conv.cu 9.59 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
Chao Liu's avatar
Chao Liu committed
2
3
#include <numeric>
#include <initializer_list>
Chao Liu's avatar
Chao Liu committed
4
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
5
6
#include "nvToolsExt.h"
#include "tensor.hpp"
Chao Liu's avatar
Chao Liu committed
7
#include "constant_tensor_descriptor.cuh"
Chao Liu's avatar
Chao Liu committed
8
#include "direct_convolution.cuh"
Chao Liu's avatar
Chao Liu committed
9

Chao Liu's avatar
Chao Liu committed
10
template <class T>
Chao Liu's avatar
Chao Liu committed
11
struct GeneratorConstant
Chao Liu's avatar
Chao Liu committed
12
13
14
15
16
17
18
{
    T value = 0;

    template <class... Is>
    T operator()(Is... is)
    {
        return value;
Chao Liu's avatar
Chao Liu committed
19
20
21
22
23
24
25
26
27
    }
};

template <class T>
struct GeneratorTensor
{
    template <class... Is>
    T operator()(Is... is)
    {
Chao Liu's avatar
Chao Liu committed
28
#if 1
Chao Liu's avatar
Chao Liu committed
29
        return T(std::rand()) / T(RAND_MAX);
Chao Liu's avatar
Chao Liu committed
30
31
#elif 0

Chao Liu's avatar
Chao Liu committed
32
33
        std::initializer_list<std::size_t> ls = {static_cast<std::size_t>(is)...};
        return std::accumulate(ls.begin(), ls.end(), std::size_t(0));
Chao Liu's avatar
Chao Liu committed
34
35
36
37
38
39
40
#else
        assert(sizeof...(Is) > 0);
        std::initializer_list<std::size_t> ids = {static_cast<std::size_t>(is)...};
        std::vector<std::size_t> lens(sizeof...(Is), 100);
        std::vector<std::size_t> strides(sizeof...(Is), 1);
        std::partial_sum(lens.rbegin(), lens.rbegin() + (sizeof...(Is) - 1), strides.rbegin() + 1);
        return std::inner_product(ids.begin(), ids.end(), strides.begin(), std::size_t(0)) + 1;
Chao Liu's avatar
Chao Liu committed
41
42
43
44
#endif
    }
};

Chao Liu's avatar
Chao Liu committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

    constexpr auto I0   = Index<0>{};
    constexpr auto I1   = Index<1>{};
    constexpr auto I2   = Index<2>{};
    constexpr auto I3   = Index<3>{};
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

    constexpr auto I0   = Index<0>{};
    constexpr auto I1   = Index<1>{};
    constexpr auto I2   = Index<2>{};
    constexpr auto I3   = Index<3>{};
    constexpr auto desc = TConstTensorDesc{};

    std::initializer_list<unsigned> lengths = {
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
    std::initializer_list<unsigned> strides = {
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

template <class T>
void host_convolution(const Tensor<T>& in, const Tensor<T>& wei, Tensor<T>& out)
Chao Liu's avatar
Chao Liu committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
{
    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
        for(int c = 0; c < wei.mDesc.GetLengths()[1]; ++c)
        {
            for(int y = 0; y < wei.mDesc.GetLengths()[2]; ++y)
            {
                int hi = ho + y;
                for(int x = 0; x < wei.mDesc.GetLengths()[3]; ++x)
                {
                    int wi = wo + x;
                    v += in(n, c, hi, wi) * wei(k, c, y, x);
                }
            }
        }
        out(n, k, ho, wo) = v;
    };

    auto f_par = make_ParallelTensorFunctor(f,
                                            out.mDesc.GetLengths()[0],
                                            out.mDesc.GetLengths()[1],
                                            out.mDesc.GetLengths()[2],
                                            out.mDesc.GetLengths()[3]);

Chao Liu's avatar
Chao Liu committed
109
    f_par(std::thread::hardware_concurrency());
Chao Liu's avatar
Chao Liu committed
110
111
}

Chao Liu's avatar
Chao Liu committed
112
template <class T, class InDesc, class WeiDesc, class OutDesc>
Chao Liu's avatar
Chao Liu committed
113
void device_convolution(
Chao Liu's avatar
Chao Liu committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    InDesc, const Tensor<T>& in, WeiDesc, const Tensor<T>& wei, OutDesc, Tensor<T>& out)
{
    std::size_t data_sz = sizeof(T);
    DeviceMem in_device_buf(data_sz * in.mDesc.GetElementSpace());
    DeviceMem wei_device_buf(data_sz * wei.mDesc.GetElementSpace());
    DeviceMem out_device_buf(data_sz * out.mDesc.GetElementSpace());

    int num_thread = std::thread::hardware_concurrency();

    in_device_buf.ToDevice(in.mData.data());
    wei_device_buf.ToDevice(wei.mData.data());
    out_device_buf.ToDevice(out.mData.data());

    constexpr auto I0 = Index<0>{};
    constexpr auto I1 = Index<1>{};
    constexpr auto I2 = Index<2>{};
    constexpr auto I3 = Index<3>{};

Chao Liu's avatar
Chao Liu committed
132
133
134
135
    constexpr auto in_desc           = InDesc{};
    constexpr auto wei_desc          = WeiDesc{};
    constexpr auto out_desc          = OutDesc{};
    constexpr unsigned NPerBlock     = 1;
Chao Liu's avatar
Chao Liu committed
136
137
    constexpr unsigned KPerBlock     = 2;
    constexpr unsigned CPerBlockLoop = 4;
Chao Liu's avatar
Chao Liu committed
138
139
    constexpr unsigned OutTileSizeH  = 2;
    constexpr unsigned OutTileSizeW  = 2;
140
141
    constexpr unsigned YPerBlock     = 8;
    constexpr unsigned XPerBlock     = 16;
Chao Liu's avatar
Chao Liu committed
142
143
144

    constexpr unsigned NBlockCopyLen0 = 1;
    constexpr unsigned NBlockCopyLen1 = 1;
Chao Liu's avatar
Chao Liu committed
145
146
    constexpr unsigned NBlockCopyLen2 = 4;
    constexpr unsigned NBlockCopyLen3 = 32;
Chao Liu's avatar
Chao Liu committed
147

148
    constexpr unsigned BlockSize = 128;
Chao Liu's avatar
Chao Liu committed
149

150
151
152
153
    constexpr unsigned GridSize = (out_desc.GetLength(I0) / NPerBlock) *
                                  (out_desc.GetLength(I1) / KPerBlock) *
                                  (out_desc.GetLength(I2) / (OutTileSizeH * YPerBlock)) *
                                  (out_desc.GetLength(I3) / (OutTileSizeW * XPerBlock));
Chao Liu's avatar
Chao Liu committed
154

155
156
157
158
159
160
161
162
163
164
    dim3 block_dim(BlockSize);
    dim3 grid_dim(GridSize);

    printf("%s: BlockSize %u, GridSize %u \n", __func__, BlockSize, GridSize);

    cudaEvent_t start, stop;
    float elapsedTime;

    cudaEventCreate(&start);
    cudaEventRecord(start, 0);
Chao Liu's avatar
Chao Liu committed
165

Chao Liu's avatar
Chao Liu committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    gridwise_convolution<T,
                         InDesc,
                         WeiDesc,
                         OutDesc,
                         NPerBlock,
                         KPerBlock,
                         CPerBlockLoop,
                         OutTileSizeH,
                         OutTileSizeW,
                         YPerBlock,
                         XPerBlock,
                         NBlockCopyLen0,
                         NBlockCopyLen1,
                         NBlockCopyLen2,
180
181
182
                         NBlockCopyLen3,
                         BlockSize,
                         GridSize>
Chao Liu's avatar
Chao Liu committed
183
184
185
186
187
188
        <<<grid_dim, block_dim>>>(InDesc{},
                                  static_cast<T*>(in_device_buf.GetDeviceBuffer()),
                                  WeiDesc{},
                                  static_cast<T*>(wei_device_buf.GetDeviceBuffer()),
                                  OutDesc{},
                                  static_cast<T*>(out_device_buf.GetDeviceBuffer()));
Chao Liu's avatar
Chao Liu committed
189

190
191
192
193
194
195
196
    cudaEventCreate(&stop);
    cudaEventRecord(stop, 0);
    cudaEventSynchronize(stop);

    cudaEventElapsedTime(&elapsedTime, start, stop);
    printf("Elapsed time : %f ms\n", elapsedTime);

Chao Liu's avatar
Chao Liu committed
197
    checkCudaErrors(cudaGetLastError());
Chao Liu's avatar
Chao Liu committed
198
199
200
201
202
    out_device_buf.FromDevice(out.mData.data());
}

