_driver_online $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 128 128 192 3 3 71 71 2 2 1 1 1 1 1 1
################################################ layout algo verify init log repeat M___ N___ K___
#./host/driver_offline/gemm_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 960 1024 1024
#./host/driver_offline/gemm_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 1920 2048 2048
./host/driver_offline/gemm_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 3840 4096 4096
#./host/driver_offline/gemm_driver_offline $LAYOUT $ALGO $VERIFY $INIT $LOG $REPEAT 7680 8192 8192
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment