driver.hip.cpp 27.7 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
Chao Liu's avatar
Chao Liu committed
2
3
#include <numeric>
#include <initializer_list>
Chao Liu's avatar
Chao Liu committed
4
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
5
#include <stdlib.h>
Chao Liu's avatar
Chao Liu committed
6
#include "config.h"
Chao Liu's avatar
Chao Liu committed
7
#include "tensor.hpp"
8
9
#include "ConstantTensorDescriptor.hip.hpp"
#include "conv_common.hip.hpp"
Chao Liu's avatar
Chao Liu committed
10
//#include "device_direct_convolution_1.hpp"
Chao Liu's avatar
Chao Liu committed
11
#include "device_direct_convolution_2_nchw_kcyx_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
12
//#include "device_direct_convolution_2_vectorized_nchw_kcyx_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
13
#include "device_convolution_implicit_gemm_v1_chwn_cyxk_khwn.hpp"
14
#include "device_convolution_implicit_gemm_v1_nchw_cyxk_khwn.hpp"
Chao Liu's avatar
Chao Liu committed
15
//#include "device_implicit_gemm_convolution_1_chwn_cyxk_khwn_padded.hpp"
Chao Liu's avatar
Chao Liu committed
16
#include "device_convolution_implicit_gemm_v2_chwn_cyxk_khwn.hpp"
Chao Liu's avatar
Chao Liu committed
17

Chao Liu's avatar
Chao Liu committed
18
struct GeneratorTensor_1
Chao Liu's avatar
Chao Liu committed
19
20
{
    template <class... Is>
Chao Liu's avatar
Chao Liu committed
21
    double operator()(Is... is)
Chao Liu's avatar
Chao Liu committed
22
    {
Chao Liu's avatar
Chao Liu committed
23
        return 1;
Chao Liu's avatar
Chao Liu committed
24
25
26
    }
};

Chao Liu's avatar
Chao Liu committed
27
28
29
30
31
32
33
34
35
36
37
38
struct GeneratorTensor_2
{
    int min_value = 0;
    int max_value = 1;

    template <class... Is>
    double operator()(Is...)
    {
        return (std::rand() % (max_value - min_value)) + min_value;
    }
};

39
40
41
42
43
44
45
46
47
48
struct GeneratorTensor_3
{
    template <class... Is>
    double operator()(Is... is)
    {
        std::array<index_t, sizeof...(Is)> dims = {{static_cast<index_t>(is)...}};

#if 0
        auto f_acc = std::plus<index_t>{};
#else
49
        auto f_acc = [](auto a, auto b) { return 10 * a + b; };
50
51
#endif

52
        return std::accumulate(dims.begin(), dims.end(), index_t(0), f_acc);
53
54
55
    }
};

Chao Liu's avatar
Chao Liu committed
56
57
58
59
60
struct GeneratorTensor_Checkboard
{
    template <class... Ts>
    double operator()(Ts... Xs) const
    {
Chao Liu's avatar
Chao Liu committed
61
        std::array<index_t, sizeof...(Ts)> dims = {{Xs...}};
Chao Liu's avatar
Chao Liu committed
62
63
64
        return std::accumulate(dims.begin(),
                               dims.end(),
                               true,
Chao Liu's avatar
Chao Liu committed
65
                               [](bool init, index_t x) -> int { return init != (x % 2); })
Chao Liu's avatar
Chao Liu committed
66
67
68
69
70
                   ? 1
                   : -1;
    }
};

Chao Liu's avatar
Chao Liu committed
71
72
73
74
75
76
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
77
78
79
80
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
95
96
97
98
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
99
100
    constexpr auto desc = TConstTensorDesc{};

Chao Liu's avatar
Chao Liu committed
101
    std::initializer_list<index_t> lengths = {
Chao Liu's avatar
Chao Liu committed
102
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
Chao Liu's avatar
Chao Liu committed
103
    std::initializer_list<index_t> strides = {
Chao Liu's avatar
Chao Liu committed
104
105
106
107
108
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