int main()
{
Chao Liu's avatar
Chao Liu committed
203
#if 0
Chao Liu's avatar
Chao Liu committed
204
205
206
207
208
209
210
    constexpr unsigned N  = 1;
    constexpr unsigned C  = 1;
    constexpr unsigned HI = 18;
    constexpr unsigned WI = 18;
    constexpr unsigned K  = 1;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
211
#elif 1
Chao Liu's avatar
Chao Liu committed
212
213
214
215
    constexpr unsigned N = 64;
    constexpr unsigned C = 256;
    constexpr unsigned HI = 34;
    constexpr unsigned WI = 34;
Chao Liu's avatar
Chao Liu committed
216
    constexpr unsigned K = 64;
Chao Liu's avatar
Chao Liu committed
217
218
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
Chao Liu's avatar
Chao Liu committed
219
#elif 0
Chao Liu's avatar
Chao Liu committed
220
221
    constexpr unsigned N = 2;
    constexpr unsigned C = 3;
Chao Liu's avatar
Chao Liu committed
222
223
    constexpr unsigned HI = 130;
    constexpr unsigned WI = 130;
Chao Liu's avatar
Chao Liu committed
224
225
226
    constexpr unsigned K = 5;
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
Chao Liu's avatar
Chao Liu committed
227
228
229
230
231
232
233
234
#elif 0
    constexpr unsigned N  = 3;
    constexpr unsigned C  = 16;
    constexpr unsigned HI = 130;
    constexpr unsigned WI = 130;
    constexpr unsigned K  = 4;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
235
#endif
Chao Liu's avatar
Chao Liu committed
236
237
238
239
240
241
242
243
244
245
246
247
248

    auto in_desc  = make_ConstantTensorDescriptor(Sequence<N, C, HI, WI>{});
    auto wei_desc = make_ConstantTensorDescriptor(Sequence<K, C, S, R>{});
    auto out_desc = get_output_4d_tensor_descriptor(in_desc, wei_desc);

    ostream_ConstantTensorDescriptor(in_desc, std::cout << "in_desc: ");
    ostream_ConstantTensorDescriptor(wei_desc, std::cout << "wei_desc: ");
    ostream_ConstantTensorDescriptor(out_desc, std::cout << "out_desc: ");

    Tensor<float> in(make_TensorDescriptor(in_desc));
    Tensor<float> wei(make_TensorDescriptor(wei_desc));
    Tensor<float> out_host(make_TensorDescriptor(out_desc));

Chao Liu's avatar
Chao Liu committed
249
250
    int num_thread = std::thread::hardware_concurrency();

251
#if 0
Chao Liu's avatar
Chao Liu committed
252
253
    in.GenerateTensorValue(GeneratorTensor<float>{}, num_thread);
    wei.GenerateTensorValue(GeneratorTensor<float>{}, num_thread);
Chao Liu's avatar
Chao Liu committed
254
    out_host.GenerateTensorValue(GeneratorConstant<float>{0}, num_thread);
Chao Liu's avatar
Chao Liu committed
255
#endif
Chao Liu's avatar
Chao Liu committed
256

Chao Liu's avatar
Chao Liu committed
257
    Tensor<float> out_device = out_host;
Chao Liu's avatar
Chao Liu committed
258

Chao Liu's avatar
Chao Liu committed
259
    device_convolution(in_desc, in, wei_desc, wei, out_desc, out_device);
Chao Liu's avatar
Chao Liu committed
260

261
#if 0
Chao Liu's avatar
Chao Liu committed
262
    host_convolution(in, wei, out_host);
Chao Liu's avatar
Chao Liu committed
263

Chao Liu's avatar
Chao Liu committed
264
265
266
    float error      = 0;
    float max_diff   = 0;
    float host_value = 0, device_value = 0;
Chao Liu's avatar
Chao Liu committed
267
268
269
    for(int i = 0; i < out_host.mData.size(); ++i)
    {
        error += std::abs(out_host.mData[i] - out_device.mData[i]);
Chao Liu's avatar
Chao Liu committed
270
271
272
273
274
275
276
        float diff = std::abs(out_host.mData[i] - out_device.mData[i]);
        if(max_diff < diff)
        {
            max_diff     = diff;
            host_value   = out_host.mData[i];
            device_value = out_device.mData[i];
        }
Chao Liu's avatar
Chao Liu committed
277
278
    }
    std::cout << "error: " << error << std::endl;
Chao Liu's avatar
Chao Liu committed
279
280
281
    std::cout << "max_diff: " << max_diff << ", " << host_value << ", " << device_value
              << std::endl;
#endif
Chao Liu's avatar
Chao Liu committed
282
283
284
285
286
287
288

#if 0
    LogRange(std::cout << __func__ << "in : ", in.mData, ",") << std::endl;
    LogRange(std::cout << __func__ << "wei: ", wei.mData, ",") << std::endl;
    LogRange(std::cout, out_host.mData, ",") << std::endl;
    LogRange(std::cout, out_device.mData, ",") << std::endl;
#endif
Chao Liu's avatar
Chao Liu committed
289
}