109
110
111
112
113
114
template <class TIn, class TWei, class TOut, class LowerPads, class UpperPads>
void host_direct_convolution(const Tensor<TIn>& in_nchw,
                             const Tensor<TWei>& wei_kcyx,
                             Tensor<TOut>& out_nkhw,
                             LowerPads,
                             UpperPads)
Chao Liu's avatar
Chao Liu committed
115
{
Chao Liu's avatar
Chao Liu committed
116
117
    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});
118

Chao Liu's avatar
Chao Liu committed
119
120
    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});
121

Chao Liu's avatar
Chao Liu committed
122
123
    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
Chao Liu's avatar
Chao Liu committed
124
        for(int c = 0; c < wei_kcyx.mDesc.GetLengths()[1]; ++c)
Chao Liu's avatar
Chao Liu committed
125
        {
Chao Liu's avatar
Chao Liu committed
126
            for(int y = 0; y < wei_kcyx.mDesc.GetLengths()[2]; ++y)
Chao Liu's avatar
Chao Liu committed
127
            {
128
                int hi = ho + y - h_pad_low;
Chao Liu's avatar
Chao Liu committed
129
                for(int x = 0; x < wei_kcyx.mDesc.GetLengths()[3]; ++x)
Chao Liu's avatar
Chao Liu committed
130
                {
131
132
133
134
                    int wi = wo + x - w_pad_low;
                    if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                       wi < in_nchw.mDesc.GetLengths()[3])
                    {
135
                        v += double(in_nchw(n, c, hi, wi)) * double(wei_kcyx(k, c, y, x));
136
                    }
Chao Liu's avatar
Chao Liu committed
137
138
139
                }
            }
        }
140
        out_nkhw(n, k, ho, wo) = v;
Chao Liu's avatar
Chao Liu committed
141
142
143
    };

    auto f_par = make_ParallelTensorFunctor(f,
144
145
146
147
                                            out_nkhw.mDesc.GetLengths()[0],
                                            out_nkhw.mDesc.GetLengths()[1],
                                            out_nkhw.mDesc.GetLengths()[2],
                                            out_nkhw.mDesc.GetLengths()[3]);
Chao Liu's avatar
Chao Liu committed
148

Chao Liu's avatar
Chao Liu committed
149
    f_par(std::thread::hardware_concurrency());
Chao Liu's avatar
Chao Liu committed
150
151
}

152
153
154
155
156
157
template <class TIn, class TWei, class TOut, class LowerPads, class UpperPads>
void host_winograd_3x3_convolution(const Tensor<TIn>& in_nchw,
                                   const Tensor<TWei>& wei_kcyx,
                                   Tensor<TOut>& out_nkhw,
                                   LowerPads,
                                   UpperPads)
Chao Liu's avatar
Chao Liu committed
158
{
Chao Liu's avatar
Chao Liu committed
159
160
    constexpr std::size_t HoPerTile = 2;
    constexpr std::size_t WoPerTile = 2;
Chao Liu's avatar
Chao Liu committed
161

Chao Liu's avatar
Chao Liu committed
162
163
164
165
    std::size_t N  = in_nchw.mDesc.GetLengths()[0];
    std::size_t C  = in_nchw.mDesc.GetLengths()[1];
    std::size_t HI = in_nchw.mDesc.GetLengths()[2];
    std::size_t WI = in_nchw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
166

Chao Liu's avatar
Chao Liu committed
167
168
169
    std::size_t K = wei_kcyx.mDesc.GetLengths()[0];
    std::size_t Y = wei_kcyx.mDesc.GetLengths()[2];
    std::size_t X = wei_kcyx.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
170

171
172
    std::size_t HO = out_nkhw.mDesc.GetLengths()[2];
    std::size_t WO = out_nkhw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
173

Chao Liu's avatar
Chao Liu committed
174
175
    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});
176

Chao Liu's avatar
Chao Liu committed
177
178
    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});
179

Chao Liu's avatar
Chao Liu committed
180
181
    std::size_t HiPerTile = HoPerTile + Y - 1;
    std::size_t WiPerTile = WoPerTile + X - 1;
Chao Liu's avatar
Chao Liu committed
182

Chao Liu's avatar
Chao Liu committed
183
184
    std::size_t HTile = (HO + HoPerTile - 1) / HoPerTile;
    std::size_t WTile = (WO + WoPerTile - 1) / WoPerTile;
Chao Liu's avatar
Chao Liu committed
185

186
187
188
189
190
    Tensor<double> in_hold({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> in_transform({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> wei_transform({K, C, HiPerTile, WiPerTile});
    Tensor<double> out_transform({N, K, HTile, WTile, HiPerTile, HiPerTile});
    Tensor<double> out_hold({N, K, HTile, WTile, HoPerTile, WoPerTile});
Chao Liu's avatar
Chao Liu committed
191

Chao Liu's avatar
Chao Liu committed
192
193
    auto f_in_hold = [&](auto n, auto c, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
194
        {
Chao Liu's avatar
Chao Liu committed
195
196
            int hi = HoPerTile * htile + j - h_pad_low;
            for(int i = 0; i < WiPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
197
            {
Chao Liu's avatar
Chao Liu committed
198
                int wi = WoPerTile * wtile + i - w_pad_low;
199
200
201
202

                if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                   wi < in_nchw.mDesc.GetLengths()[3])
                {
Chao Liu's avatar
Chao Liu committed
203
                    in_hold(n, c, htile, wtile, j, i) = in_nchw(n, c, hi, wi);
204
205
206
                }
                else
                {
207
                    in_hold(n, c, htile, wtile, j, i) = TIn(0);
208
                }
Chao Liu's avatar
Chao Liu committed
209
210
211
212
            }
        }
    };

Chao Liu's avatar
Chao Liu committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    auto f_in_transform = [&](auto n, auto c, auto htile, auto wtile) {
        in_transform(n, c, htile, wtile, 0, 0) =
            in_hold(n, c, htile, wtile, 0, 0) - in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 0) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 1) =
            in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 2) =
            -in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 3) =
            in_hold(n, c, htile, wtile, 0, 1) - in_hold(n, c, htile, wtile, 0, 3) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 1, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 2, 0) =
            -in_hold(n, c, htile, wtile, 1, 0) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 1) =
            -in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 2) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 3) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 3, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 0) + in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) -
            in_hold(n, c, htile, wtile, 3, 1) + in_hold(n, c, htile, wtile, 3, 3);
Chao Liu's avatar
Chao Liu committed
265
266
267
    };

    auto f_wei_transform = [&](auto k, auto c) {
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        wei_transform(k, c, 0, 0) = double(wei_kcyx(k, c, 0, 0));
        wei_transform(k, c, 0, 1) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 2) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 3) = double(wei_kcyx(k, c, 0, 2));

        wei_transform(k, c, 1, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 1, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 2, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 2, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 3, 0) = double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 3, 1) = 0.5 * double(wei_kcyx(k, c, 2, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 2) = 0.5 * double(wei_kcyx(k, c, 2, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 3) = double(wei_kcyx(k, c, 2, 2));
Chao Liu's avatar
Chao Liu committed
323
324
    };

Chao Liu's avatar
Chao Liu committed
325
326
    auto f_out_transform = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
327
        {
Chao Liu's avatar
Chao Liu committed
328
            for(int i = 0; i < WiPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
329
330
331
332
            {
                double v = 0;
                for(int c = 0; c < C; ++c)
                {
Chao Liu's avatar
Chao Liu committed
333
                    v += in_transform(n, c, htile, wtile, j, i) * wei_transform(k, c, j, i);
Chao Liu's avatar
Chao Liu committed
334
335
                }

Chao Liu's avatar
Chao Liu committed
336
                out_transform(n, k, htile, wtile, j, i) = v;
Chao Liu's avatar
Chao Liu committed
337
338
339
340
            }
        }
    };

Chao Liu's avatar
Chao Liu committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    auto f_out_hold = [&](auto n, auto k, auto htile, auto wtile) {
        out_hold(n, k, htile, wtile, 0, 0) =
            out_transform(n, k, htile, wtile, 0, 0) + out_transform(n, k, htile, wtile, 0, 1) +
            out_transform(n, k, htile, wtile, 0, 2) + out_transform(n, k, htile, wtile, 1, 0) +
            out_transform(n, k, htile, wtile, 1, 1) + out_transform(n, k, htile, wtile, 1, 2) +
            out_transform(n, k, htile, wtile, 2, 0) + out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2);
        out_hold(n, k, htile, wtile, 0, 1) =
            out_transform(n, k, htile, wtile, 0, 1) - out_transform(n, k, htile, wtile, 0, 2) -
            out_transform(n, k, htile, wtile, 0, 3) + out_transform(n, k, htile, wtile, 1, 1) -
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 1, 3) +
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 2, 3);
        out_hold(n, k, htile, wtile, 1, 0) =
            out_transform(n, k, htile, wtile, 1, 0) + out_transform(n, k, htile, wtile, 1, 1) +
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 2, 0) -
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 3, 0) - out_transform(n, k, htile, wtile, 3, 1) -
            out_transform(n, k, htile, wtile, 3, 2);
        out_hold(n, k, htile, wtile, 1, 1) =
            out_transform(n, k, htile, wtile, 1, 1) - out_transform(n, k, htile, wtile, 1, 2) -
            out_transform(n, k, htile, wtile, 1, 3) - out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2) + out_transform(n, k, htile, wtile, 2, 3) -
            out_transform(n, k, htile, wtile, 3, 1) + out_transform(n, k, htile, wtile, 3, 2) +
            out_transform(n, k, htile, wtile, 3, 3);
Chao Liu's avatar
Chao Liu committed
366
367
    };

Chao Liu's avatar
Chao Liu committed
368
369
    auto f_out = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HoPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
370
        {
Chao Liu's avatar
Chao Liu committed
371
372
            std::size_t ho = HoPerTile * htile + j;
            for(int i = 0; i < WoPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
373
            {
374
                std::size_t wo         = WoPerTile * wtile + i;
375
                out_nkhw(n, k, ho, wo) = out_hold(n, k, htile, wtile, j, i);
Chao Liu's avatar
Chao Liu committed
376
377
378
379
380
381
            }
        }
    };

    std::size_t num_thread = std::thread::hardware_concurrency();

Chao Liu's avatar
Chao Liu committed
382
383
    make_ParallelTensorFunctor(f_in_hold, N, C, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_in_transform, N, C, HTile, WTile)(num_thread);
Chao Liu's avatar
Chao Liu committed
384
    make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread);
Chao Liu's avatar
Chao Liu committed
385
386
387
    make_ParallelTensorFunctor(f_out_transform, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out_hold, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out, N, K, HTile, WTile)(num_thread);
Chao Liu's avatar
Chao Liu committed
388
389
390
391
392
}

template <class T>
void check_error(const Tensor<T>& ref, const Tensor<T>& result)
{
393
394
    // printf("\n");

Chao Liu's avatar
Chao Liu committed
395
    float error     = 0;
Chao Liu's avatar
Chao Liu committed
396
    float max_diff  = -1;
Chao Liu's avatar
Chao Liu committed
397
398
399
    float ref_value = 0, result_value = 0;
    for(int i = 0; i < ref.mData.size(); ++i)
    {
400
401
        error += std::abs(double(ref.mData[i]) - double(result.mData[i]));
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
Chao Liu's avatar
Chao Liu committed
402
403
404
405
406
407
        if(max_diff < diff)
        {
            max_diff     = diff;
            ref_value    = ref.mData[i];
            result_value = result.mData[i];
        }
408
409

        // printf("{%f, %f}", double(ref.mData[i]), double(result.mData[i]));
Chao Liu's avatar
Chao Liu committed
410
    }
411
    // printf("\n");
Chao Liu's avatar
Chao Liu committed
412
413
414
415
416

    std::cout << "error: " << error << std::endl;
    std::cout << "max_diff: " << max_diff << ", " << ref_value << ", " << result_value << std::endl;
}

Chao Liu's avatar
Chao Liu committed
417
int main(int argc, char* argv[])
Chao Liu's avatar
Chao Liu committed
418
{
Chao Liu's avatar
tuning  
Chao Liu committed
419
#if 0
420
421
422
423
    constexpr index_t N  = 128;
    constexpr index_t C  = 8;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
424
    constexpr index_t K  = 128;
Chao Liu's avatar
Chao Liu committed
425
426
427
428
429
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
430
#elif 0
431
    // 3x3, 34x34
432
    constexpr index_t N = 64;
433
434
435
    constexpr index_t C = 256;
    constexpr index_t HI = 34;
    constexpr index_t WI = 34;
436
437
438
    constexpr index_t K = 128;
    constexpr index_t Y = 3;
    constexpr index_t X = 3;
Chao Liu's avatar
Chao Liu committed
439

440
441
442
443
444
445
446
447
448
449
450
451
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 0
    // 3x3, 56x56
    constexpr index_t N  = 64;
    constexpr index_t C  = 64;
    constexpr index_t HI = 56;
    constexpr index_t WI = 56;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

Chao Liu's avatar
Chao Liu committed
452
453
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
454
#elif 0
455
    // 3x3, 58x58
Chao Liu's avatar
Chao Liu committed
456
457
458
459
460
461
462
    constexpr index_t N  = 64;
    constexpr index_t C  = 64;
    constexpr index_t HI = 58;
    constexpr index_t WI = 58;
    constexpr index_t K  = 64;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
463
#elif 0
464
    // 3x3, 58x58
Chao Liu's avatar
Chao Liu committed
465
466
467
468
469
470
471
    constexpr index_t N  = 16;
    constexpr index_t C  = 128;
    constexpr index_t HI = 58;
    constexpr index_t WI = 58;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;
472
473
#elif 0
    // 3x3 filter, 58x58 image, 0x0 padding
Chao Liu's avatar
Chao Liu committed
474
475
476
477
478
479
480
481
482
483
    constexpr index_t N  = 16;
    constexpr index_t C  = 128;
    constexpr index_t HI = 58;
    constexpr index_t WI = 58;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
484
#elif 0
485
    // 3x3 filter, 56x56 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
486
487
488
489
490
491
492
493
494
495
    constexpr index_t N  = 16;
    constexpr index_t C  = 128;
    constexpr index_t HI = 56;
    constexpr index_t WI = 56;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
496
497
#elif 0
    // 3x3 filter, 28x28 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
498
499
500
501
502
503
504
505
506
507
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
Chao Liu's avatar
tuning  
Chao Liu committed
508
#elif 1
Chao Liu's avatar
Chao Liu committed
509
510
511
512
513
    // 3x3 filter, 28x28 image
    constexpr index_t N  = 128;
    constexpr index_t C  = 256;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
514
    constexpr index_t K  = 128;
Chao Liu's avatar
Chao Liu committed
515
516
517
518
519
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
520
#elif 0
Chao Liu's avatar
Chao Liu committed
521
    // 1x1 filter, 28x28 image
Chao Liu's avatar
Chao Liu committed
522
523
524
525
526
527
528
529
530
531
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
532
533
#elif 0
    // 3x3 filter, 20x84 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
534
535
536
537
538
539
540
541
542
543
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 84;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
Chao Liu's avatar
Chao Liu committed
544
545
#elif 0
    // 3x3 filter, 112x112 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
546
547
548
549
550
551
552
553
554
555
    constexpr index_t N  = 16;
    constexpr index_t C  = 64;
    constexpr index_t HI = 112;
    constexpr index_t WI = 112;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
Chao Liu's avatar
Chao Liu committed
556
557
#elif 0
    // 5x5 filter, 20x86 image, 1x1 padding
Chao Liu's avatar
Chao Liu committed
558
559
560
561
562
563
564
565
566
567
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 86;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
Chao Liu's avatar
Chao Liu committed
568
569
#elif 0
    // 5x5 filter, 28x28 image, 2x2 padding
Chao Liu's avatar
Chao Liu committed
570
571
572
573
574
575
576
577
578
579
    constexpr index_t N  = 16;
    constexpr index_t C  = 192;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 32;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 2;
    constexpr index_t WPad = 2;
Chao Liu's avatar
Chao Liu committed
580
#elif 0
581
    // 1x1 filter, 32x32 image
Chao Liu's avatar
Chao Liu committed
582
583
584
585
586
587
588
589
590
591
    constexpr index_t N  = 64;
    constexpr index_t C  = 256;
    constexpr index_t HI = 32;
    constexpr index_t WI = 32;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
592
#elif 1
Chao Liu's avatar
Chao Liu committed
593
594
595
596
597
598
599
600
601
602
603
    // 1x1 filter, 14x14 image, C = 2048
    constexpr index_t N  = 128;
    constexpr index_t C  = 2048;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
604
#elif 1
Chao Liu's avatar
Chao Liu committed
605
    // 1x1 filter, 14x14 image, C = 512
Chao Liu's avatar
Chao Liu committed
606
607
608
609
610
611
612
613
614
615
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
616
#endif
Chao Liu's avatar
Chao Liu committed
617

618
619
620
    auto lower_pads = Sequence<HPad, WPad>{};
    auto upper_pads = Sequence<HPad, WPad>{};

Chao Liu's avatar
Chao Liu committed
621
    auto in_nchw_desc  = make_ConstantTensorDescriptor(Sequence<N, C, HI, WI>{});
Chao Liu's avatar
Chao Liu committed
622
    auto wei_kcyx_desc = make_ConstantTensorDescriptor(Sequence<K, C, Y, X>{});
623
    auto out_nkhw_desc = get_convolution_with_padding_output_default_4d_tensor_descriptor(
Chao Liu's avatar
Chao Liu committed
624
        in_nchw_desc, wei_kcyx_desc, lower_pads, upper_pads);
Chao Liu's avatar
Chao Liu committed
625

Chao Liu's avatar
Chao Liu committed
626
    ostream_ConstantTensorDescriptor(in_nchw_desc, std::cout << "in_nchw_desc: ");
Chao Liu's avatar
Chao Liu committed
627
    ostream_ConstantTensorDescriptor(wei_kcyx_desc, std::cout << "wei_kcyx_desc: ");
Chao Liu's avatar
Chao Liu committed
628
    ostream_ConstantTensorDescriptor(out_nkhw_desc, std::cout << "out_nkhw_desc: ");
Chao Liu's avatar
Chao Liu committed
629

Chao Liu's avatar
Chao Liu committed
630
631
    using in_data_t  = float;
    using out_data_t = float;
632
633
634
635
    Tensor<in_data_t> in_nchw(make_TensorDescriptor(in_nchw_desc));
    Tensor<in_data_t> wei_kcyx(make_TensorDescriptor(wei_kcyx_desc));
    Tensor<out_data_t> out_nkhw_host(make_TensorDescriptor(out_nkhw_desc));
    Tensor<out_data_t> out_nkhw_device(make_TensorDescriptor(out_nkhw_desc));
Chao Liu's avatar
Chao Liu committed
636

Chao Liu's avatar
Chao Liu committed
637
    std::size_t num_thread = std::thread::hardware_concurrency();
Chao Liu's avatar
Chao Liu committed
638

Chao Liu's avatar
Chao Liu committed
639
640
641
642
643
644
645
    if(argc != 3)
    {
        printf("arg1: do_verification, arg2: nrepeat\n");
        exit(1);
    }

    bool do_verification = atoi(argv[1]);
Chao Liu's avatar
Chao Liu committed
646
    index_t nrepeat      = atoi(argv[2]);
647
648
649

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
650
#if 0
651
        in_nchw.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
652
        wei_kcyx.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
653
654
655
#elif 0
        in_nchw.GenerateTensorValue(GeneratorTensor_3{}, num_thread);
        wei_kcyx.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
656
#elif 1
657
        in_nchw.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
658
        wei_kcyx.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
659
#elif 1
660
661
662
663
664
665
        in_nchw.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread);

        auto gen_wei = [](auto... is) {
            return GeneratorTensor_2{1, 5}(is...) * GeneratorTensor_Checkboard{}(is...);
        };
        wei_kcyx.GenerateTensorValue(gen_wei, num_thread);
Chao Liu's avatar
Chao Liu committed
666
#endif
667
    }
Chao Liu's avatar
Chao Liu committed
668

Chao Liu's avatar
Chao Liu committed
669
#if 1
Chao Liu's avatar
Chao Liu committed
670
#if 0
Chao Liu's avatar
Chao Liu committed
671
    device_direct_convolution_1
672
#elif 0
Chao Liu's avatar
Chao Liu committed
673
674
    device_direct_convolution_2_nchw_kcyx_nkhw
#elif 0
Chao Liu's avatar
Chao Liu committed
675
    device_direct_convolution_2_vectorized_nchw_kcyx_nkhw
676
#elif 1
Chao Liu's avatar
Chao Liu committed
677
    device_convolution_implicit_gemm_v1_chwn_cyxk_khwn
678
#elif 1
679
    device_convolution_implicit_gemm_v1_nchw_cyxk_khwn
680
#elif 0
Chao Liu's avatar
Chao Liu committed
681
    device_convolution_implicit_gemm_v2_chwn_cyxk_khwn
682
#endif
Chao Liu's avatar
Chao Liu committed
683
    (in_nchw_desc, in_nchw, wei_kcyx_desc, wei_kcyx, out_nkhw_desc, out_nkhw_device, nrepeat);
684

Chao Liu's avatar
Chao Liu committed
685
#elif 1
Chao Liu's avatar
Chao Liu committed
686
    device_implicit_gemm_convolution_1_chwn_cyxk_khwn_padded(in_nchw_desc,
Chao Liu's avatar
Chao Liu committed
687
                                                             in_nchw,
Chao Liu's avatar
Chao Liu committed
688
689
                                                             wei_kcyx_desc,
                                                             wei_kcyx,
Chao Liu's avatar
Chao Liu committed
690
691
692
693
694
                                                             out_nkhw_desc,
                                                             out_nkhw_device,
                                                             lower_pads,
                                                             upper_pads,
                                                             nrepeat);
695
#endif
Chao Liu's avatar
Chao Liu committed
696

697
    if(do_verification)
698
    {
Chao Liu's avatar
Chao Liu committed
699
        if(Y == 3 && X == 3)
700
        {
Chao Liu's avatar
Chao Liu committed
701
            host_winograd_3x3_convolution(in_nchw, wei_kcyx, out_nkhw_host, lower_pads, upper_pads);
702
703
704
        }
        else
        {
Chao Liu's avatar
Chao Liu committed
705
            host_direct_convolution(in_nchw, wei_kcyx, out_nkhw_host, lower_pads, upper_pads);
706
707
        }
        check_error(out_nkhw_host, out_nkhw_device);
Chao Liu's avatar
Chao Liu committed
708

Chao Liu's avatar
Chao Liu committed
709
#if 0
710
        LogRange(std::cout << "in_nchw : ", in_nchw.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
711
        LogRange(std::cout << "wei_kcyx: ", wei_kcyx.mData, ",") << std::endl;
712
713
        LogRange(std::cout << "out_nkhw_host  : ", out_nkhw_host.mData, ",") << std::endl;
        LogRange(std::cout << "out_nkhw_device: ", out_nkhw_device.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
714
#endif
715
    }
716
